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ABSTRACT 

This paper presents swarm intelligence based Adaptive Particle Swarm Optimization (APSO) technique to 
determine optimum design of Switched Reluctance Machine (SRM). In APSO technique, the inertia weight factor is made 
adaptive on the basis of objective functions of the current and best solutions to avoid premature convergence. The SRM 
design is treated as nonlinear multivariable constrained optimization problem. The objective functions for obtaining desired 
design are maximizing torque density, minimizing torque ripple and minimizing copper loss with stator and rotor pole arc 
as design variables. The potential of the proposed approach is tested on 8/6 four-phase, 5 HP, 1500 rpm SRM and the 
results are compared with those obtained from Genetic Algorithm (GA) and classical PSO technique. The results 
demonstrate that the proposed method is superior in terms of solution quality, accuracy, robustness and computational 
efficiency. 
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INTRODUCTION 

There has been a growing interest towards SRM 
drives because of its simple and robust structure, high 
efficiency and fault tolerability (Lawrenson et al., 1980). 
The main drawback in SRM is higher torque ripple which 
contributes to acoustic noise and vibration. The torque 
pulsation in SRM is due to highly non-linear and discrete 
nature of torque production mechanism (Iqbal Husain and 
Mehrdad Ehsani, 1994). Sahin (2000) has proposed a 
neural network based approach to determine optimum 
geometry to minimize torque ripple. Generalized 
regression neural network based optimization of SRM to 
maximize average torque and minimize torque ripple has 
been discussed by (Sahraoui et al., 2007). An optimum 
design approach for a two-phase SRM drive using GA is 
proposed by (Yoshiaki Kano, 2010). Optimization 
algorithms such as Genetic Algorithm (GA) have been 
used in the optimal design of SRM (Mirzaeian et al., 2002; 
Nabeta 2008) to minimize torque ripple. From the 
literature it is evident that computational intelligence 
techniques like genetic algorithm and artificial neural 
network have been successfully applied for design 
optimization of SRM. In recent years PSO (Kennedy and 
Eberhart, 1995) method has gained popularity over its 
competitors. Compared with GA, PSO has some attractive 
characteristics. PSO has memory, so knowledge of good 
solutions is retained by all particles, whereas in GA, 
previous knowledge of problem is destroyed once the 
population changes. Recent research has identified certain 
deficiencies in GA based optimization (Fogel, 2000), 
particularly for problems in which variables are highly 
correlated. Premature convergence degrades the 
performance of GA and increases possibility of 
convergence to a local optimum solution. Due to its 
simplicity, superior convergence characteristics and high 
solution quality, PSO has gained attention and wide 
application in different fields. However, the performance 
of the classical PSO greatly depends on its parameters and 

it often suffers from the problem of being trapped in local 
optima (Shi and Eberhart, 1999). To overcome the above 
problems, Adaptive Inertia Weight Factor (AIWF) is 
employed (Liu et al., 2005) to control the global search 
and convergence to the global best solution. In this paper 
APSO is employed for solving switched reluctance motor 
design optimization problem. The performance of APSO 
algorithm is compared with GA based optimization and 
classical PSO. The results show that APSO based 
approach performs better in terms of solution quality, 
accuracy and robustness. The organization of paper is as 
follows. First the problem formulation is explained, while 
the APSO algorithm is briefly introduced in the next 
section followed by numerical simulations and 
comparisons. Finally, conclusions are given in the last 
section. 
 

 
 

Figure-1. Schematic diagram of 8/6 SRM. 
 
PROBLEM FORMULATION 

The structure of 8/6 SRM is presented in Figure-1. 
The problem of determining optimal pole arc is formulated 
to provide trade off solutions between torque density, 
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torque ripple and copper loss. The stator and rotor pole arc 
are considered as design variables. 
 

1x   = Rotor Pole arc ( rβ ) 

2x   = Stator Pole arc ( sβ ) 
 

The remaining design parameters are treated as fixed. 
The objective function is defined as: 
 

Minimize F= - ( 1f + 2f + 3f )                                            (1) 
 

=)x(f1  Maximization of torque density 

=)x(f2  Maximization of inductance ratio (to minimize 
torque ripple) 

=)x(f3  Minimization of copper loss 
 

In view of the fact that the torque density and 
inductance ratio of the motor is to be maximized, minus 
sign is introduced in the fitness function. 

The following are the constraints are imposed on 
the design optimization problem according to the rules of 
feasible triangle.                            
 

21 xx ≥                                                                           (2)  
 

1
r

x
N
2

−
π

 > 2x                                                                (3)     

 

ε>2x                                                                             (4)  
 

The constraints are taken into account by 
penalizing the fitness proportionally to the constraint 
violations. 
 
Torque density calculation 

Several methods such as Finite Element Method 
(FEM) (Wei Wu et al., 2003; Arkadan et al., 1994), 
Magnetic Equivalent Circuit (MEC) method (Moallem et 
al., 1998), and piecewise linear model (Miller et al., 1990) 
have been reported for the analysis of the SR motor, FEM 
is applied for accurate prediction of the machine 
parameters and performances. This method requires large 
modeling and computational time. In this work analytical 
method described by (Krishnan 2001) is used to evaluate 
the performance of the machine. 
The average torque is given by: 
 

π
δ

=
4

NWmN
Tave rs                        (5)   

 

unaligned'Wmaligned'WmWm −=δ                (6) 
 

A comprehensive program is written in Matlab to 
compute the difference of co energies at aligned and 
unaligned position. The aligned co energy is calculated 
with trapezoidal integration algorithm. Once Wmδ  is 
determined, the average torque is calculated using 
equation (5). The motor lamination volume is calculated as 
 

s rV V V= +                                                 (7)       
 

where Vs represents the volume of stator lamination and 
Vr represents the volume of rotor lamination. 
Consequently, the average torque per motor lamination 
volume is determined as: 
 

ave
v

TT
V

=                                                                (8) 

 
Torque ripple calculation 

Torque ripple expected from SRM is evaluated 
from the torque dips in T-i-θ characteristics. Torque dip is 
the difference between the peak torque of a phase and the 
torque at an angle where two overlapping phases produce 
equal torque at equal levels of current. This is due to the 
deficiency of the incoming phase in supplying the 
necessary torque in those rotor positions (Iqbal Husain, 
2002). Figure-2 shows the torque dip present in the initial 
design. The effect of pole arc variation on mean torque 
and torque dip can be evaluated from Inductance overlap 
ratio LK  given by equation (9). Inductance overlap ratio 
gives a direct measure of torque overlap of adjacent 
phases. 
 

 
 

Figure-2. Torque dip characteristics. 
 

),min(
1K

rs
L ββ

ε
−=                                                  (9)          

 

From equation (9) it is evident that by widening 
the stator and rotor poles, torque overlap can be increased. 
The higher the LK , the lower will be the torque dip and 
the higher will be the mean torque as well.  
 
Copper loss calculation 

The copper loss at rated current is given by: 
 

s
2
Pcu RiP =                                               (10) 

 

The resistance of a single phase is calculated as: 
 

c

phm
s a

Tl*0177.0
R =                                              (11) 
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The mean length of the winding turn is given as: 
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2
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1tstkm                 (12) 

 
Particle swarm optimization (PSO) 

PSO, developed by Kennedy and Eberhart (1995) 
is found to be reliable in solving non-linear problems with 
multiple optima. In PSO, a number of particles form a 
‘‘swarm” that evolve or fly throughout the feasible 
hyperspace to search for fruitful regions in which optimal 
solution may exist. Each particle has two vectors 
associated with it, the position (Xi) and velocity (Vi) 
vectors. In N- dimensional search space, Xi = [xi1, xi2, . . ., 
xiN] and Vi = [vi1, vi2, . . ., viN] are the two vectors 
associated with each particle i. During their search, 
members of the swarm interact with each others in a 
certain way to optimize their search experience. There are 
different variants of particle swarm paradigms but the 
most commonly used one is the gbest model where the 
whole population is considered as a single neighborhood 
throughout the flying experience (Chaturvedi et al., 2009; 
Clerc and Kennedy, 2002). In each iteration, particle with 
the best solution shares its position coordinates (gbest) 
information with the rest of the swarm. Each particle 
updates its coordinates based on its own best search 
experience (pbest) and gbest according to the following 
equations: 
 

( ) ( )k
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i
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where c1 and c2 are two positive acceleration constants, 
they keep balance between the particle’s individual and 
social behavior when they are set equal; rand1 and rand2 
are two randomly generated numbers with a range of [0, 1] 
added in the model to introduce stochastic nature in 
particle’s movement; and w is the inertia weight and it 
keeps a balance between exploration and exploitation. In 
our case, it is a linearly decreasing function of the iteration 
index: 
 

iter
iter

ww
w)k(w
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minmax
max ×⎟⎟
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⎝

⎛ −
−=                 (15) 

 

where itermax is the maximum number of iteration, iter is 
the current iteration number, wmax is the initial weight and 
wmin is the final weight. In conclusion, an initial value of w 
around 1, with a gradual decline toward 0 is considered as 
a proper choice. The most important factor that governs 
the PSO performance in its search for optimal solution is 
to maintain a balance between exploration and 
exploitation. Exploration is the PSO ability to cover and 
explore different areas in the feasible search space while 
exploitation is the ability to concentrate only on promising 
areas in the search space and to enhance the quality of 
potential solution in the fruitful region. Exploration 
requires bigger step sizes at the beginning of the 

optimization process to determine the most promising 
areas then the step size is reduced to focus only on that 
area. This balance is usually achieved through proper 
tuning of PSO key parameters. Recently, PSO 
developments and applications have been widely explored 
in engineering and science mainly due to its distinct 
favorable characteristics (Chaturvedi et al., 2009) 
 
Adaptive particle swarm optimization (APSO) 

In PSO, proper control of global exploration and 
local exploitation is vital in determining the optimum 
solution efficiently (ShiandEberhart, 1998) the 
performance of PSO greatly depends on its parameters. It 
is clear that first part of equation (13) represents the 
influence of previous velocity, which provides the 
necessary momentum for the particles to roam across the 
search space. The inertia weight w is the modulus that 
controls the impact of previous velocity on the current 
one. The balance between exploration and exploitation in 
PSO is dictated by the value of ‘w’. Thus proper control of 
inertia weight is very important to find the optimum 
solution accurately and efficiently. To achieve trade off 
between exploration and exploitation, w is varied 
adaptively in response to the objective values of the 
particles (Liu et al., 2005). The adaptive inertia weight 
factor is determined as follows: 
 

( )( )
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minavg

minminmax
min ff,

ff
ffww

ww ≤
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+=
−
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= maxw , avgff >  
 

where f is the current objective of the particle, favg and fmin 
are the average and minimum values of all particles, 
respectively. 
 
Implementation of APSO for optimal design of SRM 
 In this design, APSO is used to find a set of 
design variables which ensure that the function F(x) has a 
minimum value and all the constraints are satisfied. The 
algorithm for design optimization process is given below: 
 

a) Read specifications and performance indices of motor 
b) Generate initial population of N particles (design 

variables) with random positions and velocities 
c) Compute objective value and performance indices of 

motor 
d) Evaluate the fitness of each particle 
e) Update personal best: Compare the fitness value of 

each particle with its pbests. If the current value is 
better than pbest, then set pbest value to the current 
value 

f) Update global best: Compare the fitness value of each 
particle with gbest. If the current value is better than 
gbest, set gbest to the current particle’s value 

g) Update  weight using equation(16) 
h) Update velocities: Calculate velocities Vk+1 using 

Equation (13) 
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i) Update positions: Calculate positions Xk+1 using 
Equation (14) 

j) Return to step (d) until the current iteration reaches 
the maximum iteration number 

k) Output the optimal design variables 
 

 The performance of the proposed method is 
tested on a 5HP motor. The specifications of the sample 
motor are given in Appendix-1. The algorithm is coded in 
Mat lab and executed using a Pentium IV based PC as the 
test platform. During the process the following parameter 
setting is used in APSO: Number of particles=30, 
acceleration factor C1 = C2 = 1.5, maximum iteration 
Itermax = 100.  
 

Table-1. Results of optimal design. 
 

 Initial design Optimal design 
Stator pole arc 18 deg 21.91deg 
Rotor pole arc 22 deg 24.08 deg 
Average torque 23.14 Nm 29.31Nm 
Torque density 1252 Nm/m3 1456 Nm/m3 
Inductance ratio 0.1667 0.3154 
Copper loss 183 W 190 W 
Torque dip 8.87 Nm 4.46 Nm 

 
Upon execution of the algorithm, an optimal 

structure with the configuration βs =21.91and βr = 24.08 is 
obtained. The performance parameters of the optimal 
motor design are given in Table-1. From the table it is 
clear that there is significant improvement in torque 
density and inductance ratio. 
 
Characterization using FEA 

The optimized geometry was exposed to finite-
element calculation. The flux lines at aligned position are 
shown in Figure-3. The static torque characteristics of the 
optimal machine at rated current of 13 A is shown in 
Figure-4. The optimal machine produced an average 
torque of 28.96Nm with a torque dip of 4.46 Nm. The 
results of finite-element calculation confirm the 
application of optimization procedure for SRM design. 
 

 
 

Figure-3. Flux lines at aligned position. 

 
 

Figure-4. Static torque characteristics of the 
optimal design. 

 
Comparative studies 

The performance of the optimization technique in 
terms of convergence with GA, PSO and APSO is shown 
in Figure-5. From the figure it is clear that APSO method 
converges earlier than the GA and PSO. In order to verify 
the robustness of the algorithms, simulations were carried 
out for 20 independent runs. From the results in Table-2 it 
is evident that the APSO method is more robust than the 
GA and DE as the standard deviation of the fitness values 
for 20 runs is very low in the APSO method. 
 

 
 

Figure-5. Convergence characteristics of GA, 
PSO and APSO based methods 

 
Table-2. Comparison of different optimization techniques 

 

 GA PSO APSO 
Best solution -0.90318 -0.9033 -0.9033 
Worst solution -0.01795 -0.4747 -0.4187 
Mean -0.7596 -0.8966 -0.8990 
Standard 
deviation 0.2681 0.0355 0.0300 

Execution time 
(sec) 120 112.37 78.14 
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CONCLUSIONS  
This paper describes the design optimization 

procedure of SRM using APSO with the objective of 
maximizing torque density, minimizing torque ripple and 
copper loss. The results obtained by this approach show 
improvement in torque density and reduction in torque dip. 
The optimized geometry was exposed to finite-element 
calculation using MagNet software. The results of finite-
element calculation confirm the application of APSO 
based optimization procedure for SRM design. When 
compared with GA and classical PSO, APSO algorithm is 
superior in terms of global exploration, robustness, fast 
convergence and statistical accuracy.  
 

APPENDIX-1. Design data of the machine. 
 

Machine configuration  8/6 
Power output  5 hp 
Stator pole arc  18 degrees 
Rotor pole arc  22 degrees 
Air gap length 0.5 mm 
Outer stator diameter  190 mm 
Bore diameter  100.6 mm 
Stack length  200 mm 
Shaft diameter  28 mm 
Speed  1500 rpm 
Height of stator pole  32.7 mm 
Height of rotor pole  19.8 mm 
Turns per phase  154 
Rated current  13 A 
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