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ABSTRACT

Normally, production data are analyzed by decline-curve fitting. However, analogous to pressure-transient
analysis, the reciprocal flow rate and its derivative may be analyzed and interpreted for reservoir characterization purposes.
In some cases, formation linear flow regime may be seen once the radial flow regime vanished. This flow regime is very
important and can be presented in fractured well, horizontal wells and long reservoirs. Either pressure-transient analysis or
rate-transient analysis may be affected by linear flow regime. For the case of production rate at constant well-flowing
pressure, most of the analysis is conducted by decline-curve analysis and little attention has been given to rate-transient
analysis. This paper presents the governing equations used for rate-transient analysis in elongated systems using
characteristic points and “fingerprints” found on the log-log plot of reciprocal rate and reciprocal rate derivative, so
analytical expressions were developed to determine reservoir parameters, following the philosophy of the 7DS Technique.
It allows for the estimation of reservoir permeability, reservoir width and geometrical skin factors. If the test is long
enough, reservoir drainage area, well position inside the reservoir and/or reservoir length can also be determined. The

methodology was successfully verified by its application to synthetic cases.

Keywords: reservoir, transient rate, linear flow, parabolic flow, well-flowing pressure, reciprocal rate derivative, DS technique.

RESUMEN

Normalmente, los datos de produccion se
analizan por medio de ajuste de curvas de declinacion. Sin
embargo, analogo al analisis de pruebas de presion, el
reciproco del caudal y su derivada podran analizarse e
interpretarse para propositos de caracterizacion del
yacimiento. En algunos casos, el régimen de flujo lineal
dentro de la formacion podria ser visto una vez que
desaparece el flujo radial. Este régimen de flujo se
presenta en pozos fracturados, pozos horizontales y
yacimientos alargados. Ya sea el analisis transitorio de la
presion o el andlisis de datos de caudal podran estar
afectados por el régimen de flujo lineal. En el caso de
produccion a presion de fondo constante, la mayoria del
analisis se conduce mediante curvas de declinacion y muy
poca atencion ha recibido el analisis transitorio de la tasa
de flujo. En este articulo se presentan las ecuaciones
gobernantes usadas en andlisis transitorio del caudal para
sistemas alargados usando puntos caracteristicos y
“huellas digitales” hallados en el grafico logaritmico del
reciproco del caudal y su derivada de modo que se
desarrollaron expresiones analiticas para determinar los
parametros del yacimiento siguiendo la filosofia del la
técnica 7DS. Esta permite determinar la permeabilidad, el
ancho del yacimiento y los dafios geométricos. Si la
prueba es lo suficientemente larga se pueden estimar el
area de drenaje, posicion del pozo dentro del yacimiento
y/o la longitud del yacimiento. La metodologia se verificd
satisfactoriamente mediante su aplicacion a ejemplos
simulados.

PALABRAS CLAVES

Flujo lineal, flujo parabdlico, ancho del
yacimiento, presion de fondo fluyente, derivada del
reciproco del caudal.

1. INTRODUCTION

Formation linear flow in vertical wells can be due
to geological events (meandering), hydraulic fractures,
horizontal wells, faulting or sand lens. Nutakki and Mattar
(1982) presented an investigation for infinite channel
reservoirs using a vertical fracture approach with a pseudo
skin factor. Their governing pressure equation possesses a
wrong constant but they provided the first mathematical
insights to work on long and narrow reservoir systems and
provided a conventional straight-line methodology for
well test interpretation. Raghavan and Chu (1996)
introduced a method to estimate average pressure when
radial flow conditions are nonexistent for the cases of
linear and bilinear flow regimes which may be applicable
to channel reservoirs. Massonat et al., (1993) presented
flow simulations in geologically complex channelized
reservoirs. Their well test analysis was performed by non-
linear regression analysis and no interpretation technique
was presented. Wong et al., (1986) introduced new type
curves to interpret pressure transient analysis for
rectangular reservoirs. They solved some field examples
using type-curve matching and conventional techniques.
Their type curves allowed easy recognition of the late-time
behavior for all possible well positions in the mentioned
reservoir systems.

Recently, Escobar et al. (2007) introduced the
application of the 7DS technique for characterization of
long and homogeneous reservoirs, presenting new
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equations for estimation of reservoir area, reservoir width
and geometrical skin factors. Escobar er al. (2005)
introduced a new flow regime exhibiting a negative half
slope on the pressure derivative curve once dual-linear
flow has ended. Escobar and Montealegre (2006) studied
the impact of the geometric skin factors on elongated
systems. Characterization of pressure tests in elongated
systems using the conventional method was also presented
by Escobar and Montealegre (2007). Escobar (2008)
presented a summary of the advances in characterization
of long and homogenous reservoirs using pressure-

transient analysis. El-Banbi and Wattenbarger (1996) were
the first in applying rate-transient analysis to elongated
systems. An example of this behavior can be seen in the
log-log plot of the reciprocal rate versus time for a
Mexican well shown in Figure-1. Escobar et al. (2010)
presented a detailed study on the interpretation of
reciprocal rate vs. time data by the straight-line
conventional analysis method. They presented the
governing equations for heterogeneous and naturally
fractured reservoir. Actually, this study is a continuation
of it.
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Figure-1. Evidence of formation linear flow in a constant-pressure test found
in a Mexican well.

2. FORMULATION
For the mathematical development consider the
following dimensionless parameters:
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P e
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" duc,A
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2.1 Characteristics lines and points for homogeneous
reservoirs

2.1.1 Linear-flow regime

When the extreme reservoir boundaries are closed
to flow and the well is off-centered inside the reservoir,
the dominant flow regime is called linear (or single-linear)
which is identified by a half slope on the curve of the
derivative of the reciprocal rate. In Figure-2, a transition
between linear and dual-linear flow regimes is observed
since production tests take more time than pressure tests.
The governing equation for this behavior is:

|,

— =P g ©)
qp W ’
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Where s, is the geometrical skin factor caused by the
transition from dual-linear to linear flow regime. The
derivative of Eq. 9 is:

[t,*(1/q,)] :M (10)
WD

Replacing Eqs. 1, 5 and 6 into Eq. 10 and solving for the
k0.5YE product, it yields:

14.40688  [Atu

14.4068B U
Y,k = \
£ hAP[t*(1/q)], \ é c, (12)

The skin factor caused by the convergence from
linear to dual-linear flow regime is obtained by dividing
Eq. 9 by 10. After plugging the dimensionless quantities
and solving for sL:

( 1/q J 1 t,
s, = T (13)
[t*(1/q)], 9.8008Y, \ ¢ u c,

1E+04

Y,k = (1)
hAPt*(1/q)], \ @ c . . . .
L ! Where ¢, ;; any convenient during the linear flow regime
For At=1 hr and (1/¢) ; and [¢*(1/q)’] | are the reciprocal rate and its
derivative corresponding to 7.
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Figure-2. Linear flow regime for a well off-centered inside a closed boundary
rectangular reservoir.

2.1.2 Dual-linear flow regime

This flow regime is presented for all the cases of
closed, mixed and constant-pressure boundaries. It takes
place when the well is located at any appropriate distance
from the lateral boundaries. This behavior is shown in
Figure-3. The governing dimensionless reciprocal rate and
dimensionless derivative is, respectively,

L3 (14)
dp W, o

[y * (17, )] =230

° P 4w,

(15)

Once the dimensionless quantities are replaced
into Eq. 15, it yields:

5.0801B  [Atu
hAPlt*(1/ q)],, \d e, (16)

For At=1 hr

Y,k =

508018 [ u
Y,k =
T hAP[er (11 9) ], \ e, (17)

As for the case of linear flow regime, the
geometrical skin factor is obtained by dividing the
reciprocal rate equation by the derivative equation:

SDL:( l/q' _2j 1 [ktn g
[t*1/q)],, 27.7945Y, \ ¢ uc,

Where fp; s any convenient during the dual-linear flow
regime and (1/q) p; and [¢*(1/g)’] p;, are the reciprocal rate
and its derivative corresponding to #p;.
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Figure-3. Dual-linear flow regime.

2.1.3 Parabolic flow
This flow regime is depicted in Figure-4 as a
result of the combination of a constant-pressure boundary,

After the dimensionless parameters are plugged
in the former expression, we obtain:

0.5
when it is felt, and the travel of the perturbation along the k'Y, uB ¢ uc,
. . . =7705.9213
other lateral side of the reservoir. The governing 2 h[t *(1/ q)v]PB o
dimensionless reciprocal rate and reciprocal rate derivative ! 21

are: The geometrical parabolic skin factor is obtained
2 by dividing the reciprocal rate equation, Eq. 19, by the
1 . N7Z w ( X2 E —0.5 reciprocal rate derivative equation, Eq. 20:
== T p\Ap T Ip "+ Sp
4o £ o _( 1/q +2] 54.5745b, [p e,
PB = ;
\/; X 2 [t * (1 / q) ]PB YE k IPB (22)
1y *(Lgp)|=—W,\X; ) =5 | ,°° , , , ,
[ »*(/qp) ] 8 b ( b Y, b Where tpp is any convenient during the parabolic
(20) flow regime and (1/q) PB and [t*(1/q)’] PB are the
reciprocal rate and its derivative corresponding to #pp.
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Figure-4. Parabolic flow regime.
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2.1.4 Intersection points

2.1.4.1 Intersection between the pseudosteady-state line
with the dual-linear, linear and radial lines
A unit-slope line is observed on the derivative
during late times as shown in Figure-5. This line has the
following governing equation:

11
[t, *(1/q,)]= =7 toa (25)
The intercept of this line with the dual-linear,
linear and radial lines allows, respectively, estimating
reservoir drainage area, such as:

A — ktLPSSi YE2 (27)
501.2252 ¢ u c,
ktRPSSi (28)

A=—"~85
109.7355 duc,

When the radial flow is masked but the hemi-
radial flow is seen, the intersection of this line with the
pseudosteady-state line leads to obtain:

ktRPSSi
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219.4710 ¢ p c,
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Figure-5. Reciprocal rate derivative showing the late-time pseudosteady-state
period for a well at X, = 1/8, inside a closed reservoir.

2.1.4.2 Intersection of the radial with dual-linear and
linear lines

The intersection point between the infinite-acting
reciprocal rate derivative and the dual-linear and linear
lines allows obtaining expressions to estimate reservoir
width. Therefore, if Eqs. 15 and 10 are equal to 0.5, Eq.
52; the following expressions are obtained once the
dimensionless parameters are replaced:

kt,, .
Y, =0.07195 | —RPL (30)
: puc
Y. = 02040 | i 31)
: $uc

2.1.4.3 Intersection of the parabolic line with dual
linear and linear lines
These intersection points are sketched in Figure-
6, and they can be used to estimate the distance from the
well to the closer lateral boundary, b,.

b — 1 ktDLPBi (32)
T 38.9470 \\ ¢ c,

0.5
b = Yy Koy (33)
*7109.2242( guc,
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Figure-6. Derivative plot showing the parabolic flow and three intersection points.

2.1.4.4 Intersection of the negative-unit slope for mixed For the mixed-boundary case when the well is

and constant-pressure boundaries when the well is near near the constant-pressure boundary, once the parabolic

a constant-pressure boundary (dual linear, radial and flow vanishes the derivative presents a hump before

parabolic) falling down. This also has a negative-unit slope which
When both lateral boundaries are subjected to governing equation is:

constant-pressure once the dual-linear flow vanishes, the 3

. . . . . . 2
governing equation for the negative-unit slope, Figure-7, is w, s\ Xg =
governed by: [tD *(1/gqp )'] = . (XD Ip (35)
4 X, Y )
— 2(y1s E =l The intersection of the negative-unit slope lines
[ty * (1 g )] = =50 (X G . negative-unit slope lincs,
T YE Egs. 34 and 35, with the dual-linear, parabolic and radial
lines leads to find the following expressions:
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Figure-7. Derivative plot showing the steady-state period flow and three
intersection points.

Constant-pressure boundaries 1 kt o
s X, = | S p (38)
3 _ 1 ktpres | 1 36) 129.48\ ¢ u c,
E 9 3
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X} = o ] ok 6D (e )
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T 9.02%10° (g uc, | b
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2
X3 = 1 ktRSSi L; (40)
" 466%10" \gpuc, ) b
X3 — 1 (ktPBSSi j (41)
E x
3913.6439 ( ¢ u c,

2.1.5 Maximum points

Figure-8 shows the maximum points developed
when the well is off-centered and near constant-pressure
boundaries.
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Figure-8. Derivative plot showing the parabolic flow, steady-state period flow,
maximum points and intersection points.

These maximum points permit to determine
reservoir area, A, reservoir length, Xz, and well location,
b,. The governing equations are:

First maximum point (Change from dual-linear to

parabolic)
57
[tD *(1/qp )']xl :ZW_tgjl (42)
D
Xe S| Azl (43)
Y. 4\w,X,
X, |Jz
= X2 |[t, *(1/q,) 44
T [XJ[D W/ q,)], (44)

Second maximum point (End of parabolic and start of

steady-state)
NTT

[tD *(1/qD)']x2 = W (Xzz))tg}fz (45)
D

X T

£ =[ }gjz (46)

Y, |2X,

X, |z

Y, {2){5

(47

}[tD *(1/9,))

After replacing the dimensionless parameters
given by Eqgs. 1, 5 and 6 into Eqs. 43 and 44, two
equations for well position are obtained:

( 1 j kt,,
b = (48)
55.58 duc,
khY, AP|t*(1/q)'
b = E [ (1/q) ]x1 (49)

* 159.327uB

Replacing the dimensionless parameters given by
Egs. 6 and 7 into Egs. 48 and 49, two new equations are
obtained for reservoir length estimation:

2
X, =637.3 be ( KB j ! (50)
Y, \AaPkh )| [t*(1/ )],
1 kt °
X, =—— x2 (51)
392\ g uc,

Finally, during radial flow the reciprocal rate
derivative is defined by:
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[1,*(1/9,)]=0.5
Replacing Eq. 4 into Eq. 52 will result:

_ 70.6 uB
hAP[t*(1/ q)']

(52)

(53)

where (1*1/g’), is the reciprocal rate derivative at any
convenient time, f,, during radial flow. The mechanical
skin factor is obtained by dividing the reciprocal rate
equation during radial flow assuming its behavior is the
same as the pressure equation presented by Tiab (1993),
therefore:

5,=0.5 (l/q’)’ —ln( K,
[1*(1/9)1], uc, Y

For a heterogeneous reservoir:

s =05 —14) o f K L1 g5 (sab)
' [f*(l/Q)']r ducY,’ o

2.2 Characteristics lines and points for heterogeneous
reservoirs

> ] +743 | (54.a)

2.2.1 Dual-linear flow regime

The found governing dimensionless reciprocal
rate and reciprocal rate derivative equations for this flow
regime are given by:

0 Jriy

9\t
t,*(1/ T==21—£
[D( QD)] 8WD /—w

where sp;, ig Eq. 55 is the geometrical skin factor due to
the convergence from radial to dual-linear flow.
Substituting Egs. 1, 4, and 6 into Eq. 56 and solving for
the reservoir width;

4.1621158

(56)

pALp,

= 57
" hAP[t*(1/q)'], \ kécw GD
For At=1 hr
y __ 41621158 U )

" OnAP[t*(1/ q)'],, \ kéco

As for the homogeneous case, the equation for
the geometrical skin factor is:

(1/q)

5, = 5 1 kp (59
[t*1/q)],, 54.738732 Y, \| duc, o

2.2.2 Maximum and minimum points

Figure-9 presents the dimensionless rate
derivative behavior against the dimensionless time for
several values of 4 and w. Notice in that plot the existence
of a characteristic maximum point once the dual-linear
flow regime is interrupted by the transition period caused
from heterogeneous to homogeneous behavior.

l/qu—\/_ +5,, (55)
4 oW,
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Figure-9. Dimensionless reciprocal rate derivative behavior vs. time for
1x10°<2<9x10%and 0.01 <w < 0.1.
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A unique maximum value of the reciprocal rate
derivative is obtained when this is multiplied by the square
root of the interporosity flow parameter as shown in
Figure-10. The governing equation for this maximum
point is:

]
[1,*(1/q)'],.c 2% =0.0003876 60)

Replacing Eq. 4 into Eq. 60 and solving for the
interporosity flow parameter,

a+b1n(tD *1/q, ’)min +
1)

¢(in(1,*1/q,"),, ) +d(In(t,*1/q,"),, ) +elna

2
| 00547291208 o)
KhAP[t*(1/q)']

In order to derive a correlation of @ as a function
of 1/qp, (tp*1/qp’) and ¢, for a given value of 1 a plot of
the dimensionless reciprocal rate and its derivative against
time was built, see Figure-12, and different derivative
minimum values were read from that plot to give the
following relationship which has a correlation coefficient
0f 0.9998:

Where;

1+ fIn(1,%1/q,"),, +g(In(t,*1/q,"),, ) +h(In(t,*1/q,"),, ) +ilnA

(62)

a=-0.15407418
o =4.2153304x10-4
g=-0072289158

=-0.0038050889
e =-0.0079273861
h=0.023141728

< =0.0022251207
f=0.2804578
§=0.07200547
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Figure-10. Effect of the square root of A on the maximum point of the
reciprocal rate derivative.

2.2.3 Intersection point between the pseudo steady-
state and dual-linear lines
Equating Eq. 25 with 56, then, plugging the
dimensionless quantities and solving for reservoir drainage
area, it yields:

2
Y E a)ktDLPSSi
Puc,

Being tp;pss; the intersection time between the

dual-linear flow regime and the pseudosteady-state period
lines.

A=0.140998 (63)

2.2.4 Intersection point between the radial and dual-
linear lines

According to Eq. 52, the infinite-acting radial line
has a dimensionless value of 0.5 during radial flow
regime. If this value is set equal to the reciprocal rate
derivative of the dual-linear equation extrapolated to the
radial flow value, it allows to obtain an expression to find
reservoir width once the dimensionless parameters have
been replaced,

Y, = 0.0648256_ | no (64)

Puc,o
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Being tgp;; the intersection time between the
radial and dual-linear flow regime lines,

2

.2.5 Intersection point between the radial and

Pseudosteady-state lines
Again, Eq. 28 is obtained from manipulation of

Eq. 52 and 25.
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tp
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Figure-11. Effect of @ on the minimum point of the reciprocal rate
derivative for A = 1x10™®.

2.2.6 Linear flow regime occurs after the transition
period
When the linear flow occurs after the transition
period, the linear behavior corresponds to a homogeneous
reservoir as depicted in Figure-12. For this case the
governing equation is Eq. 9, therefore, expressions derived
from Eq. 9 also corresponds to this analysis.

2.2.7 Linear flow regime occurs before the transition
period
As shown in Figure-13, the linear flow regime is
still affected by the heterogeneous behavior, then, the
reciprocal rate and its derivative are defined here as:

1 21471,

— =5
qD 5 WD \/5 t (65)
21 7t
ltp * 1/ g )] =
10 W, N (66)
As stated before, Eqs. 64 and 65 allow obtaining:
42.480763 B My, ©7)

EThAP[t*(1/ )], \ ke

B a+bln/1+cln/12+d(tD*1/qD')min +e(l‘D*1/qD')fm,n +f(tD*1/qD')min

1/¢q 1
s, = ” ' -2
[t*(1/9)'], 29.32416 Y,

[k,
68
Puc,o “

As described by Figure-14, there exists a direct
relationship between the square root of the interporosity
flow parameter multiplied by the reciprocal rate derivative
against the maximum point. This allows obtaining the
following expression:

JAlt, *(1/q,)]... =0.000746

Solving for A from Eq. 68 once the respective
dimensionless group is replaced, it yields:

(68)

2

| 01053358 )

khAP[t"‘(l/q)']max

From Figure-15, readings of the minimum point
for different values of the interporosity flow parameter and
the dimensionless storativity coefficient were correlated to
obtain an expression which has a correlation coefficient of

0.99987.

3
(70)

I+ginA+h(t,*1/q,")

ity 1/ 4y, + 7 (1011 0),5,

3
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a=0.14646803 b
o =-0.00026701181 e
G =0.049793248 h
§=8.9505062x10%

0013242717 ¢ =0.00030434555 Finally, the unit-slope line during the transition

24497641x108  £=-9.2550594x109 ; — ;
. period was correlated (r* = 0.9923) to obey the following
= & . .
0.0021617165 | =-8.3473003x10 governing equation:

2 3 . . 2
A=a+blnt,, +d(nt, )" + fInt,,  +g(nt, ) +ilnt,  + j(nz,, ) Iny (71)
a=0.0000172772864496202 b= -3 671446510044302x 1008 estimated by the equation introduced by Tiab and Escobar
o= 2274591072283 141007 f=3.53205100139827x 1007 (2003):
g=-4.737297387478569:x10-00 {=-9.98959453867718x 1002 3792( ) 2 1
j= 113570589963 17551002 C r
o A PRSI T PN S (72)
where usi is the intercept of the unit-slope line during the kAt w

transition period with the radial flow line. A may also be

1E05
H Off-centered well - Closed boundary
16404 = o
1E403 T — - ==z5 ‘,‘\O\N ~
| Transition period T\;\(\ea 7
= - ”
& v
S 1802
b ‘\o\N
[a) /-
o o
= ak\\‘\ o
\S T by ™. /
1E01 9 =
/ 1 |
- . — trpssi |
160 Radial flow
[
1E0L - ‘ . . I . . .
1E03 1E04  1E05 1E06 1E07 1E08  1E09 1EH0 181 1E12 1E43

tp

Figure-12. Linear flow regime after the transition period.

1.E-01 H
E Off-centered well - Closed boundary Pseudosteady state |/
B ° e
LE02 = =;
m
o . g Y Single-Linear flow
= 1E03 | Single-Linear flow L;;; ! :
U'D -
2 5
= - D
b ' *
[a]
= | I — -
LE-04 | Transition period |
/
reos | [Radial flow
1.E-06
1.E+03 1.E+04 1.E+05 1.E+06 1.E+07 1.E+08 1.E+09 1.E+10 1E+11 1.E+12

tp

Figure-13. Linear flow regime before the transition period.
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Figure-14. Relationship between the square root of the interporosity flow
parameter times the reciprocal rate derivative and the maximum point.
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Figure-15. Effect of wand A on the minimum point.

3. EXAMPLES

Examples 1 to 5 were simulated with the input data
of Table-1. The results along with the used equations are
given in Table-2.

3.1 Synthetic example 1 - homogeneous reservoir

Both lateral boundaries are subjected to constant
pressure and the well is off-centered. Reciprocal rate and
reciprocal rate derivative are given in Figure-16. From this
plot, the following information was read:

(F14),= 6 945100 DISTE o =5.0357 hr (" 143") o = 2 43105 DISTE
lape = 05035 hr foves = 16 hr izag = 60O fr
boe st = 25 1r fasen = 165 hr

The estimated parameters along with the number
of the used equation are reported in Table-2.

3.2 Synthetic example 2 - homogeneous reservoir

In this case, both lateral boundaries are closed to
flow and the well is off-centered. Then, pseudosteady-state
is developed. The reciprocal rate and reciprocal rate
derivative are given in Figure-17 from which the below
data was obtained:

(f144"), =6 93100 DISTEB o = 10.04 hr foumsm = 165 fr
(13 ) = 3627106 DISTEB £ = 400 hr fpas = 1500 hr
(P14, = 7.04x 104 DISTB  gass = 7.5 hr faoes= 0.4 hr
fa; = 0.035 hr

As for the former example, the results of
estimated parameters along with the number of used
equation are reported in Table-2.
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Table-1. Input data for the examples.

ISSN 1819-6608

i@

Parameter Synthetic example Field
1 2 3 4 5 example
AP, psi 5000 5000 5000 2500 5000 2800
M, Cp 2 1.52
@, % 20 13
B, 1b/STB 1.2 1.04
¢, psi’ 1x10° 4.34x10°
s ft 0.5 0.3
h, ft 100
X, ft 4000 16000 16000 20000 680000
Y, ft 500 500 500 1000 1000
b, ft 1000 2000
k, md 50 65
Y 5x10™ 4x10™ 4x10°
w 0.02 0.1 0.21
S, -2.3
Table-2. Results for synthetic examples.
Synthetic example
o z s ; s
Eq. Value Eq. Value Eq. Value Eq. Value Eq. Value
k, md 53 49.83 53 48.9 48.97 53 53 52.14 53 48.8
Y, ft 31 564.1 11 482.6 58 979.2 67 1048.5
Y, ft 16 509.5 16 4442 16 4593
Y, ft 30 503.1
Yg, ft 31 422
b, ft 32 1148.3 48 1427.4
b,, ft 33 1119.7 49 2334
Xg, ft 36 4678.6 36 15102.4
X, ft 37 3939.1 37 14467.5
X, ft 50 15737.9
Sy 54.a 0.19 54.a 0.18 54.a 1.35 54.b 2.2
Spr 18 493 18 4.54 18 4.07 59 6.74
S 13 -23.5
Spp 21 0.0133 21 0.013
A, 26 206.5 63 402.8 28 10251.6
4, 27 219.6
4, 28 191.8
W 62 0.0214 62 0.0996
2 61 | 4.64x10® | 61 | 4.14x10™"
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Figure-16. Reciprocal rate and reciprocal rate derivative for synthetic example 1.
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Figure-17. Reciprocal rate and reciprocal rate derivative for synthetic example 2.

3.3 Synthetic example 3 - homogeneous reservoir ({147, = 130x10°  § = 02523 hr (" 1/G " = 3.16X10°
Figure-18 presents the data of reciprocal rate and (14 J)r 112104 (1o = 1.55x105 fopss = 6000 hr

. o ) f.=003 hr (147 Tmax = 4.68x105  fape = 0.035 hr

its derivative for a well near a constant-pressure boundary (1o = 8195105

and the other lateral boundary is closed to flow. From this

plot the below information was obtained: The estimated parameters are also reported in

Table-2 along with the number of the used equation.

(F1/9), = 6.92x10%  {p = 2004 hr (#1453 )0 = 537105
fane; = 0.35 hr (10" = 714105 £y = 5035 hr . .
fru ez = 50 4 hr fars = 6004 8 hr i ss1; = 503 hr 3.5 Synthetic example 5 - heterogeneous reservoir
frss = 17000 hr [F14" e = 3. 11105 fxe = 3004.74 hr Figure-20 contains data of the reciprocal rate and
Again, the results for this example and the the reciprocal rate derivative against time for an elongated
number of used equation are reported in Table-2. naturally reservoir in which the linear flow regime was
interrupted by the transition period. The following
3.4 Synthetic example 4-heterogeneous reservoir readings were obtained from Figure-20.
In this case, both lateral boundaries are closed to
flow. In this case the dual-linear flow regime is interrupted (1737} = 6.95x10 fo =200 hr (f1/9') = 8.24x104
by the heterogeneity. . Therefore, .pseudosteady—state is gi 3 0?58?13;105 ((tlfﬁ,a%r:ﬂ;ff’ﬂg&q 03 Efﬁggiiozzogroooo hr
expected to develop if the test is long enough. The {E14q') min = 9.1110-4

reciprocal rate and reciprocal rate derivative are given in
Figure-19 from which the below data was obtained:
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Figure-18. Reciprocal rate and reciprocal rate derivative for synthetic example 3.
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Figure-19. Reciprocal rate and reciprocal rate derivative for synthetic example 4.
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Figure-20. Reciprocal rate and reciprocal rate derivative for synthetic example 5.
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3.6 Field example-heterogeneous reservoir

Marhaendrajana et al. (2004) presented a field
case for a naturally fractured system which input
information is given in Table-1 and reciprocal rate and its
derivative vs. time is given in the Figure-21. The
following data was obtained from Figure-21.

frows = 0.032 hr (11q") 00 = 2109 hr fp = 12.66 hr
fom= 00105 ir fya= 393 fr

The first step, for this exercise is to estimate @
using Eq. 70. This value is then used used in Eqs. 57 and
64 to estimate reservoir width and the dual-linear skin
factors, Eq. 59. Because of the noise in the data is not
possible to obtain a clear value of the maximum point on
the pressure derivative, then,A is estimated using the

minimum point with Eq. 72. It can be seen that the data
is so noisy and the radial flow regime is unclear. Using
the permeability, given in Table-1, the derivative during
radial flow regime, (*1/q°) ,, can be estimated from Eq.
52:

70.6uB _ 70.6(1.52)(1.04)

= =6.13x10°md
hAPk  (100)(2800)(65)

[1*(1/ )],

With this value and the first (1/¢g) value is
possible to estimate the mechanical skin factor with Eq.
54.b. This problem was also solved by Escobar et al.
(2010). All the values are reported in Table-3.

LE+00
° *
1E-01 R —
o0
m S
& LE02 [Dual-linear flow] L F
= I he)
S; |Wayo=as1xa0 | | GB
o (&}
P o~
= (1/q)r=8.67x10 " ‘\ PP A
T §
— 1E04 1 R M ? \
S * | (Uq)o= 252x10*D/STB | | | Transition period]
toL= 12.66 hrs i
[ = I \
1E-051 y ’ oy = 0,032 s ‘ [ (Uq)=6.13x10° DISTB ‘
tr=1.25 hr o
/[h;‘ i = 39.3 r |
106 | Radial flow | ‘
1 10 100 1000
t, hrs
Figure-21. Reciprocal rate and reciprocal rate derivative for the field case.
Table-3. Results for field example.
Escobar et al. Marhaendrajana et al. .
Parameter (2010) (2004) This work
A 1.94x107 4x10°* 8.28x10™
) 0.06 0.2 0.018
S, N.C. 2.2 -0.46
SprL 72 N.C. -5.85
Y, ft 122.7 N.C. 138.4
Y, ft N.C. N.C. 133.03

4. ANALYSIS OF RESULTS

The simulated examples indicate that the
proposed equations provide results which are in good
agreement with the input data. For the actual field case of
a heterogeneous reservoir, the reservoir width agrees
closely with the results from Escobar et al. (2010). The

interporosity flow parameters matches the values from the
three sources, but the dimensionless storativity coefficient
do not agree with the result from Marhaendrajana et al.
(2004) but the difference is acceptable and are due to the
noisy data.
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Nomenclature

B Oil formation factor, rb/STB

b Intercept

b, | Well position inside the reservoir

¢ Total system compressibility, 1/psi

h Formation thickness, ft

k Permeability, md

m Slope

P; | Initial reservoir pressure, psi

P,, | Well-flowing pressure, psi

P Pressure, psi

s Skin factor

Sy Mechanical skin factor

t Time, hr

Wp | Dimensionless reservoir width

Xp | Dimensionless well position along the x-axis

Xg Reservoir length, ft

Yp | Dimensionless well position along the y-axis

Y: | Reservoir width, ft

1/q | Reciprocal flow rate, D/STB

1/qp | Dimensionless reciprocal flow rate

Greek
w Dimensionless storativity coefficient, (gc,)/[(dc)mt (o)
A Change, drop
¢ Porosity
A Interporosity flow parameter
) Densidad, Ibm/ft’
7 Qil viscosity, cp
Suffices
1, 1r, er | Primer régimen de flujo o temprano
D Dimensionless
DL Dual linear, dimensionless based on width
DLPBi | Dual linear and parabolic intercept
DLPSSi | Dual linear and pseudosteady-state intercept
DLSSi Dual linear and steady-state intercept
L Linear
L1 Lineal temprano a 1 hr
LPSSi Linear and pseudosteady-state intercept
max Maximum
min Minimum
PB Parabolic
PBSSi Parabolic and steady-state intercept
RDLi Radial and dual linear intercept
RLi Radial and linear intercept
RPBi Radial and parabolic intercept
RPSSi Radial and pseudosteady-state intercept
RSSi Radial and steady-state intercept
usi Intercept of the radial line with the int-slope line during
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the transition period

xl F irgt maximum between dual-linear and parabolic flow
regimes

0 Second maximum between end of parabolic and start of
steady-state

w Well

5. CONCLUSIONS

The TDS methodology for rate transient analysis
was complemented with new equations for long and
narrow homogeneous and naturally fractured reservoirs.
The equations were successfully applied to synthetic
examples. A field example for a heterogeneous reservoir
was presented to demonstrate the application of the
proposed solution.
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