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ABSTRACT 

This paper presents a new approach for solving the Combined Heat and Economic Dispatch (CHPED) problem 
using an artificial bee colony algorithm (ABC). Artificial Bee Colony algorithm (ABC) is inspired by the foraging 
behavior of honey bee swarm, is a biological inspired optimization. It shows more effective than the other optimization 
algorithms. The performance of the proposed algorithm ABC is validated by illustration with single area cogeneration test 
system. The results of the proposed algorithm are compared with those of Practical Swarm Optimization (PSO), ABC, Real 
-Coded Genetic Algorithm (RCGA), Bee Colony Optimization (BCO) and Evolutionary Programming techniques (EP). 
From numerical results, it is seen that the proposed algorithm is able to provide a better solution at a lesser computational 
effort. 
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1. INTRODUCTION 

The conversion of primary fossil fuel into 
electricity is an inefficient process. Even the most modern 
combined cycle plants can only obtain efficiency between 
50%-60% [1]. Most of the energy wasted in the conversion 
process is released in to the environmental as waste heat. 
The principle of combined heat and power, known as 
cogeneration, is to recover and make beneficial use of this 
heat and as a result the overall efficiency of the conversion 
process is increased to 90% [1]. The combined heat and 
power generation has higher energy efficiency and less 
green house gas emission as compared with  other forms 
of energy supply. Recently, cogeneration units have been 
extensively used in industry. The heat production capacity 
of most cogeneration units depends on the power 
generation and vice versa. The mutual dependencies of 
heat and power generations introduce a complication in 
the integration of cogeneration units into the power system 
+ economic dispatch. The objective of Economic Dispatch 
(ED) problem in a conventional power plant is to find the 
optimal point for the power production such that the 
demand matches the generation with production fuel cost. 
However, the objective of CHPED is to find the optimal 
point of power and heat generation with production fuel 
cost such that both heat and power demands and other 
constraints are met while the combined heat and power 
units are operated in a bounded heat versus power plane.  

A technique developed in [2] called as dual and 
quadratic programming used to solve the CHPED problem 
using separability of the cost function and constraint. In 
this method, a two level strategy is adopted, the lower 
level solves the economic dispatch problems of the 
individual units for given power and heat Lambda’s and 
the upper level updates the lambdas by sensitivity 
coefficients. The procedure is repeated until the heat and 
power demands are met. Guo et al., [3] decomposed the 
CHPED problem into two sub-problems, that is, heat 
dispatch and power dispatch. The two sub-problems are 

connected by the heat-power feasibility constraints of 
cogeneration units. The analysis and interpretation of the 
connection have led to the development of a two layer 
algorithm. The outer layer uses Lagrangian Relaxation 
technique to solve the power dispatch, and the inner layer 
uses the gradient searching method to solve the heat 
dispatch with the unit heat capacity passed by the outer 
layer. A customized branch and bound algorithm to solve 
the CHPED problem was developed [4].  
Alternatives to the traditional mathematical 
approaches: An improved penalty function formulation 
for the genetic algorithm (GA) to solve the CHPED 
problem was presented [5].Sudhakaran et al., [6] 
employed a hybrid genetic algorithm with tabu search 
(GT) and applied it to a four-unit system. Subharaj et al., 
[7] proposed a self adaptive real-ended genetic algorithm 
(SARGA) and successfully applied to solve the CHPED 
problem. Vasebi et al., [1] developed a harmonic search 
algorithm. Song et al., [8] proposed combined heat and 
power dispatch by improved ant colony search algorithm. 
In [9], an incorporated algorithm has been developed to 
solve the CHPED problem. Wang et al., [10] proposed 
multi objective particle swarm optimization for solving 
CHPED problem. S.S. Sadat Hosseini et al., [11] 
developed mesh adaptive direct search algorithm 
implemented to solve the CHPED problem with bounded 
feasible operating region. C.L. Chiang et al., [12] 
proposed a hybrid differential evolution with multiplier 
updating method to CHPED problem. But these methods 
did not consider transmission loss and were typically very 
slow. In order to achieve optimal trade-off between 
accuracy and performance, hybrid formulations combining 
classical optimization methods and GA, EP, PSO have 
been recently reported in the literature. Dorigo et al., [13], 
Eberhart et al., [14] and Deneubourg et al., [15] discussed 
about the swarm intelligence of a branch of inspired 
algorithm and focus on the behavior of insect in order to 
develop some meta-heuristics algorithms. Exploration and 
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exploitation are the important mechanisms in a robust 
search process. While exploration process is related on 
independent search for an optimal solution, exploitation 
uses existing knowledge to bias the search. In the recent 
years, there are a few algorithms based on the bee foraging 
behavior developed to improve both exploration and 
exploitation for solving the optimization problems. The 
Artificial bee colony (ABC) algorithm introduced in [16] 
is one approach that has been used to find an optimal 
solution in numerical optimization problems. This 
algorithm is inspired by the behavior of honey bees when 
seeking a quality food source. The performance of ABC 
algorithm has been compared with other optimization 
methods such as GA, differential evolution algorithm 
(DE), Evolution strategies (ES); Particle swarm inspired 
Evolutionary Algorithm (PS-EA) [17-19]. The 
comparisons were made based on various numerical 
benchmark functions, which consist of unimodal and 
multimodal distributions. The comparison results showed 
that ABC can produce a more optimal solution and thus is 
more effective than the other methods in several 
optimization problems [19-22]. 

This paper proposes ABC algorithm for solving 
the CHPED problem. Here, transmission loss is 
considered. In order to show the validity of the proposed 
approach, the developed algorithm is illustrated on a single 
area cogeneration test system (Guo et al., 1996). Results 
obtained from the proposed approach are compared with 
those obtained from particle swarm optimization (PSO), 
real-coded genetic algorithm (RCGA) and evolutionary 
programming (EP). The comparison shows that the 
proposed ABC based approach achieves lower production 
cost and CPU time. 
 
2. FORMULATION OF THE CHPED PROBLEM 

The system under consideration has power only 
units, combined heat and power units, and heat- only units. 
Figure-1 shows the heat-power Feasible Operation Region 
(FOR) of a combined cycle cogeneration unit. The feasible 
operation is enclosed by the boundary curve MNOPQR. 
Along the boundary curve NO, the heat capacity increases 
as the power generation decreases, the heat capacity 
declines along the curve OP. The power output of the 
power units and the heat output of heat units are restricted 
by their own upper and lower limits. The power is 
generated by conventional thermal generators and 
cogeneration units while the heat is generated by 
cogeneration units and heat-only units. The primary 
objective of the CHPED is to determine the most 
economic loading points of combined heat and power 
generation units such that both the heat and power 
demands and other constraints can be met within the 
bonded region in the heat versus power plane. 
 

 
 

Figure-1. 
 
The objective function of the CHPED problem is given by:  
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And inequality constraints 
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The active power transmission loss PL can be 
calculated using the network loss formula as: 
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                                                   (8)                     

 

Where Fti, Fci, Fhi are the respective fuel characteristics of 
the power-only units, cogeneration units and heat only 
units. P is the unit power generation. H is the unit heat 
production. i  [1, 2 . . . α] denotes conventional thermal 
generators. i  [α + 1, α + 2 ...β] denotes cogeneration 
units .i  [β + 1, β + 2 ...n] denotes heat-only units. The 
operation ranges of conventional thermal generators and 
heat- only units are expressed in equations (4), (7) and 
those for cogeneration units are in equations (5) and (6). 
The heat and power outputs of the cogeneration units are 
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non-separable and one output will affect the other. This 
mutual dependency of heat and power generation 
introduced a complication in the integration of 
cogeneration units. Therefore, the optimization problem of 
the CHPED is non-linear and highly constrained in nature, 
HD and PD are the system heat and power demands 
respectively. Bij the loss coefficient for a network branch 
connected between buses i and j. Pmin and Pmax are the unit 
power capacity limits. Hmin and Hmax are the unit heat 
capacity limits. Pmin (H), Pmax (H), Hmin (P) and Hmax (P) are 
the linear inequalities that define the feasible operating 
region of the cogeneration units. 
 
3. ARTIFICIAL BEE COLONY ALGORITHM 

In a real bee colony, some tasks are performed by 
specialized individuals. These specialized bees try to 
maximize the nectar amount stored in the hive using 
efficient division of labor and self-organization. The 
artificial bee colony (ABC) algorithm, proposed by 
Karaboga [16] in 2005 for real parameter optimization is 
an optimized algorithm which simulates the forging 
behavior of a bee colony. The minimal model of swarm-
intelligent forage selection in a honey bee colony which 
the ABC algorithm simulates consists of three kinds of 
bees: employed bees, onlooker bees and scout bees. Half 
of the colony consists of employed bees, and the other half 
includes onlooker bees. Employed bees are responsible for 
exploiting the nectar sources explored before and giving 
information to the waiting bees (onlooker bees) in the hive 
about the quality of the food sources sites which they are 
exploiting. Onlooker bees wait in the hive and decide on a 
food source to exploit based on the information shared by 
the employed bees. Scout either randomly searches the 
environment in order to find a new food source depending 
on a internal motivation or based on possible external 
clues. 
 This emergent intelligent behavior in foraging 
bees can be summarized as follows: 
 

a) At the initial phase of the foraging process, the bees 
start to explore the environment randomly in order to 
find a food source.  

b) After finding a food source, the bee becomes an 
employed forager and starts to exploit the discovered 
source. The employed bee returns to the hive with the 
nectar and unloads the nectar. After unloading the 
nectar, she can go back to her discovered source site 
directly or she can share information about her source 
site by performing a dance on the area. If her source is 
exhausted, she becomes a scout and starts to randomly 
search for a new source.  

c) Onlooker bees waiting in the hive watch the dances 
advertising the profitable sources and choose a 
sources site depending on the frequency of the dance 
proportional to the quality of the source. 

 

 In the ABC algorithm the position of food source 
represents a possible solution to the optimization problem, 
and the nectar amount of a food source corresponds to the 
profitability (fitness) of associated solution. Each food 

source is exploited by only one employed bee. In other 
words, the number of employed bee is equal to the number 
of food sources existing around the hive (number of 
solutions in the population). The employed bee whose 
food source has been abandoned becomes a scout. Using 
the analogy between emergent intelligence in foraging of 
bees and the ABC algorithm, the main components of the 
basic ABC algorithm can be designed as detailed below. 
 
3.1 Initialization of the parameters 

The parameters of the basic ABC algorithm are 
the number of food sources (SN) which is equal to the 
number of the employed bees or onlooker bees, The 
colony size is 2*SN (NP), The number of trials after which 
a food source is assumed to be abandoned (limit), and a 
termination criterion (MCN). In the basic ABC algorithm, 
the number of employed bees or the onlookers is set equal 
to the number of food sources in the population. In other 
words for every food source, there is only one employed 
bee.  
 
3.2 Producing initial food source sites 

If the search spaces considered being the 
environment of the hive that contains the food source sites, 
the algorithm starts with randomly producing food sources 
sites that correspond to the solutions in the search space. 
Initial food sources are produced randomly within the 
range of the parameters defined by: 
 

Xij = Xj
min + rand (0, 1) (Xj

max -Xj
min)                        (9)                      

 

Where i=1…SN, j=1…D, SN is the number of food 
sources and D is the number of optimization parameters. 
In addition, counters which store the number of trials of 
solutions are reset to zero in this phase. After initialization, 
the population of the food sources (solutions) is subjected 
to repeat cycles of the search process of the employed 
bees, the onlooker bees and the scout bees. 
 
3.3 Sending employed bees to the food sources sites 

As mentioned earlier, each employed bee is 
associated with only one food source site. Hence the 
number of food source site is equal to the number of 
employed bees. An employed bee produces a modification 
on the position of the food source (solution) in her 
memory depending upon local information (visual 
information) and finds neighboring food source, and then 
evaluates its quality. In ABC, finding a neighboring food 
source is defined by:  
 

Vij = Xij + Φij (Xij –Xkj)                        (10)                      
 

With in the neighboring hood of every food 
source site represented by Xi, a food source Vi is 
determined by changing one parameter of Xi. In Equation 
(10), j is a random in the range [1, D] and k  {1, 2…SN} 
is a randomly chosen index that has to be different from i. 
Φij is a uniformly distributed real random number in the 
range [-1, 1]. 

As can be seen from Equation (10) as the 
difference between the parameters of the Xij and Xkj 
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decreases, the perturbation on the position Xij decreases. 
Thus, as the search approaches to the optimal solution in 
the search space, the step length is adaptively reduced. If a 
parameter value produced by this operation exceeds its 
predetermined boundaries the parameter can be set to an 
acceptable value. If the value of the parameter exceed its 
boundary is set to its corresponding boundaries.  If Xi > 
Xi

max then Xi = Xmax; If Xi < Xi
min then Xi = Xi

min. After 
producing Vi within the boundaries a fitness value for a 
minimization problem can be calculated to the solution Vi 
by (11). 
 
Fitnessi = 1/ (1+fi)      if fi ≥ 0                                        (11)                                                          

                 1+abs (fi)    if fi <0  
 

Where fi is cost value of the solution Vi. For maximization 
problems, the cost function can be directly used as a 
fitness function. A greedy selection is applied between Xi 
and Vi, the better one is selected depending on fitness 
values representing the nectar amount of the food sources 
at Xi and Vi. If the source at Vi is superior to that of Xi in 
terms of fitness values, the employed bees memorize the 
new position and forget the old one. Otherwise the 
previous position is kept in memory. If Xi cannot be 
improved its counter holding the number of trials is 
incremented by one, otherwise the counter is reset to zero. 
 
3.4 Calculating probability values involved in  
      probabilistic selection 

After all employed bees complete their searches, 
they share their information related to the nectar amount 
and the positions of their sources within the onlooker bees 
on the dance area. This is the multiple interaction features 
of the artificial bees of ABC. Onlooker bees evaluate the 
nectar information taken from all employed bees and 
choose a food source site with a probability related to its 
nectar amount. This probabilistic selection depends on the 
fitness value of the solutions in the population. A fitness-
base selection might be roulette wheel, ranking base, 
stochastic universal sampling, tournament selection etc. In 
basic ABC, roulette wheel selection scheme in which each 
slice is proportional to size to the fitness value is 
employed in Equation (12). 
 

∑
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3.5 Food source site selection by onlookers based on the  
      information provided by employed bees 

In the basic ABC algorithm, a random real 
number within the range [0, 1] is generated for each 
source. If the probability valve (Pi in Equation (12)) 
associated with that source is greater than this random 
number then the onlooker bee produces a modification on 
the position of this food source site by using Equation (10) 
as in the case of the employed bee. After the source is 
evaluated, greedy selection is applied and the onlooker bee 

either memorizes the new position by forgetting the old 
one or keeps the old one. If solution Xi cannot be 
improved, its counter holding trial is increased by one; 
otherwise, the counter is reset to zero. This process is 
repeated until all onlookers are distributed onto food 
source sites.  
 
3.6 Abandonment criteria: limit and scout production 

In a cycle, after all employed bees and onlooker 
bees complete their searches the algorithm checks to see if 
there is any exhausted source to be abandoned. In order to 
decide if a source is to be abandoned, the counters which 
have been updated during search are used. If the value of 
the counter is greater than the control parameter of the 
ABC algorithm, known as the “limit”, then the source 
associated with this counter is assumed to be exhausted 
and is abandoned. The food source abandoned by its bee is 
replaced with a new food source is discovered by the 
scout, which represents the negative feedback mechanism 
and fluctuation property in the self-organisation of ABC. 
This is simulated by producing a site position randomly 
and replacing it with the abandoned one. Assume that the 
abandoned source is Xi, and then the scout randomly 
discovered a new food source to be replaced with Xi. This 
operation can be defined as Equation (9). In the basic 
ABC, it is assumed that only one source can be exhausted 
in each cycle, and only one employed bee can be a scout. 
If more than one counter exceeds the “limit” values, one of 
the maximum ones might be chosen programmatically. 
 
4. ARTIFICIAL BEE COLONY OPTIMIZATION  
    FOR COMBINED HEAT AND POWER   
    ECONOMIC DISPATCH  

In this section, an algorithm based on ABC 
algorithm for solving CHPED problem is described below: 
 

Let  Xi = [P1, P2,…Pα, Pα+1, Pα+2,…Pβ, Hα+1, Hα+2,…, Hβ, 
Hβ+1, Hβ+2,…Hn]T be the initial vector designating the ith 
population to be evolved. The elements of Xi are the real 
power outputs of conventional thermal generators and 
cogeneration units and heat outputs of cogeneration units 
and heat-only units. In order to meet exactly the power 
demand and heat demand dependent power generating unit 
and heat generating units are selected. Let Pd and Hd be the 
power output and heat output of the dependent units: 
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The elements of Xi should satisfy the constraints 
given by Equations (2) - (7). The ABC algorithm 
implemented to solve CHPED problem is stated in the 
following steps. 
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Step 1: Initialization of the control parameters. 
The parameters of the basic ABC algorithm are the colony 
size (NP), the number of food sources (SN=NP/2), the 
limit for scout, L= SN*D, D is the dimension of the 
problem and a termination criterion (MCN). 
 

Step 2: Producing initial food source sites. 
The initial food sources vector: 
 Xi = [P1, P2,…Pα, Pα+1, Pα+2, …Pβ,Hα+1, Hα+2,…, Hβ,Hβ+1, 
Hβ+2, …Hn]T i=1, 2…NP is determined by Eq. (15) and 
setting P~U (Pmin, Pmax) and H~U (Hmin, Hmax), U (a, b) 
denotes a uniform random variable range over [a, b] and 
evaluate the fitness value using Equation (16) then select 
SN the best food source on the basis of highest fitness 
value as initial food sources and set the cycle = 1, the trail 
number of each solution Xi, triali, is equal to zero. 
 

Where X = [X1, X2…XNP] 
           Xi = [Xi, 1, Xi, 2…Xi,D] 
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Step 3: Sending employed bees to the food sources [SN] 
and assigning the nectar amount. 

In this step each employed bee produces a new 
solution Vi by using Equation (10) and computes the 
fitness value of the new solution using Equation (16) 
satisfying with all constraints. If the fitness of the new one 
is higher than that of the previous one, the employed bee 
memorizes the new position and forgets the old one; 
otherwise the employed bee keeps the old solution. 
 

Step 4: Sending the onlooker bees to the food sources 
depending on their amount of nectar. 

This step required to calculate the probability 
value Pi of the solution Xi by means of their fitness value 
using Equation (12). An onlooker bee selects a solution to 
update its solution depending on the probabilities and 
determines a neighbour solution around the chosen one. In 
the selection procedure for the first onlooker, a random 
number is generated between [0, 1] and if this number is 
less than P1, the solution is updated using Eq. (10). 
Otherwise, the random number is compared with P2 and if 
less than that, the second solution is chosen. Otherwise, 
third probability of third solution is checked. This process 
is repeated until all onlookers have been distributed to 
solutions. The distributed onlooker bee updated its own 
solution just as the employed bees do. 
 

Step 5: Send the scouts to the search area to discover new 
food sources. 

If the solution Xi is not improved through step 3 
and 4, the traili value of solution Xi will be increased by 1. 

If the traili of the solution is more than the predetermined 
“limit” the solution Xi is considered to be an abandoned 
solution, meanwhile the employed bee will be changed 
into a scout. The scout randomly produces the new 
solution by Equation (15) and then compares the fitness of 
new solution with that its old one. If the new solution is 
better than the old solution, it is replaced with the old one 
and set its own traili into zero. This scout will be changed 
into employed bee. Otherwise, the old one is retained in 
the memory. 
 

Step 6: Record the best solution. 
In this step, the best solution so far is recorded 

and increase the cycle by 1. 
 

Step 7: Check the termination criterion. 
If the cycle is equal to the maximum cycle 

number (MCN) then the algorithm is finished; otherwise 
go to step 3. 

The complete flowchart for ABC algorithm is 
shown in Figure-2. 
 

 
 

Figure-2. 
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5. NUMERICAL RESULTS AND DISCUSSIONS 
This section considers a single area cogeneration 

system to illustrate the effectiveness of the proposed ABC 
in terms of quality of solution and computation time. The 
proposed method has been applied to a test system which 
consists of four conventional thermal generators, two 
cogeneration units and a heat only unit. Unit data has been 
modified from (Guo et al., 1996 [3]). System data 
containing valve- point effects coefficients of fuel cost 
equations and B loss coefficients are obtained from Basu 
[18]. The feasible operating regions of the two 
cogenerations units are given in Figures 3 and 4. The 
system power demand PD and the heat demand HD are 
600MW and 150MWth, respectively. 
 

 
 

Figure-3. 
 

 
 

Figure-4. 
 

The fuel cost characteristics of conventional, 
cogeneration and heat-alone units are given in (18)-(24). 
The fitness function of the CHPED problem is:  
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a) Power only units: 
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b) Cogeneration units: 
 

( ) 552
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555,55 031.003.02.40345.05.142650 HPHHPPHPFc +++++= $ (22) 
 

( ) 662
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(c) Heat only unit: 
 

( ) 2
7777 038.00109.2950 HHHFh ++=

 2.26950 7 ≤≤ H  MWth  (24)  
 

Subjected to be equality constraints: 
 

Z1: P1 + P2 + P3 + P4+ P5 + P6= Pd, Z2: H5 + H6 + H7 = Hd 
 

And the inequality constraints: 
 

g1: 1.781914894H5-P5-105.7446809 ≤0,  
g2: 0.1777777784H5+P5-247.0 ≤0 
g3: -0.169847328H5-P5+98.8 <0, 
g4: 1.158415842H6-P6-46.88118818 ≤0 
g5: 0.151162791H6+P6-130.6976744 ≤0, 
g6: -0.067681895H6-P6+45.07614213 0 
g7: 10.0- P1 ≤ 0, g8: P1- 75.0 ≤0, g9:20.0-P2 ≤0 
g10: P2-125 ≤0, g11=: 30-P3 ≤0, g12: P3-175≤0 
g13: 40-P4 ≤0, g 14: P4-250 ≤0, g15: 0.0-H7 ≤0 and  
g16: H7-2695.2 ≤0 
 

The Mathematical model consists of nine 
decision variables (P1, P2, P3, P4, P5, H5, P6, H6, H7) power 
balance constraint, heat balance constraint and sixteen 
inequality constraints. 

The results obtained from ABC algorithm is 
compared with PSO [23], RCGA [23], EP [23], and BCO 
[23]. All these methods are coded in MATLAB 7 and 
executed using P-1V, 80-GB, 3.0GHZ personal computer. 
The resulting production costs and CPU time have been 
used to compare the performance of the ABC with those 
of other methods. The influence of the ABC parameters-
colony size, food source and cycle on the convergence of 
the algorithm has been studied the colony size has been 
increased from 10 to 50 in steps of 10 and the iteration 
varied from 100 to 300. The parameters finally selected 
for the algorithm for which consistent and superior results 
with minimum CPU time were found are as follows: 
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Colony (2*SN), NP=20 number of food source SN=10, 
MCN=300, Limit value (SN*D)=90. The parameter 
setting for BCO, EP, PSO and RCGA have been taken 
from (Basu [23]). Table-1 compares the seven 
computational results of this test system obtained from 
ABC, BCO, EP, PSO, RCGA. It is found that the proposed 

algorithm provides lower production cost and CPU time. 
Figure-5 shows the cost convergence obtained from ABC, 
BCO, EP, and PSO. From Figure-5 and Table-1 it can be 
seen that the best convergence rate as well as the best 
solution time among the five is obtained from ABC.  

 
Table-1. Results obtained from ABC, BCO, EP, PSO, and RCGA. 

 

 ABC BCO [23] EP [23] PSO [23] RCGA [23] 
P1 (MW) 58.7117 43.9457 61.3610 18.4626 74.6834 
P2 (MW) 98.5398 98.5888 95.1205 124.2602 97.9578 
P3 (MW) 112.6735 112.9320 99.9427 112.7794 167.2308 
P4 (MW) 209.8158 209.7719 208.7319 209.8158 124.9079 
P5 (MW) 81.000 98.8000 98.8000 98.8140 98.8008 
P6 (MW) 40.000 44.0000 44.0000 44.0107 44.0001 

H5 (MWth) 23.1014 12.0974 18.0713 57.9236 58.0965 
H6 (MWth) 72.2437 78.0236 77.5548 32.7603 32.4112 
H7 (MWth) 54.6549 59.8790 54.3739 59.3161 59.4919 

Pl (MW) 2.88 8.0384 7.9561 8.1427 7.5808 
Cost ($) 10314 10594 10611 10613 10667 

CPU time 
(s) 4.981 5.1563 5.2750 5.3844 6.4723 

 

 
 

Figure-5. 
 
6. CONCLUSIONS 

This paper has presented an algorithm ABC for 
solving combined heat and power economic dispatch 
problem. ABC has effectively provided the best solution 
satisfying both equality and inequality constraints.  
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