www.arpnjournals.com

ON THE STABILITY OF A FOUR SPECIES SYN ECO-SYSTEM WITH COMMENSAL PREY-PREDATOR PAIR WITH PREY-PREDATOR PAIR OF HOSTS-VIII

B. Hari Prasad ${ }^{1}$ and N.Ch. Pattabhi Ramacharyulu ${ }^{2}$
${ }^{1}$ Department of Mathematics, Chaitanya Degree College (Autonomous), Hanamkonda, India
${ }^{2}$ Former Faculty, Department of Mathematics, NIT Warangal, India
E-Mail: sumathi_prasad73@yahoo.com

Abstract

The present paper is devoted to an investigation on a four species ($\mathrm{S}_{1}, \mathrm{~S}_{2}, \mathrm{~S}_{3}, \mathrm{~S}_{4}$) Syn Eco-System with Commensal Prey-Predator pair with Prey-Predator pair of Hosts (host of S_{1} washed out states). The system comprises of a Prey $\left(S_{1}\right)$, a Predator $\left(S_{2}\right)$ that survives upon S_{1}, two Hosts S_{3} and S_{4} for which S_{1}, S_{2} are Commensal, respectively i.e., S_{3} and S_{4} benefit S_{1} and S_{2}, respectively without getting effected either positively or adversely. Further S_{3} is Prey for S_{4} and S_{4} is Predator for S_{3}. The pair (S_{1}, S_{2}) may be referred as $1^{\text {st }}$ level Prey-Predator and the pair $\left(S_{3}, S_{4}\right)$, the $2^{\text {nd }}$ level PreyPredator. The model equations of the system constitute a set of four first order non-linear ordinary differential coupled equations. In all, there are sixteen equilibrium points. Criteria for the asymptotic stability of four of these sixteen equilibrium points: Host of S_{1} washed out states is established. The system would be stable if all the characteristic roots are negative, in case they are real, and have negative real parts, in case they are complex. The linearized equations for the perturbations over the equilibrium points are analyzed to establish the criteria for stability and the trajectories are illustrated.

Keywords: commensal, eco-system, prey, predator, equillibrium point, host, neutrally stable, quasi-linearization, trajectories.

1. INTRODUCTION

Research in the area of theoretical Ecology was initiated in 1925 by Lotka [1] and in 1931 by Volterra [2]. Since then many Mathematicians and Ecologists contributed to the growth of this area of knowledge reported in the treatises of May [3], Smith [4], Kushing [5], Kapur [6] etc. The ecological interactions can be broadly classified as Prey-Predator, Commensalism, Competition, Neutralism, Mutualism and so on. Srinivas [7] studied competitive eco-systems of two species and three species with limited and unlimited resources. Later Lakshminarayan and Pattabhi Ramacharyulu [8] studied Prey-Predator ecological models with partial cover for the Prey and alternate food for the Predator. Recently, Archana Reddy [9] and Bhaskara Rama Sharma [10] investigated diverse problems related to two species competitive systems with time delay, employing analytical and numerical techniques. Further Phani Kumar and Pattabhi Ramacharyulu [11] studied Three Species Ecosystem Consisting of a Prey, Predator and a Host Commensal to the Prey. The present authors Hari Prasad and Pattabhi Ramacharyulu [12, 13, 14] discussed on the stability of a four species: A Prey-Predator-HostCommensal Syn Eco-System.

The paper is organized as follows: Section 2 discusses the basic equations and notations. Section 3 shows investigation of equilibrium states. Sections 4 and 5 discuss stability of the equilibrium states. Section 6 gives the trajectories of perturbations. Section 7 shows perturbation graphs. Section 8 gives conclusion and section 9 presents future work.

2. BASIC EQUATIONS

The model equations for a four species syn ecosystem are given by the following system of first order non-linear ordinary differential equations employing the following notation:

Notation

$S_{1:}$ Prey for S_{2} and commensal for S_{3}.
$S_{2 \text { : }}$ Predator surviving upon S_{1} and commensal for S_{4}.
S_{3} : Host for the commensal $\left(S_{1}\right)$ and Prey for S_{4}.
S_{4} : Host of the commensal $\left(\mathrm{S}_{2}\right)$ and Predator surviving upon S_{4}.
$\mathrm{N}_{\mathrm{i}}(\mathrm{t})$: The population strength of S_{i} at time $\mathrm{t}, \mathrm{i}=1,2,3,4$
t : Time instant
a_{i} : Natural growth rate of $S_{i}, i=1,2,3,4$
a_{ii} : Self inhibition coefficient of $\mathrm{S}_{\mathrm{i}}, \mathrm{i}=1,2,3,4$
a_{12}, a_{21} : Interaction (Prey-Predator) coefficients of S_{1} due to S_{2} and S_{2} due to S_{1}
$\mathrm{a}_{34}, \mathrm{a}_{43}$: Interaction (Prey-Predator) coefficients of S_{3} due to S_{4} and S_{4} due to S_{3}
a_{13}, a_{24} : Coefficients for commensal for S_{1} due to the Host S_{3} and S_{2} due to the Host S_{4}

$$
\begin{gathered}
K_{i}=\frac{a_{i}}{a_{i i}} \text { : Carrying capacities of } \mathrm{S}_{\mathrm{i}}, \\
\mathrm{i}=1,2,3,4
\end{gathered}
$$

Further the variables $\mathrm{N}_{1}, \mathrm{~N}_{2}, \mathrm{~N}_{3}, \mathrm{~N}_{4}$ are nonnegative and the model parameters $a_{1}, a_{2}, a_{3}, a_{4} ; a_{11}, a_{22}$, $a_{33}, a_{44} ; a_{12}, a_{21}, a_{13}, a_{24}, a_{34}, a_{43}$ are assumed to be nonnegative constants.

The model equations for the growth rates of S_{1}, S_{2}, S_{3}, S_{4} are:

www.arpnjournals.com

A Schematic Sketch of the system under investigation is shown in Figure-1.

Figure-1. Schematic sketch of the Syn eco-system.

3. EQUILIBRIUM STATES

The system under investigation has sixteen equilibrium states defined by:

$$
\begin{equation*}
\frac{d N_{i}}{d t}=0, i=1,2,3,4 \tag{5}
\end{equation*}
$$

As given in the following Table-1.

Table-1.

S. No.	Equilibrium state	Equilibrium point
1	Fully Washed out state	$\overline{N_{1}}=0, \overline{N_{2}}=0, \overline{N_{3}}=0, \overline{N_{4}}=0$
2*	Only the host (S_{4}) of S_{2} survives	$\overline{N_{1}}=0, \overline{N_{2}}=0, \overline{N_{3}}=0, \overline{N_{4}}=\frac{a_{4}}{a_{44}}$
3	Only the host (S_{3})of S_{1} survives	$\overline{N_{1}}=0, \overline{N_{2}}=0, \overline{N_{3}}=\frac{a_{3}}{a_{33}}, \overline{N_{4}}=0$
4	Only the predator (S_{2}) survives	$\overline{N_{1}}=0, \overline{N_{2}}=\frac{a_{2}}{a_{22}}, \overline{N_{3}}=0, \overline{N_{4}}=0$
5	Only the prey (S_{1}) survives	$\overline{N_{1}}=\frac{a_{1}}{a_{11}}, \overline{N_{2}}=0, \overline{N_{3}}=0, \overline{N_{4}}=0$
6	Prey (S_{1}) and predator (S_{2}) washed out	$\overline{N_{1}}=0, \overline{N_{2}}=0, \overline{N_{3}}=\frac{\alpha}{\beta}, \overline{N_{4}}=\frac{\gamma}{\beta}$ where $\begin{aligned} & \alpha=a_{3} a_{44}-a_{4} a_{34,} \beta=a_{33} a_{44}+a_{34} a_{43}>0 \\ & \gamma=a_{3} a_{43}+a_{4} a_{33}>0 \end{aligned}$
7*	Prey (S_{1}) and host (S_{3}) of S_{1} washed out	$\overline{N_{1}}=0, \overline{N_{2}}=\frac{\delta_{1}}{a_{22} a_{44}}, \overline{N_{3}}=0, \overline{N_{4}}=\frac{a_{4}}{a_{44}}$ where $\delta_{1}=a_{2} a_{44}+a_{4} a_{24}>0$
8	Prey $\left(\mathrm{S}_{1}\right)$ and host $\left(\mathrm{S}_{4}\right)$ of S_{2} washed out	$\overline{N_{1}}=0, \overline{N_{2}}=\frac{a_{2}}{a_{22}}, \overline{N_{3}}=\frac{a_{3}}{a_{33}}, \overline{N_{4}}=0$
9*	Predator (S_{2}) and host (S_{3}) of S_{1} washed out	$\overline{N_{1}}=\frac{a_{1}}{a_{11}}, \overline{N_{2}}=0, \overline{N_{3}}=0, \overline{N_{4}}=\frac{a_{4}}{a_{44}}$
10	Predator (S_{2}) and host (S_{4}) of S_{2} washed out	$\overline{N_{1}}=\frac{\delta_{2}}{a_{11} a_{33}}, \overline{N_{2}}=0, \overline{N_{3}}=\frac{a_{3}}{a_{33}}, \overline{N_{4}}=0$ where $\delta_{2}=a_{1} a_{33}+a_{3} a_{13}>0$
11	Prey (S_{1}) and predator (S_{2}) survives	$\overline{N_{1}}=\frac{\alpha_{1}}{\beta_{1}}, \overline{N_{2}}=\frac{\gamma_{1}}{\beta_{1}}, \overline{N_{3}}=0, \overline{N_{4}}=0$ where $\alpha_{1}=a_{1} a_{22}-a_{2} a_{12}, \beta_{1}=a_{11} a_{22}+a_{12} a_{21}>0$

www.arpnjournals.com

		$\gamma_{1}=a_{1} a_{21}+a_{2} a_{11}>0$
12	Only the prey (S_{1}) washed out	$\overline{N_{1}}=0, \overline{N_{2}}=\frac{a_{2} \beta+a_{24} \gamma}{a_{22} \beta}, \overline{N_{3}}=\frac{\alpha}{\beta}, \overline{N_{4}}=\frac{\gamma}{\beta}$
13	Only the predator (S_{2}) washed out	$\overline{N_{1}}=\frac{a_{1} \beta+a_{13} \alpha}{a_{11} \beta}, \overline{N_{2}}=0, \overline{N_{3}}=\frac{\alpha}{\beta}, \overline{N_{4}}=\frac{\gamma}{\beta}$
14*	Only the host (S_{3}) of S_{1} washed out	$\begin{aligned} & \overline{N_{1}}=\frac{a_{1} a_{22} a_{44}-a_{12} \delta_{1}}{a_{44} \beta_{1}}, \overline{N_{2}}=\frac{a_{1} a_{21} a_{44}+a_{11} \delta_{1}}{a_{44} \beta_{1}}, \\ & \overline{N_{3}}=0, \overline{N_{4}}=\frac{a_{4}}{a_{44}} \end{aligned}$
15	Only the Host (S_{4}) of S_{2} washed out	$\begin{aligned} & \overline{N_{1}}=\frac{a_{22} \delta_{2}-a_{2} a_{12} a_{33}}{a_{33} \beta_{1}}, \overline{N_{2}}=\frac{a_{21} \delta_{2}+a_{2} a_{11} a_{33}}{a_{33} \beta_{1}}, \\ & \overline{N_{3}}=\frac{a_{3}}{a_{33}}, \overline{N_{4}}=0 \end{aligned}$
16	The co-existent state (or) Normal steady state	$\begin{aligned} & \overline{N_{1}}=\frac{a_{22} \alpha_{2}-a_{12} \gamma_{2}}{\beta_{1}}, \overline{N_{2}}=\frac{a_{11} \gamma_{2}+a_{21} \alpha_{2}}{\beta_{1}}, \\ & \overline{N_{3}}=\frac{\alpha}{\beta}, \overline{N_{4}}=\frac{\gamma}{\beta} \end{aligned}$ where $\alpha_{2}=a_{1}+a_{13} \frac{\alpha}{\beta}, \gamma_{2}=a_{2}+a_{24} \frac{\gamma}{\beta}>0$

The present paper deals with the Host of S_{1} washed out states only (Sl. Nos. 2, 7, 9, 14 marked * in the above Table-1). The stability of the other equilibrium states was already discussed and communicated to several International Journals.
4. STABILITY OF THE EQUILIBRIUM STATES

Let $N=\left(N_{1}, N_{2}, N_{3}, N_{4}\right)=\bar{N}+U$
$A=\left[\begin{array}{cc}a_{1}-2 a_{11} \bar{N}_{1}-a_{12} \bar{N}_{2}+a_{13} \bar{N}_{3} & -a_{12} \bar{N}_{1} \\ a_{21} \bar{N}_{1} & a_{2}-2 a_{22} \bar{N}_{2}+a_{21} \bar{N}_{1}+a_{24} \bar{N}_{4} \\ 0 & 0 \\ 0 & 0\end{array}\right.$

The characteristic equation for the system is $\operatorname{det}[A-\lambda I]=0$ (9)
The equilibrium state is stable, if both the roots of the equation (9) are negative in case they are real or have negative real parts in case they are complex.

5. STABILITY OF THE HOST $\left(S_{3}\right)$ OF S_{1} WASHED

OUT EQUILIBRIUM SATES: (Sl. No's 2, 7, 9, 14

marked * in table-1)

The equilibrium states (Sl. No's 2, 7, 9) were already discussed in the papers "On the stability of a four species syn Eco-system with commensal prey-predator pair with prey-predator pair of hosts - II, IV, V" communicated to JJMS, IJPAMS, IJAMM, respectively. Now discuss about the Equilibrium point.
where $U=\left(u_{1}, u_{2}, u_{3}, u_{4}\right)$ is a perturbation over the equilibrium state $\bar{N}=\left(\bar{N}_{1}, \bar{N}_{2}, \bar{N}_{3}, \bar{N}_{4}\right)$.

The basic equations (1), (2), (3), (4) are quasilinearized to obtain the equations for the perturbed state.
$\frac{d U}{d t}=A U$
Where

$$
\left.\begin{array}{cc}
a_{13} \bar{N}_{1} & 0 \tag{8}\\
0 & a_{24} \bar{N}_{2} \\
a_{3}-2 a_{33} \bar{N}_{3}-a_{34} \bar{N}_{3} & -a_{34} \bar{N}_{3} \\
a_{34} \bar{N}_{4} & a_{4}-2 a_{44} \bar{N}_{4}+a_{43} \bar{N}_{3}
\end{array}\right]
$$

$\bar{N}_{1}=\frac{a_{12} a_{22} a_{44}-a_{12} \delta_{1}}{a_{44} \beta_{1}}, \bar{N}_{2}=\frac{a_{12} a_{21} a_{44}+a_{11} \delta_{1}}{a_{44} \beta_{1}}, \quad \bar{N}_{3}=0, \bar{N}_{4}=k_{4}:$
This would exists only when $a_{1} a_{22} a_{44}>a_{12} \delta_{1}$
The corresponding linearized equations for the perturbations $u_{1}, u_{2}, u_{3}, u_{4}$ are:
$\frac{d u_{1}}{d t}=\mu_{1} u_{1}-a_{12} \bar{N}_{1} u_{2}+a_{13} \bar{N}_{1} u_{3}$
$\frac{d u_{2}}{d t}=a_{21} \bar{N}_{2} u_{1}+\mu_{2} u_{2}+a_{24} \bar{N}_{2} u_{4}$
www.arpnjournals.com
$\frac{d u_{3}}{d t}=\mu_{3} u_{3}, \frac{d u_{4}}{d t}=a_{43} k_{4} u_{3}-a_{4} u_{4}$
Where

$$
\begin{align*}
& \mu_{1}=a_{1}-\left(2 a_{11} \bar{N}_{1}+a_{12} \bar{N}_{2}\right) \tag{14}\\
& \mu_{2}=a_{2}+a_{21} \bar{N}_{1}+a_{24} k_{4}-2 a_{22} \bar{N}_{2} \tag{15}\\
& \mu_{3}=a_{3}-a_{34} k_{4} \tag{16}
\end{align*}
$$

The characteristic equation for which is:

$$
\begin{align*}
& {\left[\lambda^{2}-\left(\mu_{1}+\mu_{2}\right) \lambda+\left(\mu_{1} \mu_{2}-a_{12} a_{21} \bar{N}_{1} \bar{N}_{2}\right)\right]} \\
& \left(\lambda-\mu_{3}\right)\left(\lambda+a_{4}\right) \tag{17}
\end{align*}
$$

One of the four roots $-a_{4}$ is negative. Let λ_{1}, λ_{2} be the zeros of the quadratic polynomial on the L.H.S. of the characteristic equation (17).

Case (A): When $a_{3}<a_{34} k_{4}$, i.e., the root μ_{3} is negative

Case (a): If the roots λ_{1}, λ_{2} noted to be negative. Hence the state is stable and the equations (11), (12), (13) yield the solutions.
$u_{1}=\frac{\left(\mu_{1}-\lambda_{2}\right)\left(\bar{\gamma}+\bar{\mu}-u_{10}\right)-a_{12} \bar{N}_{1}\left(\Psi_{1}+\psi_{2}-u_{20}\right)}{\lambda_{2}-\lambda_{1}} e^{\lambda_{1} t}$
$+\frac{\left(\mu_{1}-\lambda_{1}\right)\left(\bar{\gamma}+\bar{\mu}-u_{10}\right)-a_{12} \bar{N}_{1}\left(\Psi_{1}+\psi_{2}-u_{20}\right)}{\lambda_{1}-\lambda_{2}} e^{\lambda_{2} t}$
$+\bar{\gamma} e^{\mu_{3} t}+\bar{\mu} \bar{e}^{a_{4} t}$
$u_{2}=\frac{\left(\mu_{1}-\lambda_{2}\right)\left(\bar{\gamma}+\bar{\mu}-u_{10}\right)-a_{12} \bar{N}_{1}\left(\Psi_{1}+\psi_{2}-u_{20}\right)}{\left(\lambda_{2}-\lambda_{1}\right) a_{12} \bar{N}_{1}}\left(\mu_{1}-\lambda_{1}\right) e^{\lambda_{1} t}$
$+\frac{\left(\mu_{1}-\lambda_{1}\right)\left(\bar{\gamma}+\bar{\mu}-u_{10}\right)-a_{12} \bar{N}_{1}\left(\Psi_{1}+\psi_{2}-u_{20}\right)}{\left(\lambda_{1}-\lambda_{2}\right) a_{12} \bar{N}_{1}}\left(\mu_{1}-\lambda_{2}\right) e^{\lambda_{2} t}$
$+\psi_{1} e^{\mu_{3} t}+\psi_{2} \bar{e}^{a_{4} t}$
$u_{3}=u_{30} e^{\mu_{3} t}, u_{4}=\bar{\mu}_{3} e^{\mu_{3} t}+\left(u_{40}-\bar{\mu}_{3}\right) e^{-a_{4} t}$
Where
$\bar{\mu}_{3}=\frac{a_{43} k_{4} u_{30}}{\mu_{3}+a_{4}}, \bar{\beta}=a_{12} a_{24} \bar{N}_{2}\left(u_{40}-\bar{\mu}_{3}\right)$
$\bar{\alpha}=\left(\mu_{3} a_{13} u_{30}-\mu_{2} a_{13} u_{30}+a_{12} a_{24} \bar{N}_{2} \bar{\mu}_{3}\right) \bar{N}_{1}$
$\bar{\gamma}=\frac{\bar{\alpha}}{\mu_{3}^{2}-\left(\mu_{1}+\mu_{2}\right) \mu_{3}+\mu_{1} \mu_{2}+a_{12} a_{21} \bar{N}_{1} \bar{N}_{2}}$
$\bar{\mu}=\frac{\bar{\beta}}{a_{4}^{2}+\left(\mu_{1}+\mu_{2}\right) a_{4}+\mu_{1} \mu_{2}+a_{12} a_{21} \bar{N}_{1} \bar{N}_{2}}$
$\psi_{1}=\frac{a_{12} \bar{N}_{1} u_{30}+\mu_{1} \bar{\gamma}-\mu_{3} \bar{\gamma}}{a_{12} \bar{N}_{1}}, \psi_{2}=\frac{\mu_{1} \bar{\mu}+a_{4} \bar{\mu}}{a_{12} \bar{N}_{1}}$
and $u_{10}, u_{20}, u_{30}, u_{40}$ are the initial values of $u_{1}, u_{2}, u_{3}, u_{4}$, respectively

There would arise in all 576 cases depending upon the ordering of the magnitudes of the growth rates $a_{1}, a_{2}, a_{3}, a_{4}$ and the initial values of the perturbations $u_{10}(t), u_{20}(t), u_{30}(t), u_{40}(t)$ of the species $S_{1}, S_{2}, S_{3}, S_{4}$. Of these 576 situations some typical variations are illustrated through respective solution curves that would facilitate to make some reasonable observations and the solution curves are illustrated in Figures-2 and 3.

Case (i): If $u_{10}<u_{20}<u_{30}<u_{40}$ and $a_{1}<\mu_{3}<a_{2}<a_{4}$
In this case the natural birth rates of the prey $\left(S_{1}\right)$, host $\left(S_{3}\right)$ of S_{1}, predator $\left(S_{2}\right)$ and the host $\left(S_{4}\right)$ of S_{2} are in ascending order. Initially the host $\left(S_{3}\right)$ of S_{1} dominates over the predator $\left(S_{2}\right)$ till the time instant t_{23}^{*} and thereafter the dominance is reversed. The time t_{23}^{*} may be called the dominance time of S_{3} over S_{2}.

Case (ii): If $u_{20}<u_{40}<u_{10}<u_{30}$ and $\mu_{3}<a_{2}<a_{4}<a_{1}$ In this case the host $\left(S_{3}\right)$ of S_{1} has the least natural birth rate. Initially it is dominated over by the prey $\left(S_{1}\right)$, host $\left(S_{4}\right)$ of S_{2}, predator $\left(S_{2}\right)$ till the time instant $t_{13}^{*}, t_{43}^{*}, t_{23}^{*}$, respectively and thereafter the dominance is reversed.

Case (b): If one root $\left(\lambda_{1}\right)$ is negative while the other root $\left(\lambda_{2}\right)$ is positive. Hence the state is unstable and the solution curves are illustrated in Figures-4 and 5.

Case (i): If $u_{30}<u_{20}<u_{10}<u_{40}$ and $a_{2}<\mu_{3}<a_{1}<a_{4}$
In this case the natural birth rates of the host $\left(S_{3}\right)$ of S_{1}, host $\left(S_{4}\right)$ of S_{2}, predator $\left(S_{2}\right)$ and the prey $\left(S_{1}\right)$ are in ascending order. Initially the host $\left(S_{4}\right)$ of S_{2} dominates over the prey $\left(S_{1}\right)$, predator $\left(S_{2}\right)$ till the time instant t_{14}^{*}, t_{24}^{*}, respectively and thereafter the dominance is reversed.

Case (ii): If $u_{40}<u_{20}<u_{30}<u_{10}$ and $\mu_{3}<a_{1}<a_{4}<a_{2}$
In this case the host $\left(S_{3}\right)$ of S_{1} has the least natural birth rate. Initially it is dominated over by the predator $\left(S_{2}\right)$, host $\left(S_{4}\right)$ of S_{2} till the time instant t_{23}^{*}, t_{43}^{*}, respectively and thereafter the dominance is reversed. Also the prey $\left(S_{1}\right)$ dominates over the predator $\left(S_{2}\right)$ till the time instant t_{21}^{*} and the dominance gets reversed thereafter.
www.arpnjournals.com

Case (B): When $a_{3}>a_{34} k_{4}$, i.e., the root μ_{3} is positive. Hence the state is unstable and the solutions in this case are same as in case (A). The solution curves are illustrated in Figures-6 to 9.

Case (a): If the roots λ_{1} and λ_{2} noted to be negative.
Case (i): If $u_{10}<u_{40}<u_{30}<u_{20}$ and $a_{4}<\mu_{3}<a_{2}<a_{1}$
In this case the natural birth rates of host $\left(S_{4}\right)$ of S_{1}, host $\left(S_{3}\right)$ of S_{1}, predator $\left(S_{2}\right)$ and the prey $\left(S_{1}\right)$ are in ascending order. Initially the predator $\left(S_{2}\right)$, host $\left(S_{3}\right)$ of S_{1}, host $\left(S_{4}\right)$ of S_{2} dominates over the prey $\left(S_{1}\right)$ till the time instant $t_{12}^{*}, t_{13}^{*}, t_{14}^{*}$, respectively and thereafter the dominance is reversed.

Case (ii): If $u_{20}<u_{30}<u_{10}<u_{40}$ and $a_{1}<a_{4}<a_{2}<\mu_{3}$
In this case the prey $\left(S_{1}\right)$ has the least natural birth rate. Initially it is dominated over by the host $\left(S_{3}\right)$ of S_{1}, predator $\left(S_{2}\right)$ till the time instant t_{31}^{*}, t_{21}^{*} respectively and thereafter the dominance is reversed. Also the host $\left(S_{4}\right)$ of S_{2} dominates over the host $\left(S_{3}\right)$ of S_{1}, predator $\left(S_{2}\right)$ till the time instant t_{34}^{*}, t_{24}^{*} respectively and the dominance gets reversed thereafter.
Case (b): If one root $\left(\lambda_{1}\right)$ is negative while the other root $\left(\lambda_{2}\right)$ is positive. Hence the state is unstable.

Case (i): If $u_{30}<u_{10}<u_{20}<u_{40}$ and $\mu_{3}<a_{2}<a_{1}<a_{4}$
In this case the natural birth rates of the host $\left(S_{3}\right)$ of S_{1}, predator $\left(S_{2}\right)$, prey $\left(S_{1}\right)$ and the host $\left(S_{4}\right)$ of S_{2} are in ascending order. Initially the predator $\left(S_{2}\right)$ dominates over the prey $\left(S_{1}\right)$ till the time instant t_{12}^{*} and thereafter the dominance is reversed.
Case (ii): If $u_{40}<u_{20}<u_{30}<u_{10}$ and $a_{4}<a_{1}<a_{2}<\mu_{3}$.
In this case host $\left(S_{4}\right)$ of S_{2} has the least natural birth rate. Initially the prey $\left(S_{1}\right)$ dominates its host $\left(S_{3}\right)$ and predator $\left(S_{2}\right)$ till the time instant t_{31}^{*} and t_{21}^{*}, respectively and thereafter the dominance is reversed.
Case(C): when $a_{3}=a_{34} k_{4}\left(i e, \mu_{3}=0\right)$
In the case the equations (18), (19), (20) becomes

$$
\begin{align*}
& u_{1}=\frac{\left(\mu_{1}-\lambda_{2}\right)\left(\bar{\gamma}_{1}+\bar{\mu}_{1}-u_{10}\right)-a_{12} \bar{N}_{1}\left(\bar{\psi}_{1}+\bar{\psi}_{2}-u_{20}\right)}{\lambda_{2}-\lambda_{1}} e^{\lambda_{1} t} \\
& +\frac{\left(\mu_{1}-\lambda_{1}\right)\left(\bar{\gamma}+\bar{\mu}-u_{10}\right)-a_{12} \bar{N}_{1}\left(\bar{\psi}_{1}+\bar{\psi}_{2}-u_{20}\right)}{\lambda_{1}-\lambda_{2}} e^{\lambda_{2} t} \\
& +\bar{\gamma}_{1}+\bar{\mu}_{1} \bar{e}^{a_{4} t} \tag{26}
\end{align*}
$$

$$
\begin{align*}
& u_{2}=\frac{\left(\mu_{1}-\lambda_{2}\right)\left(\bar{\gamma}_{1}+\bar{\mu}_{1}-u_{10}\right)-a_{12} \bar{N}_{1}\left(\bar{\psi}_{1}+\bar{\psi}_{2}-u_{20}\right)}{\left(\lambda_{2}-\lambda_{1}\right) a_{12} \bar{N}_{1}}\left(\mu_{1}-\lambda_{1}\right) e^{\lambda_{1} t} \\
& +\frac{\left(\mu_{1}-\lambda_{1}\right)\left(\bar{\gamma}+\bar{\mu}-u_{10}\right)-a_{12} \bar{N}_{1}\left(\bar{\Psi}_{1}+\bar{\psi}_{2}-u_{20}\right)}{\left(\lambda_{1}-\lambda_{2}\right) a_{12} \bar{N}_{1}}\left(\mu_{1}-\lambda_{2}\right) e^{\lambda_{2} t} \\
& +\bar{\psi}_{1}+\bar{\psi}_{2} \bar{e}^{a_{4} t} \tag{27}\\
& u_{3}=u_{30}, u_{4}=\bar{\mu}_{4}\left(u_{40}-\bar{\mu}_{4}\right) e^{-a_{4} t} \tag{28}
\end{align*}
$$

Where

$$
\begin{align*}
& \bar{\mu}_{4}=\frac{a_{43} k_{4} u_{30}}{a_{4}}, \bar{\beta}=a_{12} a_{24} \bar{N}_{2}\left(u_{40}-\bar{\mu}_{4}\right) \tag{29}\\
& \bar{\alpha}_{1}=\left(a_{12} a_{24} \bar{N}_{2} \bar{\mu}_{4}-\mu_{2} a_{13} u_{30}\right) \bar{N}_{1} \tag{30}\\
& \bar{\gamma}_{1}=\frac{\bar{\alpha}}{\mu_{1} \mu_{2}+a_{12} a_{21} \bar{N}_{1} \bar{N}_{2}} \tag{31}\\
& \bar{\mu}_{1}=\frac{\bar{\beta}_{1}}{a_{4}^{2}+\left(\mu_{1}+\mu_{2}\right) a_{4}+\mu_{1} \mu_{2}+a_{12} a_{21} \bar{N}_{1} \bar{N}_{2}} \tag{32}
\end{align*}
$$

$$
\bar{\psi}_{1}=\frac{a_{13} \bar{N}_{1} u_{30}+\mu_{1} \bar{\gamma}_{1}}{a_{12} \bar{N}_{1}}, \bar{\psi}_{2}=\frac{\mu_{1} \bar{\mu}_{1}+a_{4} \bar{\mu}_{1}}{a_{12} \bar{N}_{1}}
$$

And the solution curves are illustrated in Figures10 to 13.
Case (a): If the roots λ_{1} and λ_{2} noted to be negative. Hence the state is neutrally stable.

Case (i): If $u_{10}<u_{20}<u_{40}<u_{30}$ and $a_{4}<a_{1}<a_{2}<\mu_{3}$
In this case the natural birth rates of the host $\left(S_{4}\right)$ of S_{2}, prey $\left(S_{1}\right)$, predator $\left(S_{2}\right)$ and the host $\left(S_{3}\right)$ of S_{1} are in ascending order. Initially the host $\left(S_{4}\right)$ of S_{2} dominates over the predator $\left(S_{2}\right)$, prey $\left(S_{1}\right)$ till the time instant t_{24}^{*}, t_{14}^{*}, respectively and thereafter the dominance is reversed. Further we notice that u_{4} is asymptotic to u_{4}^{*} which is evident from the equation (28).

Case (ii): If $u_{20}<u_{40}<u_{30}<u_{10}$ and $\mu_{3}<a_{4}<a_{2}<a_{1}$
In this case the host $\left(S_{4}\right)$ of S_{2} has the least natural birth rate. Initially it is dominated over by the predator $\left(S_{2}\right)$ till the time instant t_{24}^{*} and thereafter the dominance is reversed. Also the prey $\left(S_{1}\right)$ dominates over the host $\left(S_{3}\right)$ of S_{1} till the time instant t_{31}^{*} and the dominance gets reversed thereafter.
Case (b): If one root $\left(\lambda_{1}\right)$ is negative while the other root $\left(\lambda_{1}\right)$ is positive. Hence the state is unstable.
Case (i): If $u_{30}<u_{40}<u_{10}<u_{20}$ and $a_{1}<a_{2}<a_{4}<\mu_{3}$

www.arpnjournals.com

In this case the natural birth rates of the host $\left(S_{4}\right)$ of S_{1}, host $\left(S_{3}\right)$ of S_{1}, prey $\left(S_{1}\right)$ and the predator $\left(S_{2}\right)$ are in ascending order. Initially the host $\left(S_{4}\right)$ of S_{2} dominates over the host $\left(S_{3}\right)$ of S_{1} till the time instant t_{34}^{*} and thereafter the dominance is reversed.

Case (ii): If $u_{40}<u_{20}<_{10}<u_{30}$ and $a_{2}<a_{1}<\mu_{3}<a_{4}$
In this case the host $\left(S_{4}\right)$ of S_{2} has the least natural birth rate. Initially the host $\left(S_{3}\right)$ of S_{1} dominates over the prey $\left(S_{1}\right)$, predator $\left(S_{2}\right)$ till the time instant t_{13}^{*}, t_{23}^{*}, respectively and thereafter the dominance is reversed.

6. TRAJECTORIES OF PERTUBATIONS

The trajectories in the $u_{2}-u_{4}$ plane given by:
$\left(a_{4}+\mu_{3}\right) u_{4}-a_{43} k_{4} u_{3}=c u_{3}^{\frac{-a_{4}}{\mu_{3}}}$
where c is an arbitrary constant.

7. PERTUBATION GRAPHS

Figure-2. Graph of $u_{10}<u_{20}<u_{30}<u_{40}$; $a_{1}<\mu_{3}<a_{2}<a_{4}$.

Figure-3. Graph of $u_{20}<u_{40}<u_{10}<u_{30}$; $\mu_{3}<a_{2}<a_{4}<a_{1}$.

Figure-4. Graph of $u_{30}<u_{20}<u_{10}<u_{40}$;

$$
a_{2}<\mu_{3}<a_{1}<a_{4}
$$

Figure-5. Graph of $u_{40}<u_{20}<u_{30}<u_{10}$;
$\mu_{3}<a_{1}<a_{4}<a_{2}$.
www.arpnjournals.com

Figure-6. Graph of $u_{10}<u_{40}<u_{30}<u_{20}$; $a_{4}<\mu_{3}<a_{2}<a_{1}$.

Figure-7. Graph of $u_{20}<u_{30}<u_{10}<u_{40}$; $a_{1}<a_{4}<a_{2}<\mu_{3}$.

Figure-8. Graph of $u_{30}<u_{10}<u_{20}<u_{40}$; $\mu_{3}<a_{2}<a_{1}<a_{4}$.

Figure-9. Graph of $u_{40}<u_{20}<u_{30}<u_{10}$; $a_{4}<a_{1}<a_{2}<\mu_{3}$.

Figure-10. Graph of $u_{10}<u_{20}<u_{40}<u_{30}$;

$$
a_{4}<a_{1}<a_{2}<\mu_{3}
$$

Figure-11. Graph of $u_{20}<u_{40}<u_{30}<u_{10}$;

$$
a_{4}<a_{2}<a_{1}<\mu_{3}
$$

www.arpnjournals.com

Figure-12. Graph of $u_{30}<u_{40}<u_{10}<u_{20}$;

$$
a_{1}<a_{2}<a_{4}<\mu_{3}
$$

Figure-13. Graph of

$$
u_{40}<u_{20}<u_{10}<u_{30} ; a_{2}<a_{1}<\mu_{3}<a_{4}
$$

8. CONCLUSIONS

It is observed that the host of S_{1} washed out state is conditionally stable. The stability of the other equilibrium states were already investigated and communicated to several International Journals.

9. FUTURE WORK

Investigate some relation-chains between the species such as Prey-Predation, Neutralism, Commensalism, Mutualism, Competition and Ammensalism between four species $\left(\mathrm{S}_{1}, \mathrm{~S}_{2}, \mathrm{~S}_{3}, \mathrm{~S}_{4}\right)$ with the population relations.
S_{1} a Prey to S_{2} and Commensal to $\mathrm{S}_{3}, \mathrm{~S}_{2}$ is a Predator living on S_{1} and Commensal to $\mathrm{S}_{4}, \mathrm{~S}_{3}$ a Host to S_{1}, S_{4} a Host to S_{2} and S_{3} a Prey to S_{4}, S_{4} a Predator to S_{3}.

The present paper deals with the study on stability of the host of S_{1} washed out states only of the above problem. The numerical solutions for the growth rate equations can also computed employing Runge Kutta fourth order method.

REFERENCES

[1] Lotka A. J. 1925. Elements of Physical Biology. Williams and Wilking, Baltimore, USA.
[2] Volterra V. 1931. Leconssen La Theorie Mathematique De La Leitte Pou Lavie. GauthierVillars, Paris.
[3] May. R.M. 1973. Stability and Complexity in Model Eco-systems. Princeton University Pres, Princeton.
[4] Smith. J.M. 1974. Models in Ecology, Cambridge University Press, Cambridge, U.K.
[5] Kushing J.M. 1977. Integro-Differential Equations and Delay Models in Population Dynamics, Lecture Notes in Bio-Mathematics, Springer Verlag. p. 20.
[6] Kapur J.N. 1985. Mathematical Modeling in Biology and Medicine. Affiliated East West.
[7] Srinivas N.C. 1991. Some Mathematical Aspects of Modeling in Bio-medical Science. Ph.D Thesis. Kakatiya University, Warangal, Andhra Pradesh, India.
[8] Lakshmi Narayan K. and Pattabhiramacharyulu. N. Ch. 2007. A Prey-Predator Model with Cover for Prey and Alternate Food for the Predator and Time Delay. International Journal of Scientific Computing. 1: 7-14.
[9] Archana Reddy. R. 2010. On the stability of some Mathematical Models in BioSciences - Interacting Species. Ph.D. Thesis. J.N.T.U., India.
[10] Bhaskara Rama Sharma. B. 2010. Some Mathematical Models in Competitive Eco-Systems. Ph.D. Thesis, Dravidian University, Andhra Pradesh, India.
[11] Phani Kumar and Pattabhi Ramacharyulu N.Ch. 2010. Three Species Eco-System Consisting of a Prey, Predator and a Host Commensal to the Prey. Int. J. Open Problems Compt. Math. 3(1).
[12] Hari Prasad. B and Pattabhi Ramacharyulu. N.Ch. 2010. On the Stability of a Four Species: A Prey-Predator-Host-Commensal-Syn Eco-System-I. (Fully washed out state) International eJournal of Mathematics and Engineering. 11, 122-132.
[13] Hari Prasad. B and Pattabhi Ramacharyulu. N.Ch. 2010. On the Stability of a Four Species: A Prey-Predator-Host-Commensal-Syn Eco-System-II. (Prey and Predator washed out states). International Journal of Mathematics and Engineering. 5: 60-74.
[14] Hari Prasad. B and Pattabhi Ramacharyulu. N.Ch. 2010. On the Stability of a Four Species: A Prey-Predator-Host-Commensal-Syn Eco-System-III. (The Co-existent state). International Journal of Mathematics and Engineering. 16: 163-173.

