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ABSTRACT 

An approach to detection and diagnosis of multiple faults is proposed. It is based on Interacting Multiple Model 
(IMM) algorithm. The proposed approach provides means of detection, diagnosis of faults and state estimation. It is able to 
detect and diagnose the fault more quickly and reliably than other methods. In this paper the threshold values of various 
types of faults is also proposed. This is illustrated using an Aircraft example which has multiple failures-sensor, actuator 
and other component failures. 
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1. INTRODUCTION 

Fault Detection and Diagnosis (FDD) has become 
increasingly important in industrial processes, due to 
growing demands on operational reliability, safety and 
product quality. The general idea is to use a scheme based 
on measured process data to detect a fault occurrence in a 
physical process, e.g. an actuator fault, to detect and 
isolate the fault location in the process and to identify the 
magnitude and time of occurrence of the fault. 

In flight control system, failures of actuator or 
sensor may cause serious problems and has to be detected 
and isolated as soon and as accurately as possible. Systems 
subjected to such failures cannot be modelled well by 
single set of state equations that vary continuously. A 
more appropriate mathematical model for such system is 
called stochastic hybrid model system. It differs from 
conventional system such that its states may jump as well 
as vary continuously. Hybrid systems have also been used 
in areas such as target tracking and control involving 
structural changes [1]. 

One of the effective methods is based on the 
Multiple Models (MM) estimation. Research on the 
multiple-model (MM) approach has attracted considerable 
interest in the last decades. The reason for this is the 
elegant solutions that the MM approach provides for 
estimation, control and modelling problems. A well known 
example to MM estimation is the target tracking problem. 
Another important estimation application of the MM 
framework is the fault detection and diagnosis (FDD) 
scheme.  

The main motivation for using the MM 
framework for FDD is that it allows for a large class of 
fault conditions to be modelled. MM allows for the 
modelling of actuator, sensor as well as component faults. 
The reason for this is that each of the local models might 
have totally different dynamics. The basic steps of 
performing FDD with MM systems are as follows: a 
model set must be created that contains local models 
corresponding to different fault conditions and normal 
condition of the system. Multiple model has a bank of 
filters in parallel, each based on a model matching to a 
particular mode (i.e., normal and structural or behavioural 
pattern) of the system. The overall state estimate is 

calculated by the probabilistically weighted sum of the 
outputs of all filters. MM algorithms have been developed 
for different application problems such as multiple 
hypothesis test detector and multiple model adaptive 
estimation (MMAE) algorithm [2]. In addition, an 
observer scheme which uses a bank of observers for fault 
detection and diagnosis of deterministic systems was 
devised in [3]. The above filter based approaches are 
based on the “non interacting” MM estimation: the single 
model based filters are running in parallel without mutual 
interaction (i.e., each filter operates independently at all 
times). This approach is effective in handling problems 
with an unknown structure or parameter but without 
structural or parametric changes. Since the system has 
structure or parameter changes when there is a sensor or 
actuator failure, this approach becomes ineffective. 

A recent advance in MM estimation is the 
development of Interacting Multiple Model (IMM) 
estimation. It overcomes the disadvantage of non 
interacting MM approach by modelling the abrupt changes 
of the system by switching from one model to another in a 
probabilistic manner. Since structure of the system is 
considered, the IMM algorithm is more promising for the 
FDD scheme. The IMM differs from the noninteracting 
MM algorithm in that the single model based filters 
interact with each other and thus resulting in improved 
performance. The initial estimate at the beginning of each 
cycle for each filter is a mixture of all estimates from the 
single model based filters. The mixing of estimates helps 
in yielding a more fast and accurate estimate for the 
system states. The other feature is that the probability of 
each mode is calculated which clearly indicates the mode 
in effect and mode transition at each time. Its main 
advantage over the MM based FDD approach is that both 
single and multiple failures can be detected and identified 
more quickly and reliably. This is demonstrated using 
aircraft example with sensor and actuator failures. 

This paper is organized as follows. Modelling of 
multiple failures are presented in section II. The FDD 
scheme based on IMM approach is presented in section 
III. In section IV the detection and diagnosis for sensor 
and actuator failures of aircraft model are discussed. 
Conclusion is given in section V. 
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2. MODELLING OF MULTIPLE FAULTS 
 
A. Hidden Markov chain model for system with 
failures 

The model of the system with potential failures 
can be expressed as:  
 

  
                                    (1) 

 

                           (2)  
 

Where 
 

 is the state vector;  is the measurement 
vector;  is the control input vector; 

and are independent discrete-time 
random process with mean and  co variances 

 and , representing system and measurement 
noises respectively. It is assumed that the initial state has a 
mean  and a covariance , and they are independent 
from  and .The system (1)-(2) is known as a 
“jump linear system”. It can be seen from (2) that the state 
observations are noisy and mode dependent. Therefore, the 
mode information is imbedded in the measurement 
sequence. In other words, the system mode sequence is an 
indirectly observed (or hidden) Markov chain.  

Suppose that a discrete-time process which 
represents the possible system structural/parametric 
changes due to failures is represented by a first-order 
Markov chain with state  taking values in a finite 
set . At each time step, the transition 
probabilities of the chain can be defined by: 
 

       (3) 
 

and 

                        (4) 
 

where  denotes the probability;  is the discrete-
valued  modal state (i.e., the indicator of the normal or the 
fault mode) at time ; is the transition probability 
from the mode  to the mode ; the event that  is in 
effect at time  is denoted as . 
 
B. Multiple model representation of system failures 

The performance of an MM algorithm depends 
on the model set used. Based on the system model (1)-(2), 
it is possible to represent different failures in the system. 
 

 
                        (5) 

 

 
            (6)  

 

Where 

 ,  and   represent the 
fault-induced changes in the system components, actuators 
and sensors, respectively. They should be null matrices 
when  which denotes normal system. The subscript 

 denotes quantities pertaining to the model  
 is a set of all system models 

representing the normal system and the system with all 
considered faults. Matrices ,  and  
corresponds to the th post fault models of the system. 

Designing set of models is the key issue. This 
design should be done such that the models represent or 
cover all possible system modes at any time. This is the 
model set design. This design (i.e., the design of fault type, 
fault magnitude and duration) is crucial for the success in 
FDD. Design of good set of models requires a prior 
knowledge of the possible faults of the system. Faults can 
occur in sensors, actuators and other components of the 
system and may lead to failure of the whole system. They 
can be modelled by the abrupt changes of the components 
of the system. Failures can be of “total” or “partial” in 
nature. 
 
3. FAULT DETECTION AND DIAGNOSIS SCHEME  
    USING IMM ESTIMATOR 
 
A. IMM Estimator 

For estimation, the following tasks should be 
completed: model set design, filter selection, estimate 
fusion and filter reinitialization [1]. 

Filter selection is to select each single model 
based recursive filter for each model, such as a Kalman 
filter for a linear system or an extended kalman filter for a 
nonlinear system. Estimate fusion combines the model-
conditional estimates to yield the overall estimate. Three 
approaches are available: soft decision, hard decision and 
random decision. Re initialization of single model based 
filter is very important for estimation. This is done by 
using previous overall estimate and covariance of all 
filters. 
 The IMM algorithm is a recursive estimator with 
the following steps in each iteration: 
 

a) interaction of the model-conditional estimates 
b) model-conditional filtering 
c) mode probability update 
d) estimates combination 
 

 In the first step, the input to the filter matched to 
a certain mode is obtained by mixing the estimates of all 
filters from the previous iteration under the assumption 
that this particular mode is in effect at the present time; a 
bank of filters corresponding to different models is 
calculated in parallel in the second step; mode probability 
is then updated based on the model-conditional 
innovations and the likelihood functions; finally, the 
aggregated state estimate is obtained as a probability-
weighted sum of the updated state estimates from all the 
filters. 
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 The probability of the mode in effect plays a key 
role in determining the weights in the combination of state 
estimates and covariances for aggregated state estimate. 
The step-1 is unique for the IMM estimator and existing 
non interacting MM algorithms. It is because of this 
mixture of the estimates that makes the estimation for the 
state and identification for the system mode more 
responsive to the system changes, thus leads to 
significantly better FDD performance. 

The IMM estimator [4] is generally considered to 
be one of the most cost-effective schemes for state 
estimation involving both continuous and discrete states. It 

has been successfully used in a number of applications, 
e.g. maneuvering target tracking [5, 6], and FDD [7]. 
Figure-1 shows a block diagram of the IMM estimator for 
FDD. 
 
B. FDD Scheme 

In active Fault Tolerant Control Systems (FTCS), 
timely and correct detection and diagnosis of a fault is 
crucial for good performance. Using the IMM estimator, it 
is effective to use the model probabilities to provide an 
indication of the mode in effect at a given time. 

 

 
 

Figure-1. Block diagram of IMM estimator. 
 

Hence, it can be used as an index for FDD. The 
fault detection decision can be made by the following rule: 
 

 
 

                           (7) 

Where 
 ,  is the detection threshold. 
A complete cycle of the IMM-based FDD scheme with 
Kalman filters as its mode-matching filters is summarized 
in Table-1. 
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Table-1. One cycle of IMM based FDD scheme. 
 

1. Interaction /Mixing of the estimates (for ) 

Predicted mode probability:     

Mixing probability:   

Mixing estimate:  

Mixing covariance:                          

 
 
2. Model-conditional filtering (for ) 
Predicted state (from k to k+1): 

 
Predicted covariance: 

 
Measurement residual:   

 
Residual covariance:  

 
Filter gain:  
Updated state:  

 
Updated covariance:   
                                                                         

 
 
3. Mode probability update and FDD logic (for ): 
Likelihood function:   

  
Mode probability :   

 

Fault decision:     
 
4. Combination of estimates 

Overall estimate:  
Overall covariance:  
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C. Design of Markov transition probability matrix 
The design parameter for the IMM algorithm 

includes the transition probability matrix, the covariances 
of the process noise and measurement noise. The 
performance also depends on the type and magnitude of 
control input excitation used. However the design of 
transition probability matrix is unique and important for 
the IMM based approach. 

A proper choice of the diagonal entries in the 
transition probability matrix is to match roughly the mean 
sojourn time of each mode [8], 

                                                  (8)   
 

where  is the expected sojourn time of the th 
mode;  is the probability of transition from th mode 
to itself and T is the sampling interval;  is a designed 
lower limit for the th model transition probability. For 
example the “normal to normal” transition 

probability , can be obtained by , where 
denotes the mean time between failures (MTBF). 

Normally  is mush smaller than MTBF. The transition 
probability from the normal mode to a fault mode is equal 
to . Which particular fault mode it jumps to 
depend on the relative likelihood of the occurrence of the 
fault mode. “Fault to fault” transitions are normally 
disallowed except in the case where there is sufficient 
prior knowledge to believe that partial faults can occur one 
after another. 
 
4. ILLUSTRATIVE EXAMPLE 
 
A. Aircraft model 

The linearized model of the aircraft under the 
normal condition can be described as: 
 

 
 

                                                                    (9)   
 

Where, the state and the input vectors are: 
and , respectively,  

with representing the roll rate,  the yaw rate,  the 
sideslip angle,  the bank angle, the aileron 
deflection, and  the rudder deflection. 
The matrices are: 
 

 
 

 
 

Here only two out of four state variables sideslip 
and bank angle, are measurable. For simplicity, these two 
variables will be designated as the controlled variables. 
Hence the output matrices,  become: 
 

 
 

The specific faults are: 1) a system dynamic fault 
as a result of a partial loss of the rudder control surface, 2) 
a fault in either one of the two actuators, and 3) a fault in 
sideslip angle sensor. Therefore, there are total of 5 
possible operating modes. In practice, if additional fault 
scenarios or the same fault type but with different 
severities need to be considered, more fault modes would 
have to be included in the model set. The above 
considered fault modes . 
 
B. SIMULATION RESULTS 

The actuator faults result in reduced values in the 
corresponding columns of the control matrix G, the sensor 
fault is represented also by a reduction in the 
corresponding row of the measurement matrix H and the 
loss of control surface is reflected as the changes in both F 
and G matrices. 

The system matrix is discretized and the IMM 
estimator is simulated for the normal node and the faulty 
cases. The normal mode output is shown in Figure-2. As 
seen in figure, the estimator tracks the normal mode output 
is continuously estimated and tracked. Thus any fault 
occurs in the system is detected and diagnosed 
immediately. 
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Figure-2. Normal mode output. 
 

The possible faults in the system are simulated as 
shown here. First, the dynamic fault which is the partial 
loss of rudder control surface (50%) is shown in Figure-3. 
As seen, the dynamic fault results in increased amplitude 
of sideslip angle and bank angle. 
 

 
 

 
 

Figure-3. Normal mode output with continuous 
dynamic fault. 

Next, the faults in actuators are shown in Figure-4. 
The faults in actuators usually represent the loss of 
effectiveness in rudder or aileron. 
 

 

 
 

Figure-4. Normal mode output with continuous 
aileron fault. 
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Figure-5. Normal mode output with abrupt aileron fault 
introduced at t = 5 sec. 

 
The IMM estimator continuously monitors the 

system and estimates the states of the system. The actuator 
1 fault (i.e., aileron fault) is introduced at time t = 5sec. 
The response of the system with fault is shown in Figure-5. 

The decision rule (7) provides not only fault 
detection but also the information of the type (sensor or 
actuator), location (which sensor or actuator), size (total 
failure or partial fault with the fault magnitude) and fault 
occurrence time, i.e., simultaneous detection and 
diagnosis. In this approach, there is no need to set arbitrary 
threshold levels to balance false alarms against missed 
fault detections. Thus the mode probabilities of the normal 
and faulty modes are calculated from (7) which can be 
used as a detection threshold to find the type and time of 
occurrence of fault in the system. 

The threshold values of various types of faults are 
shown. 
 

Table-2. Faults and threshold values. 
 

Faults Threshold values 
Dynamic fault 0.64259 
Aileron fault 0.43986 
Rudder fault 0.54047 
Sensor fault 0.4121 

 
From this, we can see that the dynamic fault and 

actuator fault are predominant and affects the system 
more. These faults have to be taken care before it results in 
catastrophic results.  
 
5. CONCLUSIONS 

In this paper, based on IMM estimation 
algorithm, a new FDD approach for the multiple failures 
in the system has been proposed. This helps in effective 
fault detection, diagnosis and state estimation. An aircraft 
example with normal and different fault conditions are 
demonstrated. This approach is significantly better in 
terms of robustness and timeliness in detecting faults than 

other multiple model approaches. Future work includes the 
design of reconfigurable control for this multiple model 
approach.  
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