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ABSTRACT 

This paper proposes a novel Cauchy mutated Memetic Particle Swarm Optimization (CMPSO) algorithm to solve 
the risk invoked self-scheduling problem of price taking Generator Company (Genco) in a day-ahead energy market. In 
self-scheduling problem, certain risk is invoked due to uncertainty in forecasted electricity prices and fuel prices. The risk 
in the self-scheduling problem is modeled based on the portfolio selection. The risks in the forecasted energy prices are 
taken into account by using the covariance information of the available data. The Risk Invoked Self-Scheduling (RISS) is 
formulated as a mixed integer non-linear optimization problem and solved by using the proposed CMPSO. The 
effectiveness of the proposed CMPSO algorithm is demonstrated with two test systems. 
 
Keywords: self-scheduling, energy market, risk analysis, Cauchy mutation, locational marginal pricing, memetic PSO. 
 
1. INTRODUCTION 

The bidding strategies of the generating 
companies usually entertain ample consideration in 
discussions related to market power exercise in electricity 
markets. Power producers aim to maximize the profit in 
day-ahead energy market. For Gencos, self-scheduling of 
generating units is one of the potential problems in day-
ahead energy market, which is a mixed integer non-linear 
optimization problem. The production offers in the energy 
markets are based on the forecasted Locational Marginal 
Price (LMP), operating constraints of the generators and 
the risk factor due to the uncertainty of various 
parameters. 

Recently, there are many changes tailored in the 
modelling and solution methodology of the Genco’s self-
scheduling problem [1-6]. The self-scheduling problem for 
the various types of participants and various types of 
markets without considering the uncertainties are 
presented in [1-5]. In [6], exhaustive description of 
constructing hourly bidding curves for price-taking 
thermal generation company to maximize their profit is 
presented. In literature, numerous research works have 
incorporated risk issues to the Genco’s self-scheduling 
problem [1-6]. In [7], lagrangian relaxation method is 
proposed to solve the risk invoked Genco’s self-
scheduling problem. A different risk modeling based on 
scenario trees and condition value are presented in [8-9]. 
The security constrained generation scheduling for the 
Genco’s is discussed in [10]. In [11], a different fuzzy 
based approach is proposed to solve the self-scheduling 
problem of Genco. The above indicated conventional 
deterministic mathematical optimization techniques for 
solving self-scheduling problem of Genco’s, are complex 
and involves high computational burden for large-scale 
systems.  

In the present scenario, simple and reliable 
stochastic methods are developed to solve the mixed 
integer problems [12-14]. Particle Swarm Optimization 
(PSO) is a popular stochastic search algorithm proposed 
by Kennedy and Eberhart [13]. Unlike other heuristic 

algorithms, PSO has the flexibility to control the balance 
between the global and local exploration of the search 
space. The primary shortcoming of classical PSO 
algorithm is a very large computation time due to the large 
number of iterations required to obtain a global optimum. 
It also suffers from premature convergence like most 
stochastic search techniques, particularly in the case of 
multimodal optimization problems. Hence there is a need 
to accelerate the convergence and to avoid entrapment in 
local optimum, thereby reducing the computation time of 
PSO technique for obtaining the global optimum. In PSO 
the rate of convergence is very fast at the beginning. 
Thereafter, it is very slow towards the end of iterations. 
This results in large computation time. In contrast the 
deterministic local search method is accurate and fast 
when the variations in the control variables are small and 
is very effective in correcting the moderate constraint 
violations. The above fact suggests that a hybrid method 
with PSO algorithm for initial search and subsequent local 
search method for getting the final solution will be an 
effective and fast method.  

Memetic PSO (MPSO) is a hybrid algorithm that 
combines PSO with local search techniques. MPSO 
consists of two main components, a global one that is 
responsible for the global search of the search space, and a 
local one, which performs more refined search around 
potential solutions of the problem. As Sequential 
Quadratic Programming (SQP) is an effective deterministic 
optimization technique [15], in this paper SQP is used as 
local search in the MPSO algorithm. Coelho [16-17] 
generated random numbers by using Gaussian and Cauchy 
probability distributions to update the velocity equation of 
the PSO. This method is very effective in solving 
economic dispatch and mixed integer problems [16-17]. 
Thus in the MPSO algorithm, Cauchy Mutation (CM) is 
incorporated with a view to enhance diversified search and 
to increase the rate of convergence. Hence the proposed 
algorithm is appropriately termed as Cauchy mutated 
Memetic Particle Swarm Optimization (CMPSO) 
algorithm. 
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The proposed CMPSO algorithm is used to solve 
Risk Invoked Self-Scheduling (RISS) problem for the 
power producers with multiple generating units 
participating in energy market under a risk based 
framework. The effectiveness of the proposed CMPSO 
algorithm is tested with the real time data obtained from 
the PJM market and with the standard IEEE 30 bus 
system. 

The rest of this paper is organized as follows: In 
section 2, a general problem formulation of RISS is 
provided. Section 3 addresses the framework of the 
proposed Cauchy mutated Memetic Particle Swarm 
Optimization (CMPSO) algorithm. The application of the 
proposed CMPSO algorithm for solving the RISS problem 
is explained in Section 4. Section 5 illustrates the 
numerical results of the test cases and Section 6 presents 
the conclusions arrived after analysis. 
 
2. PROBLEM FORMULATION 

The main aspiration of this paper is to formulate 
the self-scheduling problem of generator companies in a 
day-ahead energy market.   

Forecasting the locational marginal prices (LMP) 
with less error is very critical. The Autoregressive 
Integrated Moving Average (ARIMA) [18], [20] and the 
Generalized Autoregressive Conditional Hetero 
skedasticity (GARCH) [20] modelling are the most 
popular methodologies for forecasting time series and 
future volatility, respectively. Neural Networks [21] based 
forecasting methods are complementary with the 
conventional time series forecasting methods. In paper 
[22] an adaptive wavelet based neural network is proposed 
to forecast the LMP and MCP. In [23], hybrid forecasting 
model based on support vector machine and particle 
swarm optimization with Cauchy mutation is used to 
improve the slow convergence of the particle swarm 
optimization. In this paper a training algorithm based on 
CMPSO is used to train the feed forward networks to 
forecast the energy prices.   
 
A. Risk modeling 

The self-scheduling of the power producer 
depends on the forecasted energy price in which all these 
parameters encounter certain uncertainties. Due to the 
uncertainty of the forecasted price during peak demand 
and unusual conditions, there is an associated risk in the 
arbitrage activities. The variance of the estimated energy 
market along with the covariance matrices are used to 
measure the risk [6] due to uncertainties. To explicitly 
express the Genco’s risk tolerance in the optimization 
model, the concept of downside risk is used in [25]. If the 
profit is higher than its target profit, the downside risk is 
zero. Otherwise, the risk is quantified by the amount of 
profit that cannot be satisfied. The exponentially weighted 
moving average model to calculate the variances and 
covariance of the multivariate normal distribution is 
discussed in [26]. The volatility in the electricity prices 
can be studied by using its variance and covariance 

information. The variance between two random variables 

iP  and jP
 
can be expressed as: 
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Where, eV  is the variance matrix of energy price and 

eCOV  is the covariance matrix between the prices. The 
variance and covariance for the day ‘N’ are obtained by 
using the following equations.     
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If the actual prices as well as their estimated 
values are available up to the day 1−N , then a better 
estimation for the variance and covariance matrices can be 
obtained by using the following exponentially weighted 
moving-average equation: 
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The past prices are weighted by the smoothing 
constant (α ) and it is varying between 0 and 1. The 
higher weights are assigned to the days closer to N, and 
decays exponentially with the distance between the 
considered day and the day N. The parameter ‘N’ is 
greater than or equal to one to ensure the covariance 
matrix positive definite [26]. 
 
B. Risk invoked self scheduling problem  

The Risk Invoked Self-Scheduling (RISS) 
problem is formulated as an optimization problem that 
maximizes the Genco’s profit and minimizes the risk. The 
objective function of the RISS problem is presented by: 

( ) ( )−− ∑∑ COSTSRETURNS :  Maximize            

( )RISK∗β          (7) 
Subject to, 

Power balance 
Generators operating constraints 

         The risk objective must be added with revenue to 
determine the actual profit involving risk. To combine 
these conflicting objectives, the risk term is subtracted 
from revenue term using risk penalty factor (β). The value 
of this parameter varying between (0, 1) and its actual 
value materialize the tradeoff between the expected profit 
and risk. The risky producers choose this value closer to 
zero to increase the profit with high risk; others can 
choose larger value to minimize the risk. 
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The first term in (7) represents the returns of the 
Genco’s from the market as shown by (8). Here a time 
frame of 24 hours is considered. 
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Where, 
 

e
kP  = Scheduled power output of the kth generator in the 

energy market 

kU  = Schedule state of the kth generator (1: unit is on and 
0: unit is off)  

gN  = Number of generating units participates in the self 
scheduling   

The second term in (7) represents the costs of the 
power producer which is explained by: 
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Where, kSUC  is the start-up cost kSDC is the shut-

down cost and kC is the quadratic cost function of the kth 
generator. 

The last term in equation (7) represents the risk of 
forecasted market price as: 
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The constraints of RISS problem can be clustered 
in two categories namely power balance and generators 
operating constraints follows: 
 
i) Power balance constraint 

In the price takers self scheduling problem it is 
not necessary to satisfy the total forecasted demand. It 
may be equal or less than the forecasted system demand. A 
Genco’s will supply a portion of the demand that 
maximizes its profit. 
 

∑∑
= =

≤
T

t

N

k

e
D

e
k

g

tPtP
1 1

)()(                                                  (11) 

 

ii) Generators operating constraints 
 

a) Generator boundary limits 
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Where, kk DRUR /  is the up/down ramp rate limits of kth 

unit.  
 

b) Minimum up / down - time limit  
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Where, the time counter for which a unit has been on/off 
at hour t, Ton/Toff can be expressed as: 
 

⎭
⎬
⎫

−−+=
−+=

))(1))(1(1()(
)())1(1()(

tUtTtT
tUtTtT

koffoff

konon

     

               (15) 

Where, kk MDTMUT /  is the minimum Up/down time 

limits of the generator, ‘k’ and kk URDR /  is the ramp 
up/down limits of the kth generator. 
 

Where, minmax / kk PP  are the minimum and maximum 
boundary limits of the kth generator.     

c) Spinning reserve requirements 
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Where, )(tS  is the surplus spinning reserve capacity left 

after the load demand of PD(t) is met. )(tSPk , )(max tSPk  
are the reserve contribution and the maximum reserve 
contribution of the unit ‘k’ unit at the time period time 
interval, t. In self scheduling problem, the Genco’s are not 
going to meet the complete forecasted load, so that the 
value of surplus spinning reserve capacity depends upon 
the strategy of the generator company and it is volatile.    
 
3. CMPSO 

PSO is one of the modern heuristic algorithms 
developed by Kennedy and Eberhart [13]. In PSO, 
particle iter

iX  is a feasible solution represented by an m-
dimensional real-valued vector, where m is the number of 
control parameters. At iteration iter, the ith particle 

iter
iX can be described 

as ],....,,....,,[ ,,2,1,
iter

mi
iter

Ki
iter
i

iter
i

iter
i xxxxX = , where iter

kix ,  is 
the position of the ith particle in kth dimension, i.e., the 
value of the kth control parameter in the ith particle. At 
iteration iter, the ith particle velocity iter

iV can be 

described as ],....,,....,,[ ,,2,1,
iter

mi
iter

ki
iter
i

iter
i

iter
i vvvvV =  where 

iter
kiv ,  is the velocity component of the ith particle in kth 

dimension. The particle’s position with maximum fitness 
value in the entire run is termed as global best gbest and the 
particle’s position with maximum fitness value at the end 
of iteration iter is termed as local or particle best pbest. 
Each particle is initialized with a random position and 
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velocity. The kth element’s (control parameters) velocity of 
the ith particle for next iteration is: 
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Where, C1 and C2 are the acceleration constants. The 
constriction factor χ is introduced by Clerc and Kennedy 
[18] to effectively restrain the change in velocity. 
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PSO also has a well-balanced mechanism with 
flexibility by adapting to both global and local 
explorations. This is realized by using an inertia weight 
‘ω ’. The dynamic change of inertia weight is represented 
by using the following equation: 
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Where, ωmax and ωmin is the lower and upper bound for 
inertia weight and itermax is the maximum iteration count.  
Kennedy and Eberhart [14] extended the real-valued PSO 
to discrete space by calculating the probability from the 
velocity using the following sigmoid function,   
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This probability determines whether 1iter  +i
kx is 0 or 1. 
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Where, rj is a random number in the range of [0, 1]. 
 

The trajectory of a particle 1iter  +i
kx  converges to 

a weighted mean of bestp  and bestg . Whenever the 
particle converges, it will fly to the personal best position 
and the global best position. This information sharing 
mechanism tends PSO to a very fast convergence. 
However due to this mechanism, PSO can’t guarantee the 
global value as the particles usually converge to local 
optimum. Once the particles trap into a local optimum, in 
which bestp  can be assumed to be same as bestg . At this 
condition, the velocity update equation is a function of the 
inertia weight alone. Since the inertia constant varies 
slowly the change in velocity of the particle is close to 
zero. After that, the position of the particle 1iter  +i

kx  will 
not change. Due to this problem, PSO often fails to obtain 
the global maximum.  

The idea of CM is coming from fast simulated 
annealing. It is aimed at coping with the loss of diversity 
in global search by incorporating CM into the traditional 
evolutionary programming as presented in [12] and [28]. 
Applying Cauchy mutation improves the PSO searching 
ability by mutating some selected particles around the 
global best point. It has the ability of large jump from 
local minimum point to a global minimum point than the 
Gaussian mutation. Each particle is mutated with Cauchy 
distributed function and is given below:  
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Where, t >0, is a scale parameter. 
The steps involved to integrate CM in the PSO 

algorithm is explained below: 
 

Step 1: Determine the mutation probability ( mP ) by: 
 

m
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Where, mR  and ‘m’ are mutation rate and the number of 

particles respectively. As reported in [28], mR  is set to 1 
at the first iteration and linearly decreases to 0 at the final 
iteration. 
 

Step 2: generate a uniformly distributed random number 
( irand ) between 0 and 1 for each iteration. 
 

Step 3: compare each generated random number ( irand ) 

with mP . If mP > irand  then mutate the particle by 
following equation, 
 

k
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where jδ  , is a Cauchy random number.  
 

Petalas and Parsopoulos [29] proposed MPSO, 
which combines PSO with local search techniques. 
Memetic particle swarm optimization consists of two main 
components, a global one that is responsible for the search 
space, and a local one, which performs more refined 
search around potential solutions of the problem at hand. 
The application of local search method at various positions 
is discussed in [29]. The contribution of this paper is to 
combine Cauchy mutated particle swarm optimization 
with local search for exploring the solution space 
effectively to find the global optimum.      
 
4. CMPSO BASED RISS PROBLEM 
 The control variables of the RISS problem are the 
real power output of the Generator and the commitment 
status of the generator. The process of implementing the 
CMPSO is as follows: 
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a) Initialization of particles: Generate randomly the real 
power output of generators in the energy market within 
the feasible range for all the n particles.  
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Where, gN  is the total number of generator and t  is the 
number of scheduling hour. The elements of each particle 

niX i ,.....2,1; =  are the commitment status of the 
generators and the real power of generators in energy 
market.    
           
b) The fitness evaluation of each particle: Each particle 

is evaluated using the fitness function of the problem to 
maximize the profit of the Genco’s. The constraints are 
added to the objective function as a penalty function. 
These values are chosen such that if there is any 
constraint violations the fitness value corresponding to 
that particle will be ineffective.   
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Where, 1µ , 2µ  and 3µ  are the penalty parameter and 

)(iulimit,   e
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 The maximum fitness function value among the 
particles is stored as maxf . 
 
c) Determination of pbest and gbest particles: Compare 

the evaluated fitness value of each particle with its 
pbest. If current value is better than pbest, then set the 
current location as the pbest location. If the best pbest is 
better than gbest, the value is set to gbest. 

 
e) Modification of member velocity: change the member 

velocity of the each individual particle jv , according to 
the equation (18) and (22). 

 
f) Modification of member position: The member 

position in each particle is modified according to 
equation (19) and (23). The mutation probability is 
calculated by using (25) and the mutation of the some of 
the selected points around the best point is calculated by 
using (26). Apply local search algorithm whenever there 
is a change in gbest value.  

     
g) Termination Criteria: Repeat from 2) until the 

tolerance value is reached or maximum value of 
iteration is reached. 

 
5. NUMERICAL RESULTS AND DISCUSSIONS 

Two test cases are taken to demonstrate the 
feasibility of the proposed method. In the first test case a 
producer having single generating unit in PECO control 
zone of PJM market is selected and an IEEE 30 bus 
system is used as second test case. The MATLAB based 
simulations are carried out on a Pentium IV, 2.2-GHz, 1-
GB RAM processor. The real time data are taken from 
PECO control zone [30]. The two year data from 
December 2008 to December 2010 is used as input data. 
The LMP values of the 10th of January 2010 are forecasted 
using ANN [31] to find the variance of the locational 
marginal price. The number of neurons in the proposed 
network is fifty. Two layers are used; both the first and 
second layer considers a hyperbolic tangent transfer 
function. The forecasted LMP value by using the proposed 
method is tabulated in Table-1. 

 

Table-1. Forecasted LMP values of the single generator test system. 
 

Hours 1 2 3 4 5 6 7 8 
LMP 33.31 26.53 22.16 23.1 22.6 23.15 24.65 24.75 
Hours 9 10 11 12 13 14 15 16 
LMP 25.5 27.58 31.6 35.6 41.05 41.61 38.98 39.74 
Hours 17 18 19 20 21 22 23 24 
LMP 42.02 40.74 38.80 39.63 46.14 39.04 33.68 42.09 
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The technical data and cost data for the test case 1 
is taken from [6] with some modification in upper and 
lower boundary limits of the real power.   

The risk penalty parameter ‘β’ is depending on 
the value of the confidence level. The results are simulated 
by using the proposed CMPSO based method. The 
comparison of the results obtained for various values of 
confidence level and for comparison two extreme cases 
are tabulated in Table-2. The generation scheduling values 
of the energy market for the two extreme risk values are 
shown in the Figure-1. 
 

Table-2. Profit comparison of the single generating 
machine for 24 hours. 

 

Method GAMS PSO MPSO CMPSO 
Β = 0.0 29,209.56 28,981 29,108 29,209.79 
Β = 0.05 3,836.3 3,817.4 3,822.7 3,836.3 

 

 
 

Figure-1. Geneation scheduling for the single generating 
unit for 24 hours. 

 
The variation of the expected profit with respect 

to the standard deviation for the different risk levels is 
plotted in Figure-2. This frontier curve shows the trade-off 
between the expected profit and the risk for the different 
levels of risk penalty factor. The expected profit above this 
curve is not possible and below this curve is not efficient.  
  

Figure-2. Frontier curve of the single generator system. 

The convergence characteristic of the test case 1 
is shown in Figure-3. The proposed method converged in 
to a better solution compare to the general PSO. The 
application of Cauchy mutation and local search with 
respect to the change in the global best position extends 
the execution time. The comparison of the execution time 
is given in Table-3. The execution time is linearly 
increasing which depends upon the number of variables 
and number of constraints added to the problem. 
 

 
 

Figure-3. Convergence characteristics of the single 
generator system. 

 
Table-3. Comparison of execution time of the single 

generator system. 
 

Average execution time (Sec) 
Method 

PSO MPSO CMPSO 
β = 0.0 842.3747 1,011 1,049 
β = 0.05 872.1423 947 1,037 

 
 
A standard IEEE 30 bus system is chosen as a 

second test case. The actual values of LMP for various set 
of data are calculated based on a DC load flow model. The 
technical data of the IEEE 30 bus system is taken from 
[15]. The must up time and down time of all the units are 
fixed to 3 hours. The forecasted LMP values are tabulated 
in Table-4.  

The covariance matrix is calculated for each 
generator with the value of α  equal to 0.98. The 
covariance matrix of all the generators for the energy 
market is calculated. The comparisons of results by 
various methods for the different confidence levels are 
tabulated in Table-5. The frontier curve for the various 
risk values are plotted in Figure-4. 
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Table-4. Forecasted LMP values of the IEEE 30 bus system. 
 

LMP 
hours Bus 1 Bus 2 Bus 5 Bus 8 Bus 11 Bus 13 

1 3.48 3.51 3.49 3.55 3.57 3.55 
2 3.48 3.52 3.50 3.57 3.59 3.57 
3 3.48 3.52 3.51 3.58 3.59 3.58 
4 3.48 3.52 3.52 3.58 3.61 3.58 
5 3.48 4.71 4.73 4.80 4.83 4.84 
6 3.48 4.74 4.98 5.28 5.35 5.37 
7 3.48 4.75 5.45 6.21 6.31 6.46 
8 3.48 6.11 7.55 9.09 9.28 9.64 
9 3.48 4.76 5.44 6.20 6.31 6.46 
10 3.48 4.75 5.43 6.18 6.29 6.43 
11 3.48 4.73 4.97 5.26 5.32 5.37 
12 4.78 4.79 4.80 4.90 4.95 4.96 
13 3.48 4.74 5.40 6.13 6.23 6.39 
14 3.48 4.75 5.43 6.18 6.28 6.43 
15 4.75 4.77 4.80 4.91 4.96 4.95 
16 4.82 4.80 4.80 4.88 4.93 4.95 
17 5.43 5.35 5.31 5.36 5.43 5.41 
18 8.09 7.81 7.55 7.70 7.82 7.80 
19 7.91 7.72 7.60 7.68 7.79 7.75 
20 4.80 4.80 4.80 4.89 4.94 4.95 
21 3.48 4.76 5.47 6.25 6.36 6.51 
22 3.48 4.75 5.43 6.18 6.29 6.43 
23 3.48 4.73 4.97 5.27 5.33 5.36 
24 3.48 4.70 4.58 4.52 4.55 4.50 

 
Table-5. Profit comparison of the IEEE 30 bus system 

for 24 hours. 
 

Method GAMS PSO MPSO CMPSO 
Β = 0.0 16,535 16,049 16,399 16,535 
β = 0.05 11,707 10,969 11,555 11,700 

 

 
Figure-4. Frontier curve of the IEEE 30 bus system. 

The generation scheduling values of all the 
generators for the two risk values are given in Figure-5 

The convergence characteristics of the IEEE 30 
bus system is plotted in Figure-6. The execution time is 
high when the numbers of variables are increasing. The 
number of variables to be obtained for the IEEE 30 bus 
system is 450. The comparison of execution time is 
tabulated in Table-6. 
 
Computation analysis of proposed algorithm 

In the first stage, the LMP values are forecasted 
by using the CMPSO trained feed forward neural network. 
The discussion of results about the LMP forecasting is not 
within the scope of this paper.   
 The proposed algorithm is robust in terms of 
producing quality solution. To test the robustness of the 
proposed method, the test case 1 was experimented on for 
50 trial runs. The average, minimum and maximum profit 
of the proposed method is compared with other methods 
and it is tabulated in Table-7.  
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Figure-5. Generation scheduling for the IEEE 30 bus systemfor 24 hours. 
 
 

 
 

Figure-6. Convergence characteristics of the IEEE 30 bus system. 
 
 

Table-6. Comparison of execution time of the IEEE 30 bus system. 
 

Average execution time (Sec) 
Method 

PSO MPSO CMPSO 
β = 0.0 997.323 1,108 1,218 
β= 0.05 1,098 1,244 1,321 
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Table-7. Profit comparison of the single generating machine for 24 hours. 
 

Method Risk 
parameter 

Minimum 
profit 

Maximum 
Profit 

Average 
profit 

β  = 0.0 27, 821 28,981 28, 420 
PSO 

β = 0.05 3,200 3,817.4 3,520.7 
β  = 0.0 28,972 29,108 28,832.1 

MPSO 
β = 0.05 3,521.2 3,822.7 3,623.24 
β  = 0.0 29,153.6 29,209.79 29,178.32 

CMPSO 
β = 0.05 3,751.45 3,836.3 3,795.12 

 
While solving the test cases, even though they 

have the same number of units, inclusion of additional 
constraints in the fitness function considerably affects the 
performance of the solution procedure. To demonstrate 
this, the test case 2 is considered, and in the following 
order, the constraints are added to the problem: 1) 
Minimum Up/Down time constraints 2) Ramp Up/Down 
rate limits and 3) spinning reserve. The test case 2 was 
experimented for 50 trial runs. The percentage variation of 
the average time and Profit of the CMPSO method after all 
constraints are added one by one is plotted in Figure-7. 
 

 
 

Figure-7. Performance of the CMPSO method on the 
addition of constraints. 

 
As can be seen from Figure-7, the average profit 

and the mean computation time taken by the CMPSO 
method considerably increases as the constraints are added 
one by one. It is observed in Table-7, CMPSO method 
produces better results compared to the PSO and MPSO 
method when constraints are added. Inclusion of 
additional constraints increases the solution space as more 
bounded and reflected in the total computation time. The 
handling of non linear constraints is easier by using the 
proposed method.   

There are 50 and 300 variables have to be 
determined by solving the self scheduling problem for the 
test case 1 and case 2 respectively. The population size is 
set as 450 for the single generator system and 1200 for the 
second test case. For both the system the number of 
iterations is set as to 150. The inertia constant is varying 
from 0.35 to 0.65 for the both cases. The application of the 
CM is very critical to explore the solution space in 

effective manner to avoid the local convergence. The 
application of the CM at various positions of the solution 
space is changed the result considerably. Use CM for the 
entire particles instead of using CM only at the gbest and 
around some points is improving the convergence 
characteristics of the solution. Since local search is 
invoked whenever there is an improvement in the PSO 
run, better solution regions are retained during the 
progress of the run; this finally leads to a better solution at 
the termination of the iteration. The average execution 
time of the proposed method is marginally higher than the 
PSO algorithm.   

The results are comparable with the mixed 
integer linear programming. Linearization of the non 
linear constraints is not required for the proposed method. 
This shows that the CMPSO method is capable of 
handling the Risk invoked self scheduling problem in a 
more effective way. The work on the parallel processing 
of the method to reduce time for combined self scheduling 
and risk management is underway and will be presented in 
a future paper. 

In the first stage, the LMP values are forecasted 
by using the CMPSO trained feed forward neural network. 
The discussion of results about the LMP forecasting is not 
within the scope of this paper.   

There are 50 and 300 variables have to be 
determined by solving the self scheduling problem for the 
test case 1 and case 2, respectively. The population size is 
set as 450 for the single generator system and 1500 for the 
second test system. For both the system the number of 
iterations is set as to 150. The inertia constant is varying 
from 0.35 to 0.65 for the both cases. The application of the 
CM is very critical to explore the solution space in 
effective manner to avoid the local convergence. The 
application of the CM at various positions of the solution 
space is changed the result considerably. Use CM for the 
entire particles instead of using CM only at the gbest and 
around some points is improving the convergence 
characteristics of the solution. Since local search is 
invoked whenever there is an improvement in the PSO 
run, better solution regions are retained during the 
progress of the run; this finally leads to a better solution at 
the termination of the iteration. The average execution 
time of the proposed method is marginally higher than the 
PSO algorithm. The ramp rate constraints of the generators 
are affecting the solution in terms of convergence and 
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execution time. Inclusion of additional constraints 
increases the solution space as more bounded and reflected 
in the total computation time. The handling of non linear 
constraints is easier by using the proposed method.  

The results are comparable with the linear 
programming. Linearizations of the non linear constraints 
are not required for the proposed method. Finally, it is 
clear from the test results that the CMPSO outperforms the 
PSO method in terms of solution quality, reliability in 
producing it and convergence. 
 
6. CONCLUSIONS  

The generator output is varying to maximize the 
expected profit and to minimize the risk from the energy 
market. The proposed CMPSO based method is reliable 
and gives realistic results within the reasonable 
computation time. CM is used to avoid the local minima 
convergence property of the PSO algorithm. It will 
effectively explore the solution space when the number of 
constraints added to the objective function is non linear in 
nature. Local search is used to fine tune the solution 
obtained from PSO and CM. The proposed algorithm is 
tested with two test cases. The risk is accounted to the self 
scheduling problem by using variance information of the 
forecasted LMP. Inclusion of the wind, hydro energy 
sources and the temporal constraints of the generator give 
more realistic approach to the self scheduling problem. 
The bids submitted by the generators for the day-ahead 
market is depend on its self scheduling values. Therefore 
any supplier should be aware of its self scheduling, it’s 
bidding strategy, and ultimately, on its actual profits. 
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