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ABSTRACT 

The effects of thermal radiation upon the laminar flow of an absorbing, emitting, scattering gray fluid over an 
adiabatic flat plate are investigated. The combined radiation and forced convection in the boundary layer leads to a set of 
partial and integro-differential equations. In this work, three governing equations are setting as partial differential 
equations. A finite difference scheme is used to transform the resulting equations into an ordinary differential equation 
system which is solved numerically. Results for the temperature profiles across the boundary layer and the recovery factor 
along the flat plate are presented. Comparison of these results with exact solutions shows that the two flux model is simpler 
and accurate enough to treat the interaction of the thermal radiation with the laminar boundary layer. 
 
Keywords: combined heat transfer, laminar boundary layer, thermal radiation, laminar flow, differential equations. 
 
Nomenclature 
 
A constant in the two-flux model 
Cp  specific heat a constant pressure 
E1, E2  integro-exponential functions of first and second  
              class, respectively. 
E∞  Eckert number, based in u∞ 
f  dimensionless stream function 
g  gravity 
G  irradiation 
G*  dimensionless irradiation 
I  intensity of radiation 
k  thermal conductivity  
N  dimensionless conduction-radiation parameter 
Nu  Nusselt number 
Pr  Prandtl number 
q  heat-flux rate 
Re Reynolds Number 
Q  dimensionless heat-flux rate 
T  absolute temperature 
u, v  velocity components in x- and y- directions  
               respectively 
Wo  scattering parameter 
x  distance along surface 
y  distance perpendicular to surface 
β  thermal expansion coefficient 
δ  boundary-layer thickness  
ε  emissivity 
η  dimensionless coordinate in the y- direction 
θ  dimensionless temperature 
ρ  density 
σ  Stefan-Boltzmann constant 
ξ  dimensionless coordinate in the x- direction 
κ  extinction coefficient 
κa, absorption coefficient 
κb  dispersion coefficient  
τ  optical thickness 
ψ  stream function 
µ  dynamic viscosity 

ν  kinematics viscosity 
 
Subscripts 
 
c convection 
k conduction 
x, y refers to x- and y-direction 
o refers to To, reference temperature 
∞              refers to free stream 
w refers to wall  
 
Superscripts 
 
r radiation 
+ y-direction  > 0 
-             y-direction  < 0 
 
INTRODUCTION 

In fluid flow at high velocities over solid 
surfaces, temperature increases due to frictional effects, 
commonly known as aerodynamics heating, become 
important. At the same time, assumption of constant fluid 
properties may no longer be valid because of steep 
temperature gradients within the boundary layer. 
Furthermore, when the temperatures get high enough, fluid 
molecules in the boundary layer may emit, absorb and 
scatter thermal radiation. In these cases, both conduction 
and radiation heat transfer must be included in the energy 
equation. The treatment of combined conduction and 
radiation leads to a nonlinear integro-differential energy 
equation. 

Therefore, the exact solution of the governing 
equations is seldom possible and typically the analyst 
resorts to approximate formulations, especially 
considering the optically thin and thick gas limits. Oliver 
and McFadden [1] and Taitel and Hartnett [2] used 
iterative approaches to solve the problem of radiative 
interactions with boundary layer flows of an absorbing and 
emitting fluid over flat plates. The former investigators 
were concerned with an isothermal flat plate, while the 
later ones considered an adiabatic flat plate. Boles and 
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Ozisik [3] included the effects of scattering of radiation 
upon compressible boundary layer flow over and adiabatic 
flat plate, treating the radiation part of the problem exactly 
with the normal-mode expansion technique. Although 
these solutions are available in the literature, they are still 
complex and time-consuming for engineering applications.  

The primary purposes of this study is to 
investigate the combined radiation and forced convection 
heat transfer of an absorbing, emitting and scattering 
compressible fluid over an adiabatic plate, using three 
different radiation models: the thin gas approximation, the 
thick gas limit and the two flux model. Effects of viscous 
dissipation and variable properties are also considered. 
The two-flux model is used according to the procedure 
indicated by Malpica et al., [4] for the case of interaction 
of radiation with laminar forced convection. The 
simplification allows converting the equation of radiative 
transfer into two coupled nonlinear differential equations 
of second order (Tremante and Malpica [5]) instead of a 
nonlinear integro-differential equation for the exact 
formulation (Siegel and Howell [6]). The resulting system 
of partial differential equations including continuity, 
momentum, energy and radiation equations is solved using 
a finite difference scheme (method of columns). Results of 
the temperature profiles in the boundary layer for different 
axial positions are obtained for the full range of the 
boundary layer optical thickness. Results are reported for 
the recovery factor and scattering effects are also 
investigated. Comparisons of two-flux results with those 
obtained using exact formulation reveal excellent 
agreement. 
 
PROBLEM FORMULATION 

This analysis considers the interaction of 
radiation with forced convection in the laminar boundary 
layer flow of an absorbing, emitting, isotropically 
scattering and compressible fluid over a flat plate. It is 
assumed that the fluid is a perfect gas and is gray, the 
viscosity varies linearly with temperature, the specific heat 
and the Prandtl number are constant and the external flow 
temperature T∞ is uniform. The surface of the wall is 
opaque, gray and is a diffuse emitter and reflector and is 
impervious to heat flow. A sketch of geometry of the 
physical model and the coordinate system is shown in 
Figure-1. 
 

 
 

Figure-1. Geometry and coordinate system. 
 

The mathematical model for the assumed 
physical problem is prescribed by the conservation 

equation of mass, momentum and energy. These equations 
are: 
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The last term in the right-hand side is the 
divergence of the radiative heat flux and according to 
Ozisic [7] is given by: 
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It means that the energy equation (3) is a 
nonlinear integro-partial differential equation. 
The boundary conditions are: 
 

u = v = 0, qw = q k,w + q 
r
w  = 0  at  y = 0                       (5.a) 

 

u = u∞, T = T∞ at y → ∞                                            (5.b)              
 

The foregoing continuity, momentum and energy 
equations can be transformed by the application of the 
standard transformation used in the analysis of the non 
radiating boundary layer heat transfer. 
We define a stream function as: 
 

( ) ( )( ) 21
oxufy,x ∞νη≡ψ                    (6) 

 

a new independent variable η(x,y) is defined as: 
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and a dimensionless temperature: 
 

oT
T

=θ          (8) 
 

Then the continuity equation (1) is identically 
satisfied. The momentum and energy, equation (2) and (3),   
respectively are transformed to: 
Momentum 
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The boundary conditions for the momentum 
equation (9) are: 
 

f = f’ = 0 at η = 0                                                         (10.a) 
f’= 1 at η→ ∞                                           (10.b) 
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Where various non-dimensional quantities are 
defined as follows: 
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When the three radiation models under analysis are 
considered in the energy equation (11), the following 
expressions results: 
 

a) Thin gas approximation: 
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with the following boundary conditions 
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at η = 0                                                          (19.a) 
 

θ = 1 at η → ∞                                           (19.b) 
 

b) Thick gas limit: 
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which considers 
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in this case a similarity solution is obtained. 
 
The boundary conditions are: 
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 at η = 0               (21.a) 

 

θ  = 1 at η → ∞                                                           (21.b)  
 The Two-Flux model is based on the assumption 
that radiation in the medium may be represented by two 
uniform fluxes, one in the forward hemisphere and the 

other in the backward hemisphere (Tremante and Malpica 
[5]). In principle this formulation replaces the equation of 
radiative transfer by two-coupled nonlinear partial 
differential equations, and the expression for the 
divergence of the radiative flux is given as: 
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where G* is the dimensionless total incident irradiation.  
 

according to the two-flux model is coupled with  
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when equation (22) is substituted in equation (10) the 
energy equation is given by: 
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the boundary conditions are: 
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θ = 1 at η → ∞                                                         (26.b) 
 

and for the irradiation  equation (20) 
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With the initial condition 
 

θ = θo (η) at ξ = 0     (28) 
 

where θo(η) is the solution of the non-radiative case. 
 

The two-flux method is particularized for the 
model of Milne-Eddington, in that case A = 3. (Malpica et 
al., [4], Tremante and Malpica [5], Siegel and Spuckler 
[8]) 

The momentum and energy equations are 
uncoupled; therefore, the former is previously solved and 
the functions f (η), f'(η) and f"(η) appearing in the energy 
equation are determined. Then, the energy equation is 
solved for the optically thin (18) and thick limits (20). In 
the case of the thick gas limit a similarity solution is 
obtained. For the two-flux model the energy equation (25) 
is solved coupled to the irradiation equation (24) along 
discrete fluid lines (ξ) perpendicular to the plate. The 
intervals of the lines in the ξ-direction were chosen on an 
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equal logarithmic basis to better reproduce the initial 
development of the boundary layer. Upwind values were 
used in the convective terms according to Patankar [9] 
recommendations. At ξ = 0, the solution taken corresponds 
to the non-radiation problem.  

The asymptotic condition at η→ ∞, was verified 
by checking an error defined as: 
 

( ) ( )2'
i

2"
i

2
i f θ+=δ                    (29) 

 

satisfying the condition where: 
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RESULTS AND DISCUSSIONS 

Figure-2 shows non-scattering temperature 
profiles in the boundary layer over an adiabatic flat plate 
as function of η at several values of the parameterξ. The 
temperature profiles are presented for the three radiation 
models considered; optically thin gas, two-flux model (A 
= 3) and the thick gas limit. The results were obtained for 
Pr = 0.7, E∞ = 2.3, εw = 1.0, N = 0.6 and Wo = 0 (non-
scattering). These conditions allow viscous energy 
dissipation and thermal radiation to be significant within 
the boundary layer and also facilitate comparisons with 
Taitel and Hartnett [2] results. The temperature profile for 
ξ = 0, non-radiating case, presents the highest wall 

temperature and a zero temperature gradient at the surface. 
As the value of ξ increases radiation tends to reduce the 
temperature in the boundary layer and a positive 
temperature gradient respect to η establishes to the wall. 
The magnitude of this positive temperature gradient is 
controlled by the balance between the radiative heat flux 
from the wall and the conductive heat flux to the surface. 
In Table-1 temperature values calculated by the two-flux 
model are compared with those obtained using the 
optically thin approximation. These values are also show 
in Figure-2. Both models predict the same results for ξ < 
4.10-4. Hence, in this region the boundary layer may be 
assumed to be optically thin. Table-2 compares two-flux 
results with those reported by Taitel and Hartnett [2] for 
the same conditions (Pr = 0.7, E∞ = 2.3, εw = 1.0, N = 0.6). 
We note from this table, that the two-flux values are in 
excellent agreement with the exact solution reported by 
Taitel and Hartnett [2]. In Table-3 we can observed that 
the two-flux results approach the similarity solution 
obtained by the optically thick limit approximation, for 
values of ξ of the order unity or larger. Figure-3 presents 

the recovery factor,
( )

∞

−
=

E
R w 12 θ

 as a function ofξ. 

Here it may be seen that the flux-model matches in a 
continuous manner the thin approximation and the thick 
gas limit. 

 

 
 

Figure-2. Temperature profiles in forced convection over an adiabatic flat plate. 
(Pr = 0.7, E∞ = 2.3, εw = 1.0, N = 0.6, A = 3, Wo = 0). 
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Table-1. Dimensionless temperature comparisons of two-flux method with optically thin limit. 
 

 ξ = 0.00001 ξ = 0.0001 ξ = 0.0005 ξ = 0.001 

η Two-flux 
method 

Thin 
limit 

Two-flux 
method 

Thin 
limit 

Two-
flux 

method 

Thin 
limit 

Two-
flux 

method 

Thin 
limit 

0 1.99 1.99 1.92 1.92 1.83 1.83 1.79 1.79 
1 1.86 1.86 1.85 1.85 1.77 1.78 1.78 1.79 
2 1.58 1.58 1.54 1.54 1.57 1.56 1.53 1.54 
3 1.27 1.27 1.29 1.29 1.26 1.26 1.26 1.26 

 
 

Table-2. Dimensionless temperature comparisons of two-flux method with taitel and 
Hartnett [2] results. 

 

 ξ = 0.0005 ξ = 0.005 ξ = 0.2 

η Two-flux 
method Ref [2] Two-flux 

method Ref [2] Two-flux 
method Ref [2] 

0 1.83 1.83 1.65 1.65 1.43 1.44 
1 1.79 1.76 1.67 1.68 1.43 1.45 
2 1.55 1.56 1.50 1.50 1.37 1.38 
3 1.27 1.28 1.27 1.28 1.25 1.28 
4 1.08 1.08 1.17 1.16 1.15 1.15 
5 1.03 1.01 1.08 1.09 1.07 ----- 

 
 

Table-3. Dimensionless temperature comparisons of two-flux method with optically thick limit. 
 

η ξ = 0.1 ξ = 0.2 ξ = 1.0 Thick limit 
0 1.46 1.44 1.37 1.37 
1 1.49 1.46 1.37 1.35 
2 1.38 1.36 1.32 1.32 
3 1.25 1.25 1.27 1.25 
4 1.14 1.13 1.18 1.21 
5 1.09 1.08 1.12 1.11 
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Figure-3. Recovery factor in forced convection over an adiabatic flat plate. 
(Pr = 0.7, E∞ = 2.3, εw = 1, N = 0.6, A = 3, Wo = 0). 

 

 
 

Figure-4. Temperature profiles in forced convection over an adiabatic flat plate effect of scattering. 
Wo. (Pr = 0.7, E∞ = 2.3, εw = 1.0, N = 0.6, A = 3 
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