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ABSTRACT 

In this paper an analytical procedure is developed to investigate the bending characteristics of laminated 
composite plates based on higher order shear displacement model with zig-zag function. This zig-zag function improves 
slope discontinuities at the interfaces of laminated composite plates. The equation of motion is obtained using the dynamic 
version of Hamilton’s principle. The solutions are obtained using Navier’s and numerical methods for anti-symmetric 
cross-ply and angle-ply laminates with a specific type of simply supported boundary conditions SS-1 and SS-2, 
respectively. In this paper the numerical results are presented for bending of anti-symmetric cross-ply and angle-ply 
laminated plates. All the solutions presented are close agreement with the theory of elasticity and closed form solutions 
available in the literature. 
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1. INTRODUCTION 

The plates are straight and plane surface 
structures whose thickness is slight compared to other 
dimensions geometrically. Statically plates have simply 
supported and fixed boundary conditions, including elastic 
supports and elastic restraints or in some cases point 
supports. The static or dynamic loads are carried by plates 
are predominantly perpendicular to the plate surface. The 
accurate prediction of the response characteristics of 
laminated structures is a challenging task because of their 
intrinsic anisotropy, heterogeneity and low ratio of the 
transverse shear modulus to the in-plane Young’s 
modulus. Hence, it is necessary to analyze the bending 
characteristics of laminated composite plates. Several plate 
theories have been developed by Reissner E; Stavsky Y 
[1] improved the CLPT by including the influence of 
bending-extensional coupling in un-symmetrical 
laminates. Pagano N. J. [2] studied the mechanical 
response of composite laminates by considering the 
problem of cylindrical bending of bi-directional laminates. 
Exact solutions within the frame work of the linear theory 
of elasticity are developed and compared with the 
respective solutions of CLPT. Pagano N. J. and Hatfield S. 
J. [3] assumed a uniform shear strain through the thickness 
of the plate and neglected local effects for the finite 
element formulation based on the non confirming 
rectangular plate bending elements. Kant T. et al., [4] 
presented a method for the numerical analysis of elastic 
plates with two opposite simply supported ends. Reddy 
J.N. [5] developed a higher order shear deformation theory 
of laminated composite plates. The theory contains the 
same dependent unknowns as in the first order shear 
deformation theory of Whitney and Pagano (1970), but 
accounts for parabolic distribution of the transverse shear 
strains through the thickness of the plate. Reddy J. N. [6] 
established a review of all third order, two dimensional 

technical thesis of plates that satisfy vanishing of 
transverse shear stresses on bounding planes of the plate is 
presented and their equivalence. Cho M. and Kim J. S. [7] 
developed a higher order zig-zag theory for laminated 
composite plates with multiple delaminations. M. Karama, 
K. S. Afaq, S. Mistou [8] presents a new multi-layer 
laminated composite structure model to predict the 
mechanical behaviour of multi-layered laminated 
composite structures. As a case study, the mechanical 
behaviour of laminated composite beam is examined from 
both a static and dynamic point of view. Sanjib Goswami 
[9] presented a simple C0 finite element formulation with 
embedded higher-order shear deformation theory and a 3-
dimensional state of stress and strain for thick and thin 
laminated composite plates. Peyman Khosravi, Rajamohan 
Ganesan and Ramin Sedaghati [10] developed an efficient 
facet shell element for the geometrically nonlinear analysis 
of laminated composite structures using the corotational 
approach. M. E. Faresand M. and Kh. Elmarghany [11] 
presented a refined nonlinear zigzag shear deformation 
theory of composite laminated plates using a modified 
mixed variational formulation. Diego Amadeu F. Torres et 
al., [12] implemented a formulation for the bending 
analysis of composite laminated plates with piezoelectric 
layers using the generalized finite element method. In this 
paper, a Higher -order shear deformation theory with Zig 
Zag function is proposed and develop the analytical 
procedure to analyze the bending characteristics of 
laminated composite plates which takes care of the sudden 
change of properties from lamina to lamina. 
 
2. THE HIGHER-ORDER SHEAR DEFORMATION 
    THEORY WITH ZIG-ZAG FUNCTION 

A rectangular plate of 0 ≤ x ≤ a; 0 ≤ y ≤ b and 

2
h

−  ≤ z ≤ 
2
h

 is considered. The elasticity solution 
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indicates that the transverse shear stress vary parabolically 
through the plate thickness. This requires the use of 
displacement field in which the in-plane displacements are 
expanded as cubic functions of the thickness coordinate in 
addition the transverse normal strain may vary in non 

linearly through the plate thickness. The higher-order 
displacement field with zig-zag function which satisfy the 
above criteria is assumed in the following form:ψ  
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Where  
 

u0, v0 , wo, s1 and s2 denote the displacements of a point (x, 
y) on the mid-plane 
ψ x, ψ y are rotations of the normal to the midplane about 
y-axis and x–axis  
u0

*, v0
*, *

zψ , *
yψ  are the higher–order deformation terms 

defined at the mid-plane  
ψ k is the Zig-Zag function, defined as:    

k

kk
k h

Z
)1(2 −=ψ  

Zk is the local transverse coordinate with its origin at the 
center of the kth layer  
hk is the corresponding layer thickness. 
 

The strain components are: 
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The stress-strain relationships in the global x-y-z 
coordinate system can be written as: 
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The governing equations of displacement model 
will be derived using the principle of virtual work as             

 

0)(
0

=−+∫ dtKVU
T

δδδ                                          (4) 

 

The virtual work statement shown in Eq. (4), 
integrating through the thickness of laminate, the in-plane 
and transverse force and moment resultant relations in the 
form of matrix obtained as:  
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Equating the coefficients of each of virtual 
displacements δuo, δv0, δw0, δψ x, δψ y, δu0

*, δv0
*, δψ x

*, 
δψ y

* , δs1, δs2  to zero, the equations of motion will be  
obtained and  are expressed in terms of displacements uo, 
v0, w0, ψ x, ψ y,u0

*,v0
*,ψ x

*,ψ y
*,s1,s2 by substituting for 

the force and moment resultants. 
The Navier’s solutions of simply supported anti 

symmetric cross ply laminated plates:  
The SS-1 boundary conditions for the anti 

symmetric cross ply laminated plates are:  
 

At edges x = 0 and x = a 
 

v0 = 0, wo = 0, ψ y = 0, ψ z = 0, Mx = 0, v0
* = 0, w0

* = 0, 
 

ψ y
* = 0, ψ z

* = 0, Mx
* = 0, Nx = 0, Nx

* = 0, 02 =s    6 (a) 
 

At edges y = 0 and y = b 
 

u0
 = 0, wo = 0, ψ x = 0, ψ z = 0, My = 0, u0

* = 0, w0
* = 0, 

 

ψ x
* = 0, ψ z

* = 0, My
* = 0, Ny = 0, Ny

* = 0, 01 =s    6(b) 
 

The SS-2 boundary conditions for the anti 
symmetric angle ply laminated plates are:  
 



                                         VOL. 6, NO. 12, DECEMBER 2011                                                                                                              ISSN 1819-6608            

ARPN Journal of Engineering and Applied Sciences 
 

©2006-2011 Asian Research Publishing Network (ARPN). All rights reserved. 

 
www.arpnjournals.com 

 

 
108

At edges x = 0 and x = a 
 

u0
 = 0, wo = 0, ψ y = 0, ψ z = 0, Nxy = 0, Mx = 0, 

 

w0
* = 0, u0

* = 0, ψ y
* = 0, ψ z

* = 0, Mx
* = 0, Nxy

* = 0, s1=0 7(a) 
 

At edges y = 0 and y = b 
 

v0 = 0, wo = 0, ψ x = 0, ψ z = 0, Nxy = 0, My = 0,  
 

v0
* = 0, w0

* = 0, ψ x
* = 0, ψ z

* = 0, My
* = 0, Nxy

* = 0, s2=0  7(b) 
 

The displacements at the mid plane will be 
defined to satisfy the boundary conditions in Eq. (6) and 
(7). These displacements will be substituted in governing 
equations to obtain the equations in terms of A, B, D 
parameters. The obtained equations will be solved to find 
the behavior of the laminated composite plates.  
 
3. RESULTS AND DISCUSSIONS 

The simply supported boundary conditions (SS-1) 
shown in Eq. (6) are considered for solutions of anti-
symmetric cross-ply laminates ,where as Eq. (7) for 
solutions of anti-symmetric angle-ply laminates using a 
higher order shear deformation theory with zig- zag 
function.  

The material properties of graphite epoxy used 
for each lamina of the laminated composite plate are:  
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The deflection, internal stress-resultants and 
stresses are presented here in non-dimensional form using 
the following multipliers:  
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Figure-1 shows the variation of non-

dimensionalized maximum normal stresses as a function 
of no of layers and different theories for anti-symmetric 
cross-ply laminated plates under sinusoidal transverse 
load. The 2-layered plate experiences larger stresses than 
those of 4, 6 and 8 layered plates and the stress 
concentration is reduced in the latter. Thus the effect of 
bending-stretching coupling present in 2-layered plate on 
stresses is to increase the magnitude of stresses. Figure-2 
shows the maximum transverse shear stresses for simply 
supported angle-ply laminates as a function of thickness, 
no of layers. From figure it is observed that the slope 
discontinuities in HSDT are taken care by the of zig-zag 
function in present theory. Figure-3 shows the variation of 
non-dimensionalized in plane and transverse stresses as a 
function of thickness coordinate (z/h). From the figure it is 
observed that the present models are in close agreement 
with 3D elasticity solutions. 
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Figure 1.  Non-dimensionalized max. transverse normal stress (sx) Vsno of layers for simply supported anti-symmetric 
cross-ply  laminated square plate 
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Figure 3. Variation of the normal stress(sx)through the laminated thickness for a simply 
supported cross-ply square plate under sinusoidal transverse load  

 
 
4. CONCLUSIONS 

The variation with smooth slope-continuities at 
the interfaces is economically achieved by employing 
continuous linear and non-linear functions. The zig-zag 
function is a valuable tool to enhance the performance of 
both classical and advanced theories. The effect of 
bending-stretching-coupling is significant for all modulus 
ratios except for those close to unity on anti-symmetric 
angle-ply laminated composite plates of same thickness 
for any number of layers. The effect of bending stretching 
coupling present in two layered plates on stresses and 

deflections is to increase the magnitude than those of 4, 6, 
and 10 layered plates. 
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