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ABSTRACT 

Normally, production data are analyzed by decline-curve fitting. However, analogous to pressure-transient 
analysis, the reciprocal flow rate and its derivative may be analyzed and interpreted for reservoir characterization purposes. 
In some cases, formation linear flow regime may be seen once the radial flow regime vanished. This flow regime is very 
important and can be presented in fractured well, horizontal wells and long reservoirs. Either pressure-transient analysis or 
rate-transient analysis may be affected by linear flow regime. For the case of production rate at constant well-flowing 
pressure, most of the analysis is conducted by decline-curve analysis and little attention has been given to rate-transient 
analysis. This paper presents the governing equations used for rate-transient analysis in elongated systems using 
characteristic points and “fingerprints” found on the log-log plot of reciprocal rate and reciprocal rate derivative, so 
analytical expressions were developed to determine reservoir parameters, following the philosophy of the TDS Technique. 
It allows for the estimation of reservoir permeability, reservoir width and geometrical skin factors. If the test is long 
enough, reservoir drainage area, well position inside the reservoir and/or reservoir length can also be determined. The 
methodology was successfully verified by its application to synthetic cases. 
 
Keywords: reservoir, transient rate, linear flow, parabolic flow, well-flowing pressure, reciprocal rate derivative, TDS technique. 
 
RESUMEN 

Normalmente, los datos de producción se 
analizan por medio de ajuste de curvas de declinación. Sin 
embargo, análogo al análisis de pruebas de presión, el 
recíproco del caudal y su derivada podrán analizarse e 
interpretarse para propósitos de caracterización del 
yacimiento. En algunos casos, el régimen de flujo lineal 
dentro de la formación podría ser visto una vez que 
desaparece el flujo radial. Este régimen de flujo se 
presenta en pozos fracturados, pozos horizontales y 
yacimientos alargados. Ya sea el análisis transitorio de la 
presión o el análisis de datos de caudal podrán estar 
afectados por el régimen de flujo lineal. En el caso de 
producción a presión de fondo constante, la mayoría del 
análisis se conduce mediante curvas de declinación y muy 
poca atención ha recibido el análisis transitorio de la tasa 
de flujo. En este artículo se presentan las ecuaciones 
gobernantes usadas en análisis transitorio del caudal para 
sistemas alargados usando puntos característicos y 
“huellas digitales” hallados en el gráfico logarítmico del 
recíproco del caudal y su derivada de modo que se 
desarrollaron expresiones analíticas para determinar los 
parámetros del yacimiento siguiendo la filosofía del la 
técnica TDS. Esta permite determinar la permeabilidad, el 
ancho del yacimiento y los daños geométricos. Si la 
prueba es lo suficientemente larga se pueden estimar el 
área de drenaje, posición del pozo dentro del yacimiento 
y/o la longitud del yacimiento. La metodología se verificó 
satisfactoriamente mediante su aplicación a ejemplos 
simulados. 
 
 
 

PALABRAS CLAVES 
Flujo lineal, flujo parabólico, ancho del 

yacimiento, presión de fondo fluyente, derivada del 
recíproco del caudal. 
 
1. INTRODUCTION 

Formation linear flow in vertical wells can be due 
to geological events (meandering), hydraulic fractures, 
horizontal wells, faulting or sand lens. Nutakki and Mattar 
(1982) presented an investigation for infinite channel 
reservoirs using a vertical fracture approach with a pseudo 
skin factor. Their governing pressure equation possesses a 
wrong constant but they provided the first mathematical 
insights to work on long and narrow reservoir systems and 
provided a conventional straight-line methodology for 
well test interpretation. Raghavan and Chu (1996) 
introduced a method to estimate average pressure when 
radial flow conditions are nonexistent for the cases of 
linear and bilinear flow regimes which may be applicable 
to channel reservoirs. Massonat et al., (1993) presented 
flow simulations in geologically complex channelized 
reservoirs. Their well test analysis was performed by non-
linear regression analysis and no interpretation technique 
was presented. Wong et al., (1986) introduced new type 
curves to interpret pressure transient analysis for 
rectangular reservoirs. They solved some field examples 
using type-curve matching and conventional techniques. 
Their type curves allowed easy recognition of the late-time 
behavior for all possible well positions in the mentioned 
reservoir systems. 

Recently, Escobar et al. (2007) introduced the 
application of the TDS technique for characterization of 
long and homogeneous reservoirs, presenting new 
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equations for estimation of reservoir area, reservoir width 
and geometrical skin factors. Escobar et al. (2005) 
introduced a new flow regime exhibiting a negative half 
slope on the pressure derivative curve once dual-linear 
flow has ended. Escobar and Montealegre (2006) studied 
the impact of the geometric skin factors on elongated 
systems. Characterization of pressure tests in elongated 
systems using the conventional method was also presented 
by Escobar and Montealegre (2007). Escobar (2008) 
presented a summary of the advances in characterization 
of long and homogenous reservoirs using pressure-

transient analysis. El-Banbi and Wattenbarger (1996) were 
the first in applying rate-transient analysis to elongated 
systems. An example of this behavior can be seen in the 
log-log plot of the reciprocal rate versus time for a 
Mexican well shown in Figure-1. Escobar et al. (2010) 
presented a detailed study on the interpretation of 
reciprocal rate vs. time data by the straight-line 
conventional analysis method. They presented the 
governing equations for heterogeneous and naturally 
fractured reservoir. Actually, this study is a continuation 
of it. 
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Figure-1. Evidence of formation linear flow in a constant-pressure test found 
in a Mexican well. 

2. FORMULATION 
For the mathematical development consider the 

following dimensionless parameters: 
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2.1 Characteristics lines and points for homogeneous 
       reservoirs 
 
2.1.1 Linear-flow regime  

When the extreme reservoir boundaries are closed 
to flow and the well is off-centered inside the reservoir, 
the dominant flow regime is called linear (or single-linear) 
which is identified by a half slope on the curve of the 
derivative of the reciprocal rate. In Figure-2, a transition 
between linear and dual-linear flow regimes is observed 
since production tests take more time than pressure tests. 
The governing equation for this behavior is: 
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Where sL is the geometrical skin factor caused by the 
transition from dual-linear to linear flow regime. The 
derivative of Eq. 9 is: 
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Replacing Eqs. 1, 5 and 6 into Eq. 10 and solving for the 
k0.5YE product, it yields: 
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For ∆t = 1 hr      
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The skin factor caused by the convergence from 
linear to dual-linear flow regime is obtained by dividing 
Eq. 9 by 10. After plugging the dimensionless quantities 
and solving for sL: 
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Where tL is any convenient during the linear flow regime 
and (1/q) L and [t*(1/q)’] L are the reciprocal rate and its 
derivative corresponding to tL. 
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Figure-2. Linear flow regime for a well off-centered inside a closed boundary 
rectangular reservoir. 

 
2.1.2 Dual-linear flow regime 

This flow regime is presented for all the cases of 
closed, mixed and constant-pressure boundaries. It takes 
place when the well is located at any appropriate distance 
from the lateral boundaries. This behavior is shown in 
Figure-3. The governing dimensionless reciprocal rate and 
dimensionless derivative is, respectively, 
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Once the dimensionless quantities are replaced 
into Eq. 15, it yields: 
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For ∆t = 1 hr  
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As for the case of linear flow regime, the 
geometrical skin factor is obtained by dividing the 
reciprocal rate equation by the derivative equation: 
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Where tDL is any convenient during the dual-linear flow 
regime and (1/q) DL and [t*(1/q)’] DL are the reciprocal rate 
and its derivative corresponding to tDL. 
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Figure-3. Dual-linear flow regime. 
 
2.1.3 Parabolic flow 

This flow regime is depicted in Figure-4 as a 
result of the combination of a constant-pressure boundary, 
when it is felt, and the travel of the perturbation along the 
other lateral side of the reservoir. The governing 
dimensionless reciprocal rate and reciprocal rate derivative 
are: 
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After the dimensionless parameters are plugged 
in the former expression, we obtain: 
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The geometrical parabolic skin factor is obtained 
by dividing the reciprocal rate equation, Eq. 19, by the 
reciprocal rate derivative equation, Eq. 20: 
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Where tPB is any convenient during the parabolic 
flow regime and (1/q) PB and [t*(1/q)’] PB are the 
reciprocal rate and its derivative corresponding to tPB. 
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Figure-4. Parabolic flow regime. 
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2.1.4 Intersection points 
 

2.1.4.1 Intersection between the pseudosteady-state line 
            with the dual-linear, linear and radial lines 

A unit-slope line is observed on the derivative 
during late times as shown in Figure-5. This line has the 
following governing equation: 
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The intercept of this line with the dual-linear, 
linear and radial lines allows, respectively, estimating 
reservoir drainage area, such as: 
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When the radial flow is masked but the hemi-
radial flow is seen, the intersection of this line with the 
pseudosteady-state line leads to obtain: 
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Figure-5. Reciprocal rate derivative showing the late-time pseudosteady-state 
period for a well at XD = 1/8, inside a closed reservoir. 

 
2.1.4.2 Intersection of the radial with dual-linear and  
            linear lines 

The intersection point between the infinite-acting 
reciprocal rate derivative and the dual-linear and linear 
lines allows obtaining expressions to estimate reservoir 
width. Therefore, if Eqs. 15 and 10 are equal to 0.5, Eq. 
52; the following expressions are obtained once the 
dimensionless parameters are replaced: 
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2.1.4.3 Intersection of the parabolic line with dual 
            linear and linear lines 

These intersection points are sketched in Figure-
6, and they can be used to estimate the distance from the 
well to the closer lateral boundary, bx. 
 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

t

DLPBi
x c

kt
b

µφ9470.38
1

                                      (32) 

 

0.5

109.2242
iRPBE

x
t

ktYb
cφµ

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
                                    (33) 

 

 



                                         VOL. 7, NO. 3, MARCH 2012                                                                                                                      ISSN 1819-6608            

ARPN Journal of Engineering and Applied Sciences 
 

©2006-2012 Asian Research Publishing Network (ARPN). All rights reserved. 

 
www.arpnjournals.com 

 

 
358

1.E-02

1.E-01

1.E+00

1.E+01

1.E+02

1.E+03 1.E+04 1.E+05 1.E+06 1.E+07 1.E+08 1.E+09 1.E+10 1.E+11 1.E+12

tRPBi

tDLPBi

Dual-lin
ear fl

ow
Parabolic flow

t  D  

Radial flow

Well 1/4: Constant -pressure boundary 

1/4 X  /Y  = 32E      E

[t  
 * (

1/
q 

 )'
]

D
   

   
   

 D
 

t RDLi

 
 

Figure-6. Derivative plot showing the parabolic flow and three intersection points.
  

2.1.4.4 Intersection of the negative-unit slope for mixed 
and constant-pressure boundaries when the well is near 
a constant-pressure boundary (dual linear, radial and 
parabolic) 

When both lateral boundaries are subjected to 
constant-pressure once the dual-linear flow vanishes, the 
governing equation for the negative-unit slope, Figure-7, is 
governed by: 
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For the mixed-boundary case when the well is 
near the constant-pressure boundary, once the parabolic 
flow vanishes the derivative presents a hump before 
falling down. This also has a negative-unit slope which 
governing equation is: 
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The intersection of the negative-unit slope lines, 
Eqs. 34 and 35, with the dual-linear, parabolic and radial 
lines leads to find the following expressions: 
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Figure-7. Derivative plot showing the steady-state period flow and three 
intersection points.

 Constant-pressure boundaries 
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2.1.5 Maximum points 
Figure-8 shows the maximum points developed 

when the well is off-centered and near constant-pressure 
boundaries.
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Figure-8. Derivative plot showing the parabolic flow, steady-state period flow, 
maximum points and intersection points.

  
These maximum points permit to determine 

reservoir area, A, reservoir length, XE, and well location, 
bx. The governing equations are: 
 

First maximum point (Change from dual-linear to 
parabolic) 
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Second maximum point (End of parabolic and start of 
steady-state) 
 

[ ] ( ) 5.0
2

2
2)'/1(* DxD

D
xDD tX

W
qt π

=                         (45) 

 

5.0
22 Dx

DE

E t
XY

X
⎥
⎦

⎤
⎢
⎣

⎡
=

π
                                        (46) 

 

[ ] 22 )'/1(*
2 xDD

DE

E qt
XY

X
⎥
⎦

⎤
⎢
⎣

⎡
=

π
                            (47) 

 

After replacing the dimensionless parameters 
given by Eqs. 1, 5 and 6 into Eqs. 43 and 44, two 
equations for well position are obtained: 
 

11
55.58

x
x

t

ktb
cφµ

⎛ ⎞⎛ ⎞= ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠

      (48) 

 

[ ] 1
* (1 / ) '

159.327
E x

x

khY P t q
b

Bµ
∆

=                                (49) 

 

Replacing the dimensionless parameters given by 
Eqs. 6 and 7 into Eqs. 48 and 49, two new equations are 
obtained for reservoir length estimation: 
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Finally, during radial flow the reciprocal rate 
derivative is defined by: 
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[ ]*(1/ ) ' 0.5D Dt q =                                                    (52) 
 

Replacing Eq. 4 into Eq. 52 will result: 
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where (t*1/q’)r is the reciprocal rate derivative at any 
convenient time, tr, during radial flow. The mechanical 
skin factor is obtained by dividing the reciprocal rate 
equation during radial flow assuming its behavior is the 
same as the pressure equation presented by Tiab (1993), 
therefore: 
 

[ ] 2

(1/ )0.5 ln 7.43
*(1/ ) '

r r
r

t Er

q kts
t q c Yφµ

⎛ ⎞⎛ ⎞
= − +⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠     

(54.a) 

 

For a heterogeneous reservoir: 
 

[ ] 2

(1/ ) 10.5 ln 7.43
*(1/ ) '

r r
r

t Er

q kts
t q c Yφµ ω

⎛ ⎞⎛ ⎞
= − +⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠      

(54.b) 

 
2.2 Characteristics lines and points for heterogeneous 
      reservoirs 
 
2.2.1 Dual-linear flow regime 

The found governing dimensionless reciprocal 
rate and reciprocal rate derivative equations for this flow 
regime are given by: 
 

91/
4

D
D DL

D

t
q s

W
π
ω

= +                   (55) 

 

[ ] 9*(1/ ) '
8

D
D D

D

t
t q

W
π

ω
=                     (56) 

 

where sDL ig Eq. 55 is the geometrical skin factor due to 
the convergence from radial to dual-linear flow. 
Substituting Eqs. 1, 4, and 6 into Eq. 56 and solving for 
the reservoir width; 

[ ]
4.162115

*(1/ ) '
DL

E
tL

B tY
h P t q k c

µ
φ ω
∆

=
∆

                (57) 

 

For ∆t = 1 hr 
 

[ ]
4.162115

*(1/ ) 'E
tDL

BY
h P t q k c

µ
φ ω

=
∆

                           (58) 

 

As for the homogeneous case, the equation for 
the geometrical skin factor is: 
 

[ ] ωφµ t

DL

EDL
DL c

kt
Yqt

qs
738732.54

12
)'/1(*
)/1(

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=   (59) 

 
2.2.2 Maximum and minimum points 

Figure-9 presents the dimensionless rate 
derivative behavior against the dimensionless time for 
several values of λ and ω. Notice in that plot the existence 
of a characteristic maximum point once the dual-linear 
flow regime is interrupted by the transition period caused 
from heterogeneous to homogeneous behavior. 
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Figure-9. Dimensionless reciprocal rate derivative behavior vs. time for 
1x10-8 ≤ λ ≤ 9x10-8 and 0.01  ≤ ω ≤  0.1. 
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A unique maximum value of the reciprocal rate 
derivative is obtained when this is multiplied by the square 
root of the interporosity flow parameter as shown in 
Figure-10. The governing equation for this maximum 
point is: 
 

[ ] 1
2

max
*(1/ ) ' 0.0003876D Dt q λ =                 (60) 

 

Replacing Eq. 4 into Eq. 60 and solving for the 
interporosity flow parameter, 
 

[ ]

2

max

0.05472912
*(1/ ) '

B
kh P t q

µλ
⎡ ⎤

= ⎢ ⎥
∆⎢ ⎥⎣ ⎦

                 (61) 

 

In order to derive a correlation of ω as a function 
of 1/qD, (tD*1/qD’) and tD for a given value of λ a plot of 
the dimensionless reciprocal rate and its derivative against 
time was built, see Figure-12, and different derivative 
minimum values were read from that plot to give the 
following relationship which has a correlation coefficient 
of 0.9998: 

 

( ) ( )( ) ( )( )
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2 3

min min min
2 3
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D D D D D D

D D D D D D

a b t q c t q d t q e

f t q g t q h t q i

λ
ω

λ

+ + + +
=

+ + + +
                                           (62) 

 
Where; 
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Figure-10. Effect of the square root of λ on the maximum point of the 
reciprocal rate derivative. 

 
2.2.3 Intersection point between the pseudo steady- 
         state and dual-linear lines 

Equating Eq. 25 with 56, then, plugging the 
dimensionless quantities and solving for reservoir drainage 
area, it yields: 
 

2

0.140998 E DLPSSi

t

Y ktA
c

ω
φµ

=                                (63) 

Being tDLPSSi the intersection time between the 
dual-linear flow regime and the pseudosteady-state period 
lines. 
 
 
 

2.2.4 Intersection point between the radial and dual- 
         linear lines  

According to Eq. 52, the infinite-acting radial line 
has a dimensionless value of 0.5 during radial flow 
regime. If this value is set equal to the reciprocal rate 
derivative of the dual-linear equation extrapolated to the 
radial flow value, it allows to obtain an expression to find 
reservoir width once the dimensionless parameters have 
been replaced, 
 

0.0648256 RDLi
E

t

k tY
cφµ ω
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                                         VOL. 7, NO. 3, MARCH 2012                                                                                                                      ISSN 1819-6608            

ARPN Journal of Engineering and Applied Sciences 
 

©2006-2012 Asian Research Publishing Network (ARPN). All rights reserved. 

 
www.arpnjournals.com 

 

 
362

Being tRDLi the intersection time between the 
radial and dual-linear flow regime lines, 
 
 

2.2.5 Intersection point between the radial and 
         Pseudosteady-state lines  

Again, Eq. 28 is obtained from manipulation of 
Eq. 52 and 25.
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Figure-11. Effect of ω on the minimum point of the reciprocal rate 

derivative for λ = 1x10-8. 
 

2.2.6 Linear flow regime occurs after the transition 
         period  

When the linear flow occurs after the transition 
period, the linear behavior corresponds to a homogeneous 
reservoir as depicted in Figure-12. For this case the 
governing equation is Eq. 9, therefore, expressions derived 
from Eq. 9 also corresponds to this analysis. 
 
2.2.7 Linear flow regime occurs before the transition 
         period  

As shown in Figure-13, the linear flow regime is 
still affected by the heterogeneous behavior, then, the 
reciprocal rate and its derivative are defined here as: 

L
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[ ]
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As stated before, Eqs. 64 and 65 allow obtaining: 
 

[ ]
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E
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B tY
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φ ω
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                 (67) 

 

[ ]
1/ 12

*(1/ ) ' 29.32416
DL

L
E tL

q k ts
t q Y cφµ ω

⎛ ⎞
= −⎜ ⎟⎜ ⎟
⎝ ⎠

     (68) 

 

As described by Figure-14, there exists a direct 
relationship between the square root of the interporosity 
flow parameter multiplied by the reciprocal rate derivative 
against the maximum point. This allows obtaining the 
following expression: 
 

[ ] 000746.0)'/1(* max =DD qtλ                 (68)

  

Solving for λ from Eq. 68 once the respective 
dimensionless group is replaced, it yields: 
 

[ ]

2

max

0.105335
*(1/ ) '

B
kh P t q

µλ
⎡ ⎤

= ⎢ ⎥
∆⎢ ⎥⎣ ⎦

                              (69) 

 

From Figure-15, readings of the minimum point 
for different values of the interporosity flow parameter and 
the dimensionless storativity coefficient were correlated to 
obtain an expression which has a correlation coefficient of 
0.99987. 
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Finally, the unit-slope line during the transition 
period was correlated (r2 = 0.9923) to obey the following 
governing equation: 

 
2 3 2

, , , , , ,ln (ln ) ln (ln ) ln (ln ) lnD usi D us D usi D usi D usi D usia b t d t f t g t i t j t yλ = + + + + + +                             (71) 
 

 
 

where usi is the intercept of the unit-slope line during the 
transition period with the radial flow line. λ may also be 

estimated by the equation introduced by Tiab and Escobar 
(2003): 
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3792( ) 1lnt t wc r
k t
φ µλ ω
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   (72) 
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Figure-12. Linear flow regime after the transition period. 
 

1.E‐06

1.E‐05

1.E‐04

1.E‐03

1.E‐02

1.E‐01

1.E+03 1.E+04 1.E+05 1.E+06 1.E+07 1.E+08 1.E+09 1.E+10 1.E+11 1.E+12

t  D  

Transition period

Single-Linear flow

Radial flow

Pseudosteady state
Off-centered well - Closed boundary

[t 
 * (

1/
q 

 )'
]

D
   

   
   

 D
 

Single-Linear flow

 
 

Figure-13. Linear flow regime before the transition period.
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Figure-14. Relationship between the square root of the interporosity flow 
parameter times the reciprocal rate derivative and the maximum point. 
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Figure-15. Effect of ω and λ on the minimum point. 
 

3. EXAMPLES 
Examples 1 to 5 were simulated with the input data 

of Table-1. The results along with the used equations are 
given in Table-2. 

 
3.1 Synthetic example 1 - homogeneous reservoir 

Both lateral boundaries are subjected to constant 
pressure and the well is off-centered. Reciprocal rate and 
reciprocal rate derivative are given in Figure-16. From this 
plot, the following information was read: 
 

 
 

The estimated parameters along with the number 
of the used equation are reported in Table-2. 

 
3.2 Synthetic example 2 - homogeneous reservoir 

In this case, both lateral boundaries are closed to 
flow and the well is off-centered. Then, pseudosteady-state 
is developed. The reciprocal rate and reciprocal rate 
derivative are given in Figure-17 from which the below 
data was obtained: 
 

 
 

As for the former example, the results of 
estimated parameters along with the number of used 
equation are reported in Table-2. 
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Table-1. Input data for the examples. 
 

Synthetic example 
Parameter 

1 2 3 4 5 
Field 

example 

∆P, psi 5000 5000 5000 2500 5000 2800 

µ , cp                                                   2 1.52 

φ , %                                                  20 13 
B, rb/STB                                                 1.2 1.04 

ct, psi-1                                                 1x10-6 4.34x10-5 
rw, ft                                                 0.5 0.3 
h, ft            100 
XE, ft 4000 16000 16000 20000 680000 
YE, ft 500 500 500 1000 1000 
bx, ft 1000  2000   

 

k, md                                                  50 65 
λ 5x10-8 4x10-11 4x10-8 
ω 0.02 0.1 0.21 
sr 

 

  -2.3 
 

Table-2. Results for synthetic examples. 
 

Synthetic example 
1 2 3 4 5 Para-

meter 
Eq. Value Eq. Value Eq. Value Eq. Value Eq. Value 

k, md 53 49.83 53 48.9 48.97 53 53 52.14 53 48.8 
YE, ft 31 564.1 11 482.6   58 979.2 67 1048.5 
YE, ft 16 509.5 16 444.2 16 459.3     
YE, ft   30 503.1       
YE, ft   31 422       
bx, ft 32 1148.3   48 1427.4     
bx, ft 33 1119.7   49 2334     
XE, ft 36 4678.6   36 15102.4     
XE, ft 37 3939.1   37 14467.5     
XE, ft     50 15737.9     

sr 54.a 0.19 54.a 0.18 54.a 1.35 54.b -2.2   
sDL 18 4.93 18 4.54 18 4.07 59 6.74   
sL   13 -23.5       
sPB 21 0.0133   21 0.013     

A, ft2   26 206.5   63 402.8 28 10251.6 
A, ft2   27 219.6       
A, ft2   28 191.8       

ω       62 0.0214 62 0.0996 

λ       61 4.64x10-8 61 4.14x10-11 
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Figure-16. Reciprocal rate and reciprocal rate derivative for synthetic example 1. 
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Figure-17. Reciprocal rate and reciprocal rate derivative for synthetic example 2. 
 

3.3 Synthetic example 3 - homogeneous reservoir 
Figure-18 presents the data of reciprocal rate and 

its derivative for a well near a constant-pressure boundary 
and the other lateral boundary is closed to flow. From this 
plot the below information was obtained: 
 

 
Again, the results for this example and the 

number of used equation are reported in Table-2. 
 
3.4 Synthetic example 4-heterogeneous reservoir 

In this case, both lateral boundaries are closed to 
flow. In this case the dual-linear flow regime is interrupted 
by the heterogeneity. Therefore, pseudosteady-state is 
expected to develop if the test is long enough. The 
reciprocal rate and reciprocal rate derivative are given in 
Figure-19 from which the below data was obtained: 
 

 
 

The estimated parameters are also reported in 
Table-2 along with the number of the used equation. 
 
3.5 Synthetic example 5 - heterogeneous reservoir 

Figure-20 contains data of the reciprocal rate and 
the reciprocal rate derivative against time for an elongated 
naturally reservoir in which the linear flow regime was 
interrupted by the transition period. The following 
readings were obtained from Figure-20. 
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Figure-18. Reciprocal rate and reciprocal rate derivative for synthetic example 3. 
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Figure-19. Reciprocal rate and reciprocal rate derivative for synthetic example 4. 
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Figure-20. Reciprocal rate and reciprocal rate derivative for synthetic example 5. 
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3.6 Field example-heterogeneous reservoir 
Marhaendrajana et al. (2004) presented a field 

case for a naturally fractured system which input 
information is given in Table-1 and reciprocal rate and its 
derivative vs. time is given in the Figure-21. The 
following data was obtained from Figure-21. 
 

 
 

The first step, for this exercise is to estimate ω 
using Eq. 70. This value is then used used in Eqs. 57 and 
64 to estimate reservoir width and the dual-linear skin 
factors, Eq. 59. Because of the noise in the data is not 
possible to obtain a clear value of the maximum point on 
the pressure derivative, then,λ is estimated using the 

minimum point with Eq. 72. It can be seen that the data 
is so noisy and the radial flow regime is unclear. Using 
the permeability, given in Table-1, the derivative during 
radial flow regime, (t*1/q’) r, can be estimated from Eq. 
52: 
 

[ ] 670.6 70.6(1.52)(1.04)*(1/ ) ' 6.13 10 md
(100)(2800)(65)r

Bt q
h Pk

µ −= = = ×
∆

 
 

With this value and the first (1/q) value is 
possible to estimate the mechanical skin factor with Eq. 
54.b. This problem was also solved by Escobar et al. 
(2010). All the values are reported in Table-3. 
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Figure-21. Reciprocal rate and reciprocal rate derivative for the field case. 
 

Table-3. Results for field example. 
 

Parameter Escobar et al. 
(2010) 

Marhaendrajana et al. 
(2004) This work 

λ 1.94x10-7 4x10-8 8.28x10-8 
ω 0.06 0.2 0.018 
sr N.C. -2.2 -0.46 

sDL 72 N.C. -5.85 
YE, ft 122.7 N.C. 138.4 
YE, ft N.C. N.C. 133.03 

 
4. ANALYSIS OF RESULTS 

The simulated examples indicate that the 
proposed equations provide results which are in good 
agreement with the input data. For the actual field case of 
a heterogeneous reservoir, the reservoir width agrees 
closely with the results from Escobar et al. (2010). The 

interporosity flow parameters matches the values from the 
three sources, but the dimensionless storativity coefficient 
do not agree with the result from Marhaendrajana et al. 
(2004) but the difference is acceptable and are due to the 
noisy data. 
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Nomenclature 
 

B Oil formation factor, rb/STB 
b Intercept 
bx Well position inside the reservoir 
ct Total system compressibility, 1/psi 
h Formation thickness, ft 
k Permeability, md 
m Slope 
Pi Initial reservoir pressure, psi 
Pwf Well-flowing pressure, psi 
P Pressure, psi 
s Skin factor 
sr Mechanical skin factor 
t Time, hr 

WD Dimensionless reservoir width 
XD Dimensionless well position along the x-axis 
XE Reservoir length, ft 
YD Dimensionless well position along the y-axis 
YE Reservoir width, ft 
1/q Reciprocal flow rate, D/STB 
1/qD Dimensionless reciprocal flow rate 

 
Greek 
 

ω Dimensionless storativity coefficient, (φct)f/[(φct)m+(φct)f] 
∆ Change, drop 
φ Porosity 
λ Interporosity flow parameter 
ρ Densidad, lbm/ft3 
µ Oil viscosity, cp 

 
Suffices 
 

1, 1r, er Primer régimen de flujo o temprano 
D Dimensionless 

DL Dual linear, dimensionless based on width 
DLPBi Dual linear and parabolic intercept 
DLPSSi Dual linear and pseudosteady-state intercept 
DLSSi Dual linear and steady-state intercept 

L Linear 
L1 Lineal temprano a 1 hr 

LPSSi Linear and pseudosteady-state intercept 
max Maximum 
min Minimum 
PB Parabolic 

PBSSi Parabolic and steady-state intercept 
RDLi Radial and dual linear intercept 
RLi Radial and linear intercept 

RPBi Radial and parabolic intercept 
RPSSi Radial and pseudosteady-state intercept 
RSSi Radial and steady-state intercept 
usi Intercept of the radial line with the int-slope line during 
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the transition period 

x1 First maximum between dual-linear and parabolic flow 
regimes 

x2 Second maximum between end of parabolic and start of 
steady-state 

w Well 

 
5. CONCLUSIONS 

The TDS methodology for rate transient analysis 
was complemented with new equations for long and 
narrow homogeneous and naturally fractured reservoirs. 
The equations were successfully applied to synthetic 
examples. A field example for a heterogeneous reservoir 
was presented to demonstrate the application of the 
proposed solution. 
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