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ABSTRACT 

Evolutionary computation (EC) techniques such as genetic algorithms (GAs), utilize multiple searching points in 
the solution space like PSO. Whereas GAs can treat combinatorial optimization problems, PSO was aimed to treat 
nonlinear optimization problems with continuous variables originally. Moreover, PSO has been expanded to handle 
combinatorial optimization problems and both discrete and continuous variables as well. Efficient treatment of mixed-
integer nonlinear optimization problems (MINLPs) is one of the most difficult problems in practical optimization. 
Moreover, unlike other EC techniques, PSO can be realized with only a small program; namely, PSO can handle MINLPs 
with only a small program. This feature of PSO is one of its advantages compared with other optimization techniques. In 
this paper, the basic PSO method is combined with Newton’s method, and interior point method for the optimal power 
flow/volt-var optimization. The results obtained on IEEE 30-bus system showed that the hybrid method based on PSO-IPM 
gives the best results compared to the other methods. It has been demonstrated that the proposed method can be easily 
applied to large systems. 
 
Keywords: optimal power flow, PSO, VAR control, voltage control. 
 
1. INTRODUCTION 

Natural creatures sometimes behave as a swarm. 
One of the main streams of artificial life research is to 
examine how natural creatures behave as a swarm and 
reconfigure the swarm models inside a computer. 
Reynolds developed boid as a swarm model with simple 
rules and generated complicated swarm behavior by 
computer graphic animation [1]. Boyd and Richerson 
examined the decision process of human beings and 
developed the concept of individual learning and cultural 
transmission [2]. According to their examination, human 
beings make decisions using their own experiences and 
other persons’ experiences.  
 A new optimization technique using an analogy 
of swarm behavior of natural creatures was started in the 
beginning of the 1990s. Dorigo developed ant colony 
optimization (ACO) based mainly on the social insect, 
especially ant, metaphor [3]. Each individual exchanges 
information through pheromones implicitly in ACO. 
Eberhart and Kennedy developed particle swarm 
optimization (PSO) based on the analogy of swarms of 
birds and fish schooling [4]. Each individual exchanges 
previous experiences in PSO. These research efforts are 
called swarm intelligence [5, 6]. This paper focuses on 
PSO as one of the swarm intelligence techniques.  
 
2. BASIC PARTICAL SWARM OPTIMIZATION 

Swarm behavior can be modeled with a few 
simple rules. Schools of fishes and swarms of birds can be 
modeled with such simple models. Namely, even if the 
behavior rules of each individual (agent) are simple, the 
behavior of the swarm can be complicated. Reynolds 
utilized the following three vectors as simple rules in the 
researches on boid.  
 

 Step away from the nearest agent  
 Go towards the destination  
 Go to the center of the swarm  

 

 The behavior of each agent inside the swarm can 
be modeled with simple vectors. The research results are 
one of the basic backgrounds of PSO.  

Boyd and Richerson examined the decision 
process of humans and developed the concept of 
individual learning and cultural transmission [2]. 
According to their examination, people utilize two 
important kinds of information in decision process. The 
first one is their own experience; that is, they have tried 
the choices and know which state has been better so far, 
and they know how good it was. The second one is other 
people’s experiences, i.e., they have knowledge of how the 
other agents around them have performed. Namely, they 
know which choices their neighbors have found most 
positive so far and how positive the best pattern of choices 
was. 

Each agent decides its decision using its own 
experiences and the experiences of others. The research 
results are also one of the basic background elements of 
PSO. According to the above background of PSO, 
Kennedy and Eberhart developed PSO through simulation 
of bird flocking in a two-dimensional space. The position 
of each agent is represented by its x, y axis position and 
also its velocity is expressed by vx (the velocity of x axis) 
and vy (the velocity of y axis). Modification of the agent 
position is realized by the position and velocity 
information.  
 Bird flocking optimizes a certain objective 
function. Each agent knows its best value so far (pbest) 
and its x, y position. This information is an analogy of the 
personal experiences of each agent. Moreover, each agent 
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knows the best value so far in the group (gbest) among 
pbests. This information is an analogy of the knowledge of 
how the other agents around them have performed. Each 
agent tries to modify its position using the following 
information:  
 

 The current positions (x, y),  
 The current velocities (vx, vy),  
 The distance between the current position and pbest  
 The distance between the current position and gbest  

 

 This modification can be represented by the 
concept of velocity (modified value for the current 
positions). Velocity of each agent can be modified by the 
following equation:  
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where k
iv  is velocity of agent i at iteration k, w  is 

weighting function, c1 and c2 are weighting factors, rand1 
and rand2 are random numbers between 0 and 1, k

is  is 
current position of agent i at iteration k, pbesti is the pbest 
of agent i, and gbest is gbest of the group. Namely, 
velocity of an agent can be changed using three vectors 
such like boid. The velocity is usually limited to a certain 
maximum value. PSO using (1) is called the Gbest model.  
The following weighting function is usually utilized in (1):  
 

iteriterwwww *))/()(( maxminmaxmax −−=         (2) 
 

Where maxw is the initial weight, minw  is the final weight, 
itermax is maximum iteration number and iter is current 
iteration number.  

The meanings of the right-hand side (RHS) of (1) 
can be explained as follows [7]. The RHS of (1) consists 
of three terms (vectors). The first term is the previous 
velocity of the agent. The second and third terms are 
utilized to change the velocity of the agent. Without the 
second and third terms, the agent will keep on “flying” in 
the same direction until it hits the boundary. Namely, it 
tries to explore new areas and, therefore, the first term 
corresponds with diversification in the search procedure. 
On the other hand, without the first term, the velocity of 
the “flying” agent is only determined by using its current 
position and its best positions in history. Namely, the 
agents will try to converge to their pbests and/or gbest and, 
therefore, the terms correspond with intensification in the 
search procedure. As shown below, for example, maxw  and 

minw  are set to 0.9 and 0.4. Therefore, at the beginning of 
the search procedure, diversification is heavily weighted, 
while intensification is heavily weighted at the end of the 
search procedure such like simulated annealing (SA). 
Namely, a certain velocity, which gradually gets close to 
pbests and gbest, can be calculated. PSO using (1) (2) is 
called inertia weights approach (IWA).  
 

 
 

Figure-1. Concept of modifications of a 
Searching point by PSO. 

 
ks = current searching point 

1+ks = modified searching point 
kv = current velocity  

1+kv = modified velocity 

pbestv = velocity based on pbest  

gbestv = velocity based on gbest 
 

The current position (searching point in the 
solution space) can be modified by the following equation: 
 

11 ++ += k
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Figure-1 shows a concept of modification of a 
searching point by PSO, and Figure-1 shows a searching 
concept with agents in a solution space. Each agent 
changes its current position using the integration of 
vectors as shown in Figure-1.  
 
PSO algorithm 
 
Step 1: Generation of initial condition of each agent. 
Initial searching points ( 0

is ) and velocities ( 0
iv ) of each 

agent are usually generated randomly within the allowable 
range. The current searching point is set to pbest for each 
agent. The best evaluated value of pbest is set to gbest, and 
the agent number with the best value is stored.  
Step 2: Evaluation of searching point of each agent. The 
objective function value is calculated for each agent. If the 
value is better than the current pbest of the agent, the pbest 
value is replaced by the current value. If the best value of 
pbest is better than the current gbest, gbest is replaced by 
the best value and the agent number with the best value is 
stored.  
Step 3: Modification of each searching point. The current 
searching point of each agent is changed using (1), (2), 
and (3).  
Step 4: checking the exit condition. The current iteration 
number reaches the predetermined maximum iteration 
number, then exits. Otherwise, the process proceeds to 
step 2.  
 The features of the searching procedure of PSO 
can be summarized as follows: 
  

 As shown in (1), (2), and (3), PSO can essentially 
handle continuous optimization problems.  
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 PSO utilizes several searching points, and the searching 
points gradually get close to the optimal point using 
their pbests and the gbest.  

 The first term of the RHS of (1) corresponds with 
diversification in the search procedure. The second and 
third terms correspond with intensification in the search 
procedure. Namely, the method has a well-balanced 
mechanism to utilize diversification and intensification 
in the search procedure efficiently.  

 The above concept is explained using only the x, y axis 
(two-dimensional space). However, the method can be 
easily applied to n-dimensional problems. Namely, PSO 
can handle continuous optimization problems with 
continuous state variables in an n-dimensional solution 
space.  

 

 Shi and Eberhart tried to examine the parameter 
selection of the above parameters [7, 8]. According to their 
examination, the following parameters are appropriate and 
the values do not depend on problems:  
 

ic = 2.0, maxw = 0.9, minw  = 0.4,        
 

The values are also proved to be appropriate for 
power system problems [9, 10]. The basic PSO has been 
applied to a learning problem of neural networks and 
Schaffer f6, a famous benchmark function for GA, and the 
efficiency of the method has been observed [4].  
 
3. MATHEMATICAL MODEL OF OPF PROBLEM 

The OPF problem is to optimize the steady state 
performance of a power system in terms of an objective 
function while satisfying several equality and inequality 
constraints. Mathematically, the OPF problem can be 
formulated as given:  
 

Min ),( uxF         (4) 
 

Subject to 0),( =uxg        (5) 
 

0),( ≤uxh         (6) 
 

where x is a vector of dependent variables consisting of 
slack bus power 

1GP , load bus voltages LV , generator 

reactive power outputs GQ , and the transmission line 

loadings lS , Hence, x can be expressed as given:  
 

]...,...,...,[
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T SSQQVVPx = (7) 
 

where NL,NG and nl are number of load buses, number of 
generators and number of transmission line, respectively. 
u is the vector of independent variables consisting of 
generator voltages VG, generator real power outputs GP  

except at the slack bus 
1GP , transformer tap settings T, and 

shunt VAR compensations CQ . Hence u can be expressed 
as given:  
 

]...,...,...,...[
121 1 NCNGNG CCNTGGGG

T QQTTPPVVu =     (8) 
 

Where NT and NC are the number of the regulating 
transformers and shunt compensators, respectively. F is 
the objective function to be minimized. g is the equality 
constraints that represents typical load flow equations and 
h is the system operating constraints.  
 
Objective functions 

In this paper, the objective(s) (J) is the objective 
function to be minimized, which is one of the following: 
 
(i) Objective function-1 (Fuel cost minimization) 

It seeks to find the optimal active power outputs 
of the generation plants so as to minimize the total fuel 
cost. This can be expressed as: 
 

)/($ hfJ
NG

i
i∑=                                                 (9) 

 

where if  is the fuel cost curve of the ith generator and it is 
assumed here to be represented by the following quadratic 
function: 
 

)/($2 hcPbPaf iGiGii ii
++=                               (10) 

 

where ia , ib , and ic  are the cost coefficients of the 
thi generator. 

 
(ii) Objective function-2 (Voltage profile improvement) 

Voltage profile is one of the quality measures for 
power system. It can be improved by minimizing the load 
bus voltage deviations from 1.0 per unit. The objective 
function can be expressed as 
 

∑
∈

−=
NLi

iVJ 1                                          (11) 

 
(iii) Objective function-3 (Voltage stability enhancement) 

Voltage profile improvement does not necessary 
implies a voltage secure system. Voltage instability 
problems have been experienced in systems where voltage 
profile was acceptable [11]. Voltage secure system can be 
assured by enhancing the voltage stability profile 
throughout the whole power system.  

An indicator L-index is used in this study to 
evaluate the voltage stability at each bus of the system. 
The indicator value varies between 0 (no load case) and 1 
(voltage collapse) [12-14]. One of the best features of the 
L-index is that the computation speed is very fast and so 
can be used for on-line monitoring of power system. 
Enhancing the voltage stability and moving the system far 
from voltage collapse point can be achieved by 
minimizing the following objective function: 
 

maxLJ =                                            (12) 

where maxL  is the maximum value of L-index as:  
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{ }NLKLL K ,.....,1,maxmax ==        (13) 
 
(iv) Objective function-4 (Real power loss minimization) 

The optimal reactive power flow problem to 
minimize active losses can be formulated as: 
 

maxmin

0)(.
)(min

Ζ≤Ζ≤Ζ
=Ζ
Ζ=

gts
fJ

                               (14) 

Where )(⋅f  is the objective function for active losses. 
)(⋅g  Nonlinear vectors function representing power flow 

equations. 
[ ]Tux=Ζ  Vector of decision variables whose 

components are the vector of state variables x (voltage 
phase angles and magnitudes, etc.) and the vector of 
discrete control variables u (generator terminal voltages, 
tap position of OLTC transformers, number of connected 
shunt compensation devices etc.). 

minΖ and maxΖ  vectors modeling operational limits on 
state and control variables 
 
4. SIMULATION RESULTS 

The simulation results of the proposed basic PSO 
method for different objective functions (i.e., fuel cost 
minimization, voltage profile improvement, voltage 
stability enhancement, and real power loss minimization) 
have been applied to IEEE-30 bus system with NR-load 
flow, Newton-OPF and Interior Point Method. It is chosen 
as it is a benchmark system, have more control variables 
and provide results for comparison of the proposed 
methods. The approach can be generalized and easily 
extended to large-scale systems. 

The IEEE-30 bus system consists of six 
generators, four transformers, 41 lines, and nine shunt 
capacitors. In all these different PSO methods, the total 
control variables are 25: six unit active power outputs, six 
generator bus voltage magnitudes, four transformer tap 
settings, and nine bus shunt admittances. The basic PSO 
methods have been run for 20-populations and for 150-
iterations.  

To test the ability of the proposed PSO-IPM 
hybrid algorithm for solving optimal power flow problem 
to reduce specified objective function, it was applied on 
selected bus system. Four objective functions are 
considered for the minimization using the proposed hybrid 
algorithm namely cost of generation, voltage profile 
improvement, voltage stability enhancement and real 
power loss minimization.  

Figures 2 to 5 show the convergence 
characteristics of the three OPF methods under the 
selected objective function. It can be observed that IPM-
PSO converges to a minimum value than PSO-Newton 
and PSO-NR methods.  
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Figure-2. Convergence characteristics of objective 
function-1. 
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Figure-3. Convergence characteristics of objective 
function-2. 
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Figure-4. Convergence characteristics of objective 
function-3. 
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Figure-5. Convergence characteristics of objective 
function-4. 
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The best results for different PSO methods combined with 
NR-load flow, Newton-OPF, and Interior Point method are 
compared and results are tabulated in Table-1. In this 
table, the optimal settings of the control variables and 
various performance parameters with four objective 
functions are presented. From this table, it was found that 

all the state variables satisfy lower and upper limits. From 
the results it is evident that proposed IPM-PSO hybrid 
method outperforms in achieving minimum of the 
specified objective when compared with other 
optimization methods. 

 
Table-1. Optimal settings of control variables of IEEE 30-bus system. 

 

Objective function-1 (cost) Objective function-2 (V.D) Objective function-3 (L-index) Objective function-4 (loss) Control 
Variables PSO-NR PSO-

Newton 
PSO-
IPM PSO-NR PSO-

Newton 
PSO-
IPM PSO-NR PSO-

Newton 
PSO-
IPM PSO-NR PSO-

Newton 
PSO-
IPM 

P1 

P2 

P5 

P8 

 P11 

 P13 

V1 

V2 

V5 

V8 

 V11 

 V13 

T11 

T12 

T15 

T36 

QC10 

QC12 

QC15 

QC17 

QC20 

QC21 

QC23 

QC24 

QC29 

1.7818 
0.4896 
0.2149 
0.2187 
0.1200 
0.1000 
1.0867 
1.0663 
1.0352 
1.0409 
1.1000 
1.0186 
1.0421 
0.9734 
0.9291 
0.9750 
0.0295 
0.0240 
0.0226 
0.0743 
0.0586 
0.0786 
0.0579 
0.0437 
0.0225 

1.7855 
0.4909 
0.2135 
0.2152 
0.1200 
0.1000 
1.0851 
1.0653 
1.0352 
1.0396 
1.0650 
1.0296 
0.9955 
1.0004 
0.9507 
0.9768 
0.0518 
0.0594 
0.0466 
0.0794 
0.0409 
0.0513 
0.0277 
0.0649 
0.0258 

1.7812 
0.4905 
0.2144 
0.2185 
0.1200 
0.1000 
1.0858 
1.0663 
1.0350 
1.0393 
1.0488 
1.0308 
0.9833 
1.0185 
0.9557 
0.9757 
0.0936 
0.0631 
0.0000 
0.0677 
0.0479 
0.0764 
0.0263 
0.0842 
0.0252 

1.5031 
0.4794 
0.1972 
0.2482 
0.2335 
0.2603 
1.0089 
1.0126 
1.0171 
0.9977 
1.0323 
0.9847 
1.0422 
0.9960 
0.9504 
0.9701 
0.0657 
0.0394 
0.0443 
0.0382 
0.1000 
0.1000 
0.0484 
0.0861 
0.0282 

1.7786 
0.5727 
0.1709 
0.2098 
0.1200 
0.1709 
0.9945 
1.0041 
1.0165 
1.0025 
1.0109 
1.0271 
1.0155 
0.9842 
1.0238 
0.9853 
0.0548 
0.0495 
0.0561 
0.0315 
0.0780 
0.0896 
0.0372 
0.1000 
0.0449 

1.4490 
0.6128 
0.3061 
0.3000 
0.1200 
0.1334 
0.9978 
0.9982 
1.0155 
1.0053 
1.0221 
1.0232 
1.0334 
0.9831 
1.0083 
0.9748 
0.0542 
0.0109 
0.0421 
0.0291 
0.1000 
0.0893 
0.0411 
0.0999 
0.0263 

1.5337 
0.3552 
0.3832 
0.1579 
0.2827 
0.2018 
1.0614 
1.0248 
1.0494 
1.0458 
1.1000 
1.0353 
1.1000 
1.0467 
0.9967 
0.9883 
0.1000 
0.1000 
0.0783 
0.0959 
0.1000 
0.1000 
0.0847 
0.0997 
0.0351 

1.6118 
0.6899 
0.3084 
0.1060 
0.1205 
0.1000 
1.0538 
1.0225 
1.0514 
1.0539 
1.0338 
1.0489 
1.0124 
1.0127 
1.0780 
0.9887 
0.1000 
0.1000 
0.1000 
0.1000 
0.1000 
0.1000 
0.0999 
0.1000 
0.0272 

1.5662 
0.2000 
0.3008 
0.1000 
0.4000 
0.3468 
1.0361 
1.0333 
1.0300 
1.0494 
1.0935 
1.0301 
1.0392 
1.0583 
1.0453 
0.9877 
0.1000 
0.1000 
0.1000 
0.1000 
0.1000 
0.1000 
0.1000 
0.1000 
0.0329 

0.8069 
0.8000 
0.5000 
0.3000 
0.1200 
0.3500 
1.0673 
1.0599 
1.0383 
1.0409 
1.0456 
1.0332 
0.9661 
1.1000 
0.9739 
1.0117 
0.1000 
0.1000 
0.0577 
0.0677 
0.0368 
0.0978 
0.0179 
0.0663 
0.1000 

0.7733 
0.8000 
0.5000 
0.3000 
0.4000 
0.1000 
1.0593 
1.0528 
1.0321 
1.0357 
0.9728 
1.0609 
0.9750 
1.0116 
1.1000 
0.9863 
0.0596 
0.0319 
0.0532 
0.0733 
0.0440 
0.1000 
0.0000 
0.0873 
0.0000 

0.7716 
0.8000 
0.5000 
0.3000 
0.4000 
0.1000 
1.0681 
1.0641 
1.0453 
1.0672 
1.0409 
1.0323 
1.0111 
0.9841 
0.9595 
0.9809 
0.0176 
0.0596 
0.0552 
0.0705 
0.0414 
0.1000 
0.0254 
0.0662 
0.0314 

Cost ($/h) 
V.D 
L- Index 
Ploss (pu) 

800.5894 
0.9711 
0.1239 
0.0911 

800.4797 
0.9179 
0.1258 
0.0911 

800.4235 
0.9389 
0.1247 
0.0906 

818.0057 
0.0794 
0.1330 
0.1229 

811.2806 
0.0761 
0.1329 
0.0847 

819.7407 
0.0745 
0.1326 
0.1158 

838.2179 
1.0149 
0.1198 
0.0805 

821.7634 
1.0212 
0.1195 
0.1026 

861.3162 
1.0231 
0.1192 
0.0798 

924.2717 
0.8649 
0.1267 
0.0429 

932.8452 
0.4042 
0.1330 
0.0393 

932.4037 
0.9952 
0.1234 
0.0376 

 
5. CONCLUSIONS 

In this paper, the basic PSO method is combined 
with Newton’s method, and interior point method for the 
optimal power flow/volt-var optimization. The results 
obtained on IEEE 30-bus system showed that the hybrid 
method based on PSO-IPM gives the best results 
compared to the other methods proposed in this paper. It 
has been demonstrated that the proposed method can be 
easily applied large systems. 
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