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ABSTRACT  

In this paper, a study is made of the unsteady laminar natural convection boundary layer equations on a vertical 
curvilinear surface to establish necessary and sufficient conditions under which the similarity solutions are possible. The 
free parameter method is used to obtain similarity solutions. One of the cases of possible similarity solutions is discussed 
analytically and numerically. 
 
Keywords: similarity solutions, unsteady, free convection, curvilinear surface, Nacthsheim-Swigert iteration technique. 
 
INTRODUCTION 

An analysis is made of three dimensional 
unsteady laminar boundary layer equations for free 
convection flow around a curvilinear surface, in order to 
establish necessary and sufficient conditions under which 
similarity solutions are possible. The concept of 
‘similarity’ initially introduced by Blasius has become a 
useful tool now-a-day. On the basis of similarity 
transformations and finally the reduction of the set of 
partial differential equations to a set of ordinary 
differential equations have now reached stage of any great 
extent. It is often difficult and even impossible to find the 
solution of partial differential equation with usual classical 
method. So applied mathematicians and engineers devote 
themselves to develop the ways and means for their 
solutions with simplifying assumptions. Similarity 
solution is one of the means, where the reduction of 
number of independent variables into one being done 
successfully. 

The theoretical, experimental and numerical 
analysis has been carried out extensively by among others 
[1], [2], [3], [4], etc for the natural convection boundary 
layer flow about isothermal. Johnson and Cheng [5] 
examined the necessary and sufficient condition under 
which similarity solution exist for free convection 
boundary layers adjacent to flat plates in porous media. 
The solutions obtained in their work were more general 
than those appearing in the previous studies. Later Merkin 
[6] studied the similarity solutions for free convection 
vertical plate where the (non-dimensional) plate 
temperature and the (non-dimensional) surface heat flux 

were taken to be λx  and µx− , respectively. He also 
discussed the conditions for which the solution became 
valid ( ) 1, ≥µλ . Next, Pop and Takhar [7] investigated the 
free convection flow over a non-isothermal two 
dimensional body shape geometrical configuration which 
permitted similarity solution. A comprehensive study of 
similarity solutions for free convection boundary layer 
flow over a permeable wall in a fluid saturated porous 
medium was carried out by Chaundhury et al., [8] which 
shown that the system depends on the power low exponent 
and the dimensionless surface mass transfer rate. Jayaraj et 

al., [9] discussed elaborately the analysis of 
thermophoresis in natural convection flow with variable 
fliuid properties above a vertical cooled plate. 

Williams et al., [10] studied the unsteady free 
convection flow over a vertical flat plate under the 
assumption of variations of the wall temperature with time 
and distance. They found possible semi-similar solutions 
for a verity of classes of wall temperature distributions. 
Kumari et al., [11] observed that the unsteadiness in the 
flow field was caused by the time dependent velocity of 
the moving sheet. The constant temperature and the 
constant heat flux conditions were consideration in their 
investigation. Slaouti et al., [12] investigated the 
temperature and surface heat transfer were changed in a 
small interval of time for the unsteady free convection 
flow in the stagnation-point region of a three dimensional 
body. The surface heat transfer parameter increased with 
the increase of Prandtl number while the surface skin 
friction parameters decreased with the increase of Prandtl 
number. The possible similarity cases were discussed in 
tabulated form for T∆ -variations in addition to those of 
exterior velocity components tabulated by Hansen and 
Ohio [13].  

The theoretical studies on laminar free convection 
on vertical plates and cylinders [14] have received wider 
attention, especially in dealing with non-uniform surface 
temperature and heat-flux distributions. However, 
available in the literature, are only a few exact solutions, 
which have all been derived by using the technique of 
similarity solution. In such technique, the pertinent 
boundary layer equation, under a suitable transformation, 
are reduced to a set of set of ordinary differential 
equations in terms of a similarity variable, which is a 
function of the original independent variables. Then these 
simultaneous ordinary equations with boundary conditions 
are solved numerically, yielding velocity and temperature 
profiles, from which important boundary-layer 
characteristics are determined. However, because of the 
nature of the transformation, these similarity solutions are 
only valid for certain specific surface conditions. 

In the present study we deal with the similarity 
solution of unsteady free convective laminar 
incompressible flow over a heated vertical curvilinear 
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surface. With systematic analyses the governing partial 
differential equations are transformed into a set of 
ordinary differential equations. Finally similarity 
requirements are exhibited for FUhhT ,2,1,  and FV  
variations. Numerical results are presented to predict flow 
characteristics for different values of the controlling 
parameters involved in the similarity transformation. The 
rest of the paper is arranged as follows. In section two, a 
complete set of boundary layer equations governing the 
flow and temperature fields in general orthogonal 
curvilinear co-ordinates are formulated. The 
transformation leading to similarity and a brief description 
of the possible similarity case are given in section three 
and four respectively. Section five gives a numerical study 
to demonstrate the influence of the controlling parameters 
on the flow field and the temperature distribution as well 
as on the skin-friction and heat transfer factors. In section 
six the conclusion are drawn from our present research.   
 
GOVERNING EQUATIONS 

We consider the flow direction along the ξ -axis 
and η -axis and be defined in the surface over which the 

boundary layer is flowing. For simplicity ( ) 1,3 =ηξh  

has been set such that ζ represents actual distance 
measured normal to the surface. The body force is taken as 
the gravitational force ( ) ( )( )0,,,, ηξηξ ηξ ggg . The 
fluid property variations other than density variation in the 
buoyancy term of the momentum equation are ignored. 

The governing boundary layer equations of the 
flow field in general orthogonal curvilinear co-ordinates 
are: 
 
Continuity equation 
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Energy equation 
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where 
k
C pµ

=Pr is the Prandtl number of the fluid. 

The boundary conditions are: 
 

( ) ( ) ( )
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TRANSFORMATION LEADING TO SIMILARITY 
SOLUTION  

Equations (1-4) are non-linear, simultaneous 
partial differential equations and the solutions of these 
equations are extremely difficult to obtain. Hence our aim 
is to reduce equations (2-4) to ordinary differential 
equations with the help of (1) which permits possible 
variations in 1,,, hVUT FF∆ and 2h with respect to ξ,t  
andη . 
Let us now change the variables ηξ ,,t  and ζ  to a new 
set of variables YX ,,τ  andφ , that is, 
( ) ( )φτζηξ ,,,,,, YXt →  by the set of following equations: 

 

YXt === ηξτ ,, and ( )YX ,,τγ
ζφ =                             (6) 

 

( )YX ,,τγ  is considered primarily here to be proportional 
to the square root of the local boundary layer thickness. 
Thus the transformed momentum and energy equation:  
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where the constant a’s and the differential equation 
involving the independent parameter τ , X  and Y  are 
given by the following differential equations: 
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The above differential equations are denoted by 
the equation number (10). 

On simplification of expression for as in equation 
(10) and ignoring the suction or injection effects 
(i.e., 06 =a ), we obtain the following relationships: 
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POSSIBLE SIMILARITY CASE  
We consider here: 
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Let us suppose that all above partial derivatives 
are constants and choose 21 hh = . Then by virtue of 
equations (14), we obtain: 
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where 
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and                                 
 

61511210 laaaaa =+−−− . 
 

For simplicity 2γ  is found to be 
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Therefore, in view of equation (13) and (16), we 
obtain:  
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The similarity requirements furnish us with the 
relation between the constants (a’s). The relations are, 

70 , aa  are arbitrary, 
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Hence the general equations (7-9) reduce to: 
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Subject to boundary conditions 
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( ) 0=∞φS  for the dimensionless stream function 

and ( ) ( ) 0,10 =∞= θθ  for the dimensionless temperature 
function. 
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where prime denotes the differentiation with respect to φ . 
 

The boundary conditions are 
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If we put 0=f and adjust value of the 
controlling parameter, equations (21) to (23) with 
boundary conditions (24) coincide with the cases of the 
possible similarity solutions for laminar free convection on 
vertical plates studied by Yang [14]. 

We have, in this case, the similarity requirements 
are: 
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The velocity components  
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The skin friction coefficients are: 
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Heat flux, 
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NUMERICAL SOLUTIONS 

The set of ordinary differential equations (21) to 
(23) with boundary conditions (24) are nonlinear and 
coupled. A standard initial value solver i.e., the shooting 
method is used to solve these equations numerically. For 
this purpose we applied the Nacthsheim-Swigert iteration 
technique (Nachtsheim and Swigert, 1965) [15], [16], [17]. 
In the process of iteration the velocity and temperature 
profile, the skin friction coefficients ( ) ( )( )00 sf ′′′′  and the 
heat transfer factor ( )( )0θ ′  are evaluated. The numerical 
results obtained for several selected values of the 
established parameter are displayed in graphs and tables 
below. 

The dimensionless velocity profiles are presented 
in Figures-1-8, whereas the dimensionless temperature 
profiles are presented in Figures- 9-12. 
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Figures 1 and 2 represent the dimensionless 
velocity profiles along x and y-directions, respectively for 
fixed value of 1,3.0,3.0 1 === Rkβ  and 72.0Pr =  with 
several value of c. It is observed that both the velocity 
profile decreases as the values. 
 
Procedure for paper submission 
 

 
 

Figure-1. Variation of the dimensionless velocities against 
φ  along x-direction for different values of 

c (β, 1k  R and Pr are fixed). 
 

 
 

Figure-2. Variation of the dimensionless velocities against 
φ  along y-direction for different values of 

c (β, 1k , R and Pr are fixed). 
 

Figures 3 and 4 illustrate the dimensionless 
velocity profiles along x and y-directions, respectively for 
fixed value of 1,3.0,0.0 1 === Rkc  and 72.0Pr =  with 
several value of β . It is observed that both the velocity 
profile decreases with the increase of the parameter β . 

Figures 5 and 6 display the variation of 
dimensionless velocity profiles along x and y-directions, 
respectively for fixed value of 1,3.0,0.0 === Rc β  and 

72.0Pr =  with several value of 1k . It is seen from this 
Figure that both the velocity profile increases with the 
increases of the parameter 1k  from which we conclude that 
the fluid velocity rises due to greater thermal-diffusion.  

Figures 7 and 8 exhibits the behavior of 
dimensionless velocity profiles along x and y-directions, 
respectively for fixed value of 3.0,3.0,0.0 1 === βkc  
and 72.0Pr = with some selected value of R. Here that 
both the velocity profile has the same displacement as the 
values of the parameter R increases and later velocity 
profile crosses the prior velocity profile. 
 

 
 

Figure-3. Variation of the dimensionless velocities against 
φ  along x-direction for different values of β (c, 1k , R and 

Pr are fixed). 
 

 
 

Figure-4. Variation of the dimensionless velocities against 
φ  along y-direction for different values of β (c, 1k , R and 

Pr are fixed). 
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Figure-5. Variation of the dimensionless velocities against 
φ  along x-direction for different values 

of 1k  (c, β, R and Pr are fixed). 
 

 
 

Figure-6. Variation of the dimensionless velocities against 
φ  along y-direction for different values of 

1k  (c, β, R and Pr are fixed). 
 

 
 

Figure-7. Variation of the dimensionless velocities against 
φ  along x-direction for different values 

of R (c, β, 1k and Pr are fixed). 

 
 

Figure-8. Variation of the dimensionless velocities against 
φ  along y-direction for different values of R 

(c, β, 1k and Pr are fixed). 
 

 
 

Figure-9. Variation of the dimensionless temperature 
against φ  along x-direction for different values of c 

(β, 1k , R and Pr are fixed). 
 

 
 

Figure-10. Variation of the dimensionless temperature 
against φ  along x-direction for different values 

of β (c, 1k , R and Pr are fixed). 
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Figure-11. Variation of the dimensionless temperature 
against φ  along x-direction for different values of 1k  

(c, β, R and Pr are fixed). 
 

 
 

Figure-12. Variation of the dimensionless temperature 
against φ  along x-direction for different values of R 

(c, β, 1k and Pr are fixed). 
 

Figure-9 presents the dimensionless temperature 
profiles for fixed value of ,3.0=β  ,3.01 =k  and 

1=R 72.0Pr = with selected value of c. We observe that 
the temperature profile decrease with the increasing values 
of the parameter c. 

Figure-10 exhibits the behavior of dimensionless 
temperature profiles for β -variations for fixed value of 

,0.0=c  ,3.01 =k 1=R  and 72.0Pr = . Here, the 
temperature profiles habitually decrease with increasing 
of β . The temperature near to the plate surface is large 
and away from the surface the temperature drops off 
asymptotically. 

 A reverse situation is observed in Figure-11 for 
the variation of the parameter 1k , a raise in temperature is 
examined as 1k increases from 1.0 to 5.0. 

Figure-12 displayed the variation of the 
dimensionless temperature profiles for fixed value of  

,0.0=c  ,3.0=β 11 =k  and 72.0Pr = with the values of 
the parameter R. We observe that the temperature profile 
decrease as the value of R increases.  

Since the flow characteristics of the present 
problem are associated with the skin friction and heat 
transfer coefficients and are of practical interest, so the 
numerical results for ( )0f ′′ , ( )0s ′′  and ( )0θ ′  for variation 
of different parameters are presented in tabular forms. The 
variation of the coefficients of skin-friction along x and y-
directions and the heat transfer coefficients with the 
variation of the parameters c, β, 1k and R are displayed in 
Table-1 (a)-(b) and Table-2 (a)-(b), respectively. 

From the Table-1 (a), we observe that the values 
proportional to the skin friction coefficients gradually 
decreases with increasing values of parameter c but the 
rate of decrease is more leading along y-direction ( )( )0s ′′  
than x-direction ( )( )0f ′′ . The variation of the 
dimensionless skin friction factors with the variation of the 
parameters β, 1k  and R along x and y-directions are also 
presented in Table-1 (b), Table-2 (a) and Table-2 (b) 
respectively, given below.   

It can be observed from Table-2 (b) that the skin-
friction coefficient in the x and y-direction increases as R 
increases. The values proportional to the variation of heat 
transfer coefficients ( )( )0θ ′−  with the variation of 
parameter c for fixed 3.0=β , 3.01 =k , 1=R , 72.0Pr =  
and β  for fixed 0.0=c , 3.01 =k , 1=R , 72.0Pr =  are 
shown in Table-1 (a)-(b), respectively. 
 
Table-1. Variation of the coefficients of skin friction and 
heat transfer for different values of parameter (a) c (with 

1,3.0,3.0 1 === Rkβ and 72.0Pr = ) (b) β (with 
1,3.0,0.0 1 === Rkc and 72.0Pr = ). 

 

(a) 
c  ( )0f ′′  ( )0s ′′  ( )0θ ′  

0.1 1.034560840 0.662554379 -0.378364551 
0.3 0.924955131 0.652736787 -0.385210644 
0.5 0.828371037 0.636187050 -0.398087688 
0.7 0.745232677 0.614725437 -0.416365640 
0.9 0.676796155 0.591539170 -0.437424159 
1.1 0.620313035 0.567937456 -0.460609526 
1.3 0.573194767 0.544644147 -0.485617789 
1.5 0.535259504 0.523781561 -0.509151700 
1.7 0.502662768 0.503741169 -0.533915911 
1.9 0.475751275 0.486117761 -0.556691203 
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(b) 
β  ( )0f ′′  ( )0s ′′  ( )0θ ′  

0.1 1.640471340 1.173819440 0.449250465 
0.2 1.264973090 0.811851171 -0.155709757 
0.3 1.092851560 0.664281302 -0.377650067 
0.4 0.988198088 0.581107820 -0.501164963 
0.5 0.915786743 0.526328752 -0.584155744 
0.6 0.861924680 0.486747057 -0.646150903 
0.7 0.819615359 0.456343531 -0.695591060 
0.8 0.785227425 0.431967110 -0.736804692 
0.9 0.756436107 0.411810892 -0.772197621 
1.0 0.731874099 0.394735891 -0.803313913 

 
Table-2. Variation of the coefficients of skin friction and 
heat transfer for different values of parameter (a) 1k  (with 

1,3.0,0.0 === Rc β and 72.0Pr = ) (b) R (with 
3.0,3.0,0.0 1 === kc β and 72.0Pr = ). 

 

(a) 
1k  ( )0f ′′  ( )0s ′′  ( )0θ ′  

0.1 1.640479980 0.584488045 -0.451787421 
0.3 1.092851560 0.664281302 -0.377650067 
0.5 1.008659520 0.682342271 -0.362830001 
0.7 0.981658198 0.688812890 -0.357638941 
0.9 0.969586539 0.691675487 -0.355401046 
1.1 0.963428399 0.693234050 -0.354168905 
1.3 0.959942394 0.694189279 -0.353399275 
1.5 0.957552553 0.694742823 -0.352979020 
1.7 0.955944997 0.695116411 -0.352695734 
1.9 0.954812771 0.695380138    -0.352495921 

 

(b) 
R ( )0f ′′  ( )0s ′′  ( )0θ ′  

1.0 1.09285156    0.66428130   -0.377650067 
2.0 1.36080940    1.23987952 -0.416722268 
3.0 1.64516365    1.75445705    -0.451264709 
4.0 1.92708973    2.22992788    -0.480716950 
5.0 2.20301222    2.67771952    -0.506223872 
6.0 2.47309155    3.10461908    -0.528674340 
7.0 2.73506986    3.51421759    -0.548954107 
8.0 2.99110573    3.90986122    -0.567374103 
9.0 3.24221630    4.29379992    -0.584244808 
10.0 3.48943562    4.66777753    -0.599794620 

 

The heat transfer factors with variation of 
parameters 1k  for fixed 1,3.0,0.0 === Rc β , 72.0Pr =  
and R for fixed 3.0,3.0,0.0 1 === kc β , 72.0Pr = . are 
also presented in Table-2 (a)-(b), respectively. 
 
CONCLUSIONS 

An analysis is here made of unsteady laminar 
boundary Layer equations for free convection around a 
vertical heated curvilinear surface for establishing 
necessary and sufficient conditions under which similarity 
solution are possible. On the basis of the conditions one 
possible case has been derived and then solved 
numerically. The flow and temperature fields as well as 
the non-dimensional skin friction factors and heat transfer 
coefficients are determined for several selected values of 
the controlling parameter involved in equations (21) to 
(23). The physical behavior of the controlling parameters 
( cPr,  and 22

1 / FF VUk = ) used in equations (21) to (23) 
are, the Prandtle number (Pr) for air, c for the ratio 
between the changes of local boundary layer thickness 
with regard to position and time and  22

FF UV <<  for a 
free convection flow. Further investigations are necessary 
to deal with the possible similarity cases in order to drawn 
overall remarks conclusively.  
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