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ABSTRACT

In this paper, a study is made of the unsteady laminar natural convection boundary layer equations on a vertical
curvilinear surface to establish necessary and sufficient conditions under which the similarity solutions are possible. The
free parameter method is used to obtain similarity solutions. One of the cases of possible similarity solutions is discussed

analytically and numerically.
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INTRODUCTION

An analysis is made of three dimensional
unsteady laminar boundary layer equations for free
convection flow around a curvilinear surface, in order to
establish necessary and sufficient conditions under which
similarity solutions are possible. The concept of
‘similarity’ initially introduced by Blasius has become a
useful tool now-a-day. On the basis of similarity
transformations and finally the reduction of the set of
partial differential equations to a set of ordinary
differential equations have now reached stage of any great
extent. It is often difficult and even impossible to find the
solution of partial differential equation with usual classical
method. So applied mathematicians and engineers devote
themselves to develop the ways and means for their
solutions with simplifying assumptions. Similarity
solution is one of the means, where the reduction of
number of independent variables into one being done
successfully.

The theoretical, experimental and numerical
analysis has been carried out extensively by among others
[1], [2], [3], [4], etc for the natural convection boundary
layer flow about isothermal. Johnson and Cheng [5]
examined the necessary and sufficient condition under
which similarity solution exist for free convection
boundary layers adjacent to flat plates in porous media.
The solutions obtained in their work were more general
than those appearing in the previous studies. Later Merkin
[6] studied the similarity solutions for free convection
vertical plate where the (non-dimensional) plate
temperature and the (non-dimensional) surface heat flux

were taken to be X;t and — xH , respectively. He also
discussed the conditions for which the solution became
valid (/1, ,u)Z 1. Next, Pop and Takhar [7] investigated the

free convection flow over a non-isothermal two
dimensional body shape geometrical configuration which
permitted similarity solution. A comprehensive study of
similarity solutions for free convection boundary layer
flow over a permeable wall in a fluid saturated porous
medium was carried out by Chaundhury et al., [8] which
shown that the system depends on the power low exponent
and the dimensionless surface mass transfer rate. Jayaraj et

al., [9] discussed elaborately the analysis of
thermophoresis in natural convection flow with variable
fliuid properties above a vertical cooled plate.

Williams et al., [10] studied the unsteady free
convection flow over a vertical flat plate under the
assumption of variations of the wall temperature with time
and distance. They found possible semi-similar solutions
for a verity of classes of wall temperature distributions.
Kumari et al., [11] observed that the unsteadiness in the
flow field was caused by the time dependent velocity of
the moving sheet. The constant temperature and the
constant heat flux conditions were consideration in their
investigation. Slaouti et al., [12] investigated the
temperature and surface heat transfer were changed in a
small interval of time for the unsteady free convection
flow in the stagnation-point region of a three dimensional
body. The surface heat transfer parameter increased with
the increase of Prandtl number while the surface skin
friction parameters decreased with the increase of Prandtl
number. The possible similarity cases were discussed in
tabulated form for AT -variations in addition to those of
exterior velocity components tabulated by Hansen and
Ohio [13].

The theoretical studies on laminar free convection
on vertical plates and cylinders [14] have received wider
attention, especially in dealing with non-uniform surface
temperature and heat-flux  distributions. However,
available in the literature, are only a few exact solutions,
which have all been derived by using the technique of
similarity solution. In such technique, the pertinent
boundary layer equation, under a suitable transformation,
are reduced to a set of set of ordinary differential
equations in terms of a similarity variable, which is a
function of the original independent variables. Then these
simultaneous ordinary equations with boundary conditions
are solved numerically, yielding velocity and temperature
profiles, from  which important boundary-layer
characteristics are determined. However, because of the
nature of the transformation, these similarity solutions are
only valid for certain specific surface conditions.

In the present study we deal with the similarity
solution of wunsteady free convective laminar
incompressible flow over a heated vertical curvilinear
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surface. With systematic analyses the governing partial
differential equations are transformed into a set of
ordinary differential equations. Finally similarity
requirements are exhibited for T,h;,hp, UE and Vg

variations. Numerical results are presented to predict flow
characteristics for different values of the controlling
parameters involved in the similarity transformation. The
rest of the paper is arranged as follows. In section two, a
complete set of boundary layer equations governing the
flow and temperature fields in general orthogonal
curvilinear ~ co-ordinates  are  formulated. = The
transformation leading to similarity and a brief description
of the possible similarity case are given in section three
and four respectively. Section five gives a numerical study
to demonstrate the influence of the controlling parameters
on the flow field and the temperature distribution as well
as on the skin-friction and heat transfer factors. In section
six the conclusion are drawn from our present research.

GOVERNING EQUATIONS
We consider the flow direction along the & -axis
and 77-axis and be defined in the surface over which the

boundary layer is flowing. For simplicity hj (5,77)=1

has been set such that § represents actual distance
measured normal to the surface. The body force is taken as

the gravitational force g(g & (§ , 77), 9, (é: , 77),0). The

fluid property variations other than density variation in the
buoyancy term of the momentum equation are ignored.

The governing boundary layer equations of the
flow field in general orthogonal curvilinear co-ordinates
are:

Continuity equation

0 0 0
%(hzuﬁa(hlvﬁa(hlhzw)ﬂ )

u-momentum equation

Du uv oh vZ oh 1
ot i or i ae = ATATA
Dt h1h2 67] h1h2 6(§ hl
) @)
vl
oc?
v-momentum equation
Dv uv oh uZ oh 1
_+__2___1:__ﬂTAT6977
Dt hth o0& hth on hz
5 3)
o°v
+V——0-0
oc?

Energy equation

PO ol 2 tnaT)+ L2 (naT)+ L2 (inaT)
Dt |at hy o0& hy, o

v a%s

CPr 84’2

4)

HCp

where Pr = is the Prandtl number of the fluid.

The boundary conditions are:

u(t,&,7.0)=v(t.£,7,0)=0, 0(t.£,7,0)=1
u(t,f,n,oo)= v(t,g,n,oo)= 49(t,§,77,oo)= o ©

TRANSFORMATION LEADING TO SIMILARITY
SOLUTION

Equations (1-4) are non-linear, simultaneous
partial differential equations and the solutions of these
equations are extremely difficult to obtain. Hence our aim
is to reduce equations (2-4) to ordinary differential
equations with the help of (1) which permits possible

variations in AT,Ug,VE,hjand h, with respect to t,&
and 7.

Let us now change the variables {,&,77 and ¢ to a new
set  of 7, X,Y and 5 , that s,
(t, én, é’) - (r, X.,Y, 5) by the set of following equations:

variables

PRV - ¢
t=r,{=X,n=Y and¢_y(r,X,Y) (6)

;/(z', X ,Y) is considered primarily here to be proportional

to the square root of the local boundary layer thickness.
Thus the transformed momentum and energy equation:

= 1 — 1
vF555 +E(a0+a1 ~a)FF55 +E(a3 +ay—as)

S_Eii = (a6 = 5&7 )S_Fgg —ag Eaz - (a9 +a; 0)E$85 @)

— — ~
+a115(/; —a12F¢ +a1360 =0

- 1 — 1
vs¢;¢;¢;+5(a3+a4—a5)ss¢;¢; +5(a0 +a;—ay)

§$¢;E—(a6—$a7)§¢;¢;—a14§§—(a15 +a16)l5¢;§$ ®

£2 0 —
+a17F¢; a188¢ +3199 =0

and

v
Pr

1 1
955 +5(a0 +a; ~ay JF Oy +E(a3 +ay —as)
S_éa 7(36 75&7)55 7(&20[:5 +a21§¢;)97a22§:0

)
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where the constant a’s and the differential equation
involving the independent parameter 7, X and Y are
given by the following differential equations:

2 2(h,U
PUE | g, 2k, (10)
hy x hihy

2
1 yV
72UFh2(_J —ay,|—F| =aj.
hiha ) hy ),
2
hvV
Vel oy () o wpmag,
hihy hihy )y

2 2 (U 2,
Wr:a7,};]T(UF)x:a8’ %VF{( F)Y}:a% Zve I —q,

2 2 2 2
ye Ve) 7 Ug), y
—hyx =aq, =ajp, ——— PBrATgx =413,
by Ur hX =a] 12 hlUFﬁT gx =a13
2 2 2
Ug (vVe) Ug h
*}r; Ve =ai, 7h = v X—as, 7h FTZIX =26,
2 1 F 1 2
2 2 2 2
r" We), r*(Ve), y
———hy =aq7, =ag, ATgy = a9,
by Ve Iy = a7 Ve 18 Ve BrATgy =29
r*Ue Ve 2
hl (lnAT)X =aj(, h2 (IHAT)Y =az(, 7 (IHAT)T=322.

The above differential equations are denoted by
the equation number (10).

On simplification of expression for as in equation
(10) and ignoring the suction or injection effects
(i.e.,ag = 0), we obtain the following relationships:

2

- F _agX +A(Y,7) (11)
1
2
YVE Y +B(r,X) (12)
hy
y? =2a77+C(X.Y) (13)

POSSIBLE SIMILARITY CASE
We consider here:

oA(Y,7) o aB(T,x)io aC(X,Y) 0

oY ©or TaX ’ (14)
ac(x,Y):() 6A(Y,r)¢0 GB(T,X)io

oY ©or ©oX

Let us suppose that all above partial derivatives
are constants and chooseh; =hy. Then by virtue of

equations (14), we obtain:

A(Y,r):%HAO

B(r,X)=kaly +LiX+BO (15)
1

C(X,Y)=k3l3X +Cyp

where

VE hy
—=ky, —=ky, —=kz, 2a7 +ajg —arq =1»,
Ve 1 hy 2 Up 3 7 tajg —ax4 =13

ag-a;—az =13,
24’:17 +ap —ap3z = |5
and

Q- —a-a+as=lg.

For simplicity 72 is found to be

¥ =agks X +2a77+ Agks (16)
Therefore, in view of equation (13) and (16), we

obtain:

hz =h1 :bl(a0k3X +2&7T+ A0k3)m (17)

a
where m = 216
ag

Ug :L’—l(a0k3x +2a77 + Agks )" (18)
3
VE =biks (agks X +2a77 + Agks )™ (19)

The similarity requirements furnish us with the
relation between the constants (a’s). The relations are,
ag,ay are arbitrary,

a, =2ma,,a, =-2ma,,a, =a, =a, =4a, =0,
ma,

dg =Ma,,a, =a,, 7k2 5
1

=0,a, = a, =2ma,,

k _

a; = b%(aoksx +2a,7+Ak,) " BrATY (20)
|

a, =0,a, =ma,,a,, =ma,,a,, =0, a, =2ma,,

1 -2m
aw =W(aok3x +2a7f+ A0k3)1 : IBTATgY’
172

a, =(2m-1)a,,a,, =0, a,=02m-1)a,.

Hence the general equations (7-9) reduce to:
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o Aml = mag =2
VF¢¢¢ FF¢¢+a7¢F¢¢ ma0F¢ +— kz S¢
—2ma7l?¢; +a135:0
— 4m+1
VS¢¢¢ aOS¢¢F+a7¢S¢¢
—2ma0F¢;S¢;—2ma7§¢;+a13§:0
and
v ~ 4

g5+ m+l T agFay +ar40 -
(2m~1jagF ;6 -2(2m~1)+a76 =0
Subject to boundary conditions
F(0)=F;(0)=0, Fz(x)=0,5(0)=5;(0)=0,
S ¢ (oo) =0 for the dimensionless stream function

and@(0)=1, @()=0 for the dimensionless temperature
function.
Let us now substitute F=of, S=0s, ¢d=ap =0 in

the above equation. Then putting [4m+1ja0a -1 and
2 v
writing 87 _¢ _2M __ 5. Also _2 a3, and
ag  4m+1 4m+1 ag
2 ajg
————=R for purely free convection. Finally we
4m+1 ag
obtain,
1 2
f"+ff"+(2-4 fr-pl £'2 ——s'2 +2cf’
(2-4p)p - 2 a1
+0=0
s"+ fs"+(2—4p)cgs" - 28(f's'+5)+RO=0 (22)
and
Prlon+ 0+ (2-48)p0 —(68-2)F'0 (23)
~(128-4)6=0

where prime denotes the differentiation with respect to ¢ .

The boundary conditions are

(0)=10)=0.  1)=0

5(0)=5(0)=0,  s(0)=0 (24)
000)=1,  8(x)=0
If we put f=0and adjust value of the

controlling parameter, equations (21) to (23) with
boundary conditions (24) coincide with the cases of the
possible similarity solutions for laminar free convection on
vertical plates studied by Yang [14].

We have, in this case, the similarity requirements
are:

hy oc(Y+(_:t_), U|2: oc gx STAT, Vé « gx BrAT,

AT oc(X+Ct)2m 1 where X=X + X andf =7 +7y.
The similarity variable ¢ is:

z
X +¢t)

#=Grxp) &

4m+1 gy SrAT(X+cE)
2hf y?

modified Grashof number.

where (Grif )1/ 4= is the

The velocity components

u=U f'(¢) where UZ = -gx SrATL

V=VEs'(¢) where V2 =gy STATL,

and

1

o) (¢ (3)]

The skin friction coefficients are:

1

au (4m+1) | » Grg* .,
= - = U f"o
Twl ﬂ( 62) > PYE hy ( )

1

o (4m+1) 5 Grgt
= = =T kv — X s7(0
w2 Iu(aZJz—O 2 1PVE hy s"(0)

Heat flux,
1

aT 4m+1Y ag 2, L ,
=—k =—KkAT — t), 0’10
Qw [62 ]2—0 ( oy j( ks j (X+C )2 (0)

NUMERICAL SOLUTIONS

The set of ordinary differential equations (21) to
(23) with boundary conditions (24) are nonlinear and
coupled. A standard initial value solver i.e., the shooting
method is used to solve these equations numerically. For
this purpose we applied the Nacthsheim-Swigert iteration
technique (Nachtsheim and Swigert, 1965) [15], [16], [17].
In the process of iteration the velocity and temperature
profile, the skin friction coefficients (f”(0)s"(0)) and the

heat transfer factor (9'(0)) are evaluated. The numerical

results obtained for several selected values of the
established parameter are displayed in graphs and tables
below.

The dimensionless velocity profiles are presented
in Figures-1-8, whereas the dimensionless temperature
profiles are presented in Figures- 9-12.
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Figures 1 and 2 represent the dimensionless
velocity profiles along x and y-directions, respectively for
fixed value of f=0.3,k; =0.3,R=1 and Pr=0.72 with
several value of c. It is observed that both the velocity
profile decreases as the values.

Procedure for paper submission

07 = 1 e - cee -
or /7 =0.0 7
f’[;af'] =)
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i
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Figure-1. Variation of the dimensionless velocities against
@ along x-direction for different values of

¢ (B, ky R and Pr are fixed).
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Figure-2. Variation of the dimensionless velocities against
@ along y-direction for different values of

¢ (B,K{, R and Pr are fixed).

Figures 3 and 4 illustrate the dimensionless
velocity profiles along x and y-directions, respectively for
fixed value of ¢ =0.0,k; =0.3,R=1 and Pr=0.72 with
several value of 5. It is observed that both the velocity
profile decreases with the increase of the parameter £ .

Figures
dimensionless velocity profiles along x and y-directions,
respectively for fixed value of ¢=0.0,=0.3,R=1 and

5 and 6 display the variation of

Pr=0.72 with several value ofkj. It is seen from this

Figure that both the velocity profile increases with the
increases of the parameter k| from which we conclude that
the fluid velocity rises due to greater thermal-diffusion.

Figures 7 and 8 exhibits the behavior of
dimensionless velocity profiles along x and y-directions,
respectively for fixed value of ¢=0.0,k; =0.3,5=0.3
and Pr=0.72 with some selected value of R. Here that
both the velocity profile has the same displacement as the
values of the parameter R increases and later velocity
profile crosses the prior velocity profile.

07T T T T L DL B |
o 0| / . |3=0.3 .
) A\ — p=0.6 |
A p=0.9
D4 i .._.l -
03f ,llll. F ‘ 1
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R
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Figure-3. Variation of the dimensionless velocities against

@ along x-direction for different values of B (c, k{, R and

Pr are fixed).
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Figure-4. Variation of the dimensionless velocities against
@ along y-direction for different values of B (c, kq, R and
Pr are fixed).
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Figure-5. Variation of the dimensionless velocities against
@ along x-direction for different values

of kq (c, B, R and Pr are fixed).
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Figure-6. Variation of the dimensionless velocities against
@ along y-direction for different values of

kq (c, B, R and Pr are fixed).

] R=1 ]

EE 3 A W R=3 -

Jrig To— === R=5 1
g .

Figure-7. Variation of the dimensionless velocities against
@ along x-direction for different values

of R (c, B, k| and Pr are fixed).

Figure-8. Variation of the dimensionless velocities against
@ along y-direction for different values of R

(c, B, kj and Pr are fixed).
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Figure-9. Variation of the dimensionless temperature
against ¢ along x-direction for different values of ¢

(B. Ky, R and Pr are fixed).
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Figure-10. Variation of the dimensionless temperature
against ¢ along x-direction for different values

of B (¢, kq, R and Pr are fixed).
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Figure-11. Variation of the dimensionless temperature
against ¢ along x-direction for different values of Ky
(c, B, R and Pr are fixed).

gl

Figure-12. Variation of the dimensionless temperature
against @ along x-direction for different values of R

(c, B,k and Pr are fixed).

Figure-9 presents the dimensionless temperature
profiles for fixed value of £=03, k;=0.3, and
R =1 Pr =0.72 with selected value of c. We observe that
the temperature profile decrease with the increasing values
of the parameter c.

Figure-10 exhibits the behavior of dimensionless
temperature profiles for f -variations for fixed value of

c=0.0, kj =03, R=1 andPr=0.72. Here, the
temperature profiles habitually decrease with increasing
of §. The temperature near to the plate surface is large

and away from the surface the temperature drops off
asymptotically.

A reverse situation is observed in Figure-11 for
the variation of the parameterky , a raise in temperature is
examined as Kj increases from 1.0 to 5.0.

Figure-12 displayed the wvariation of the
dimensionless temperature profiles for fixed value of
c=0.0, £=0.3, kj =1 and Pr=0.72 with the values of
the parameter R. We observe that the temperature profile
decrease as the value of R increases.

Since the flow characteristics of the present
problem are associated with the skin friction and heat
transfer coefficients and are of practical interest, so the
numerical results for f"(0), S"(O) and 6'(0) for variation
of different parameters are presented in tabular forms. The
variation of the coefficients of skin-friction along x and y-
directions and the heat transfer coefficients with the
variation of the parameters c, B, kj and R are displayed in
Table-1 (a)-(b) and Table-2 (a)-(b), respectively.

From the Table-1 (a), we observe that the values
proportional to the skin friction coefficients gradually
decreases with increasing values of parameter ¢ but the
rate of decrease is more leading along y-direction (S”(O))
than  x-direction(f"(0)). The
dimensionless skin friction factors with the variation of the
parameters B,k; and R along x and y-directions are also
presented in Table-1 (b), Table-2 (a) and Table-2 (b)
respectively, given below.

It can be observed from Table-2 (b) that the skin-
friction coefficient in the x and y-direction increases as R
increases. The values proportional to the variation of heat
transfer coefficients (—9’(0)) with the variation of
parameter ¢ for fixed #=0.3, k; =03, R=1, Pr=0.72
and g for fixed ¢=0.0, k; =03, R=1, Pr=0.72 are
shown in Table-1 (a)-(b), respectively.

variation of the

Table-1. Variation of the coefficients of skin friction and
heat transfer for different values of parameter (a) ¢ (with
£=03,k; =0.3,R=1andPr=0.72) (b) B (with

€c=0.0,k; =0.3,R=1and Pr=0.72).

(a)
C f(0) s"(0) 0'(0)
0.1 | 1.034560840 | 0.662554379 | -0.378364551
03 | 0924955131 | 0.652736787 | -0.385210644
0.5 | 0.828371037 | 0.636187050 | -0.398087688
0.7 | 0745232677 | 0.614725437 | -0.416365640
0.9 | 0.676796155 | 0.591539170 | -0.437424159
1.1 | 0.620313035 | 0.567937456 | -0.460609526
13 | 0.573194767 | 0.544644147 | -0.485617789
1.5 | 0.535259504 | 0.523781561 | -0.509151700
1.7 | 0.502662768 | 0.503741169 | -0.533915911
1.9 | 0.475751275 | 0.486117761 | -0.556691203
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(b)

s ') 5'(0) 0'0)

0.1 | 1.640471340 | 1.173819440 0.449250465
0.2 | 1.264973090 | 0.811851171 | -0.155709757
0.3 | 1.092851560 | 0.664281302 | -0.377650067
0.4 | 0.988198088 | 0.581107820 | -0.501164963
0.5 | 0915786743 | 0.526328752 | -0.584155744
0.6 | 0.861924680 | 0.486747057 | -0.646150903
0.7 | 0.819615359 | 0.456343531 | -0.695591060
0.8 | 0.785227425 | 0.431967110 | -0.736804692
0.9 | 0.756436107 | 0.411810892 | -0.772197621
1.0 | 0.731874099 | 0.394735891 | -0.803313913

Table-2. Variation of the coefficients of skin friction and
heat transfer for different values of parameter (a) ki (with

¢=0.0, #=0.3, R=1and Pr=0.72) (b) R (with
c=0.0,8=023, k; =0.3andPr=0.72).

(a)
ki f"(0) s"(0) 0'(0)
0.1 | 1.640479980 | 0.584488045 | -0.451787421
03 | 1.092851560 | 0.664281302 | -0.377650067
0.5 | 1.008659520 | 0.682342271 | -0.362830001
0.7 | 0.981658198 | 0.688812890 | -0.357638941
0.9 | 0.969586539 | 0.691675487 | -0.355401046
1.1 | 0.963428399 | 0.693234050 | -0.354168905
1.3 | 0.959942394 | 0.694189279 | -0.353399275
1.5 | 0.957552553 | 0.694742823 | -0.352979020
1.7 | 0.955944997 | 0.695116411 | -0.352695734
1.9 | 0.954812771 | 0.695380138 | -0.352495921
(b)
R f"(0) s"(0) 0'(0)
1.0 | 1.09285156 | 0.66428130 | -0.377650067
20 | 136080940 | 1.23987952 | -0.416722268
3.0 | 1.64516365 | 1.75445705 | -0.451264709
40 | 192708973 | 222992788 | -0.480716950
50 | 220301222 | 2.67771952 | -0.506223872
6.0 | 247309155 | 3.10461908 | -0.528674340
7.0 | 273506986 | 3.51421759 | -0.548954107
8.0 | 299110573 | 3.90986122 | -0.567374103
9.0 | 3.24221630 | 4.29379992 | -0.584244808
10.0 | 3.48943562 | 4.66777753 | -0.599794620

The heat transfer factors with variation of
parameters kj for fixedc=0.0, #=0.3, R=1, Pr=0.72

and R for fixedc=0.0,=0.3, k; =0.3, Pr=0.72. are
also presented in Table-2 (a)-(b), respectively.

CONCLUSIONS

An analysis is here made of unsteady laminar
boundary Layer equations for free convection around a
vertical heated curvilinear surface for establishing
necessary and sufficient conditions under which similarity
solution are possible. On the basis of the conditions one
possible case has been derived and then solved
numerically. The flow and temperature fields as well as
the non-dimensional skin friction factors and heat transfer
coefficients are determined for several selected values of
the controlling parameter involved in equations (21) to
(23). The physical behavior of the controlling parameters

(Pr,Cc and k; :Ué /Vé) used in equations (21) to (23)

are, the Prandtle number (Pr) for air, ¢ for the ratio
between the changes of local boundary layer thickness

with regard to position and time and Vé << U|2: for a

free convection flow. Further investigations are necessary
to deal with the possible similarity cases in order to drawn
overall remarks conclusively.
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