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ABSTRACT 

Normally, some heavy crude oils and several well treatment fluids possess a non-Newtonian nature. This nature 
makes the fluid behavior to behave differently than a Newtonian one. Therefore, transient pressure analysis, for instance, 
will have different considerations. Moreover, if for any reason, a non-Newtonian fluid is injected into a reservoir which 
contains a Newtonian crude oil; two different fluid flow zones will be well established and defined. Therefore, two 
different diffusivity equations are governing the fluid flow through the porous medium. The simultaneous solution to that 
problem may be a numerical challenge if not dealt appropriately. In this work we present the numerical solution for a 
power-law Non-Newtonian diffusivity model coupled with a Newtonian diffusivity model by the finite-difference 
approximation. Results were successfully compared to those reported in the literature without reporting the detail solution. 
 
Keywords: non-Newtonian/Newtonian, finite difference, viscoplastic fluid, reservoir, consistency, viscosity. 
 
1. INTRODUCTION 

Ikoku has been the most outstanding researcher in 
the field of non-Newtonian power-law fluids modeling, as 
shown by Ikuko (1979), Ikoku and Ramey (1979a, 1979b, 
1979c) and Lund and Ikoku (1981). Most of these 
references are focused on presenting the flow models and 
their applications to well test analysis, but little 
information is concerned to the numerical solutions of the 
model. Ikoku and Ramey (1979b) solved the problem by 
the Douglas-Jones predictor/corrector method without 
detailing on the numerical procedure. Escobar and Civan 
(1996) presented a numerical solution for the flow of foam 
in porous media using the Quadrature method. They 
solved the model proposed by Ikoku and Ramey (1979b) 
under different boundary conditions and compared to the 
solution of the diffusivity equation for the Newtonian case. 
Since, it is quite important to know the detailed procedure 
for the solution, in this paper the model presented by 
Ikoku and Ramey (1979b) is detailed solved and 
successfully compared to the solution of by Lund and 
Ikoku (1981). 
 
2. MODELING ASPECTS 

The diffusivity equation proposed by Ikoku and 
Ramey (1979b) governing the flow of a power-law Non-
Newtonian fluid through an isotropic and homogeneous 
porous medium is: 
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Equation (1) is strongly non-linear. For achievement of 
analytical solutions a linearized approximation of 
Equation (1), Ikoku and Ramey (1979b), has transformed 
it into: 
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The system under study also considers the flow 

of a Newtonian fluid which is in contact with the non-
Newtonian one. For the Newtonian case, the effective 
viscosity is considered to be constant and n = 1. Therefore, 
Equation (1) becomes: 
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Other assumptions include: radial flow of slightly 

compressible non-Newtonian/Newtonian fluids, an 
isotropic and homogeneous reservoir, uniform thickness, a 
pseudo plastic power-law non-Newtonian fluid is injected 
in the well, the Newtonian fluid has constant viscosity, 
piston-like displacement takes place and the reservoir has 
a finite radius. Figure-1 sketches the composite reservoir 
under consideration. 
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Figure-1. Composite non-Newtonian/Newtonian radial 
reservoir. 

 
The initial condition is described as: 
 

1 2( 0) ( 0) ip r, p r, p= =                     (6) 
 

The internal boundary condition indicates a 
constant rate injection of a non-Newtonian fluid, then: 
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The external condition was initially established as no flow; 
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But, in this study we treated as an infinite reservoir, then: 
 

( )2 , 0e ip r ,t p t= >                     (9) 
 

Suffixes 1 and 2 refer to the Non-Newtonian and 
Newtonian regions, respectively. At the fluid interface 
pressure has to have the same value in the non-Newtonian 
and Newtonian zones. Then, the continuity condition 
indicates that: 
 

1 2 @   ( )ap p r r t= =      (10) 
 

Both fluids have to flow at the same velocity in 
the interface, then the consistency or Darcy’s law 
condition is given as: 
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3. NUMERICAL SOLUTION 
The finite-difference discretization for Equation 

(2) is: 
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For simplification purposes, define: 
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Equation (16) includes the only source/sink term 

for Equation (12). Once the definitions given by Equations 
(13) through (17) are replaced, Equation (12) becomes: 
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Discretization of Equation (5) gives, 
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Also, for simplification, define, 
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' ' s
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' ( ')c a b F= − + +                   (24) 
 
Therefore, Equation (19) is rewritten as: 
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As indicated by Figure-2, the simultaneous 
solution of Equations (12) and (25) is required. Then, 
Equation (12) is applied to all points from the well, rw, 
until point j-1, just before the interface. Equation (25) is 
applied from point j+1 until re. At the fluids interface, r = 
ra, the consistency condition given by Equation (11) is 
applied: 
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Figure-2. Functions’ domain. 
 
Where λ is the relationship between the non-Newtonian 
fluid apparent viscosity and the viscosity of the Newtonian 
fluid? 
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The finite-difference discretization of the 

consistency condition, Equation (11), leads to: 
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For simplification purposes, define: 
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Then, Equation (28) is rewritten as: 
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The values of the constant of Equation (18), only 

for the fluids interface, correspond to:  
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The application of Equations (18), (25) and (30) 
to each grid point leads to the following tridiagonal matrix 
system which is solved by the Thomas algorithm: 
 

1
1

2

1

1

2

3

1

0 interface
' ' ' '

' ' ' '
' ' ' '

.. . . .
' ' ' '

' ' '

s s

j

j

j

j

j

k

k

pc a D
pb c a D

pb c a D
pb c a

pb c a D
pb c a D
pb c a D

pb c a D
pb c D

+

−

+

+

+

−

⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟
⎜ ⎟⎜ ⎟ ⎜ ⎟
⎜ ⎟⎜ ⎟ ⎜ ⎟
⎜ ⎟⎜ ⎟ ⎜ ⎟
⎜ ⎟⎜ ⎟ ⎜ ⎟
⎜ ⎟⎜ ⎟ ⎜ ⎟
⎜ ⎟ =⎜ ⎟ ⎜ ⎟
⎜ ⎟⎜ ⎟ ⎜ ⎟
⎜ ⎟⎜ ⎟ ⎜ ⎟
⎜ ⎟⎜ ⎟ ⎜ ⎟
⎜ ⎟⎜ ⎟ ⎜ ⎟
⎜ ⎟⎜ ⎟ ⎜ ⎟
⎜ ⎟⎜ ⎟ ⎜ ⎟

⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

 

 
The block pressure was converted to well 

pressure by using Equation (9) of Peaceman (1978). The 
computer code is reported in the appendix. 
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4. RESULTS 
The results were tested against the numerical 

solution presented by Lund and Ikoku (1981). The test 
example was run with the information given in Table-1 
using 500 cells. Comparative results are given in Figure-3 
which contains a semilog plot of the results of this study 
against those from Lund and Ikoku (1981). No deviation 
error was established since the results are reported at 
different time values and the solution from Lund and 
Ikoku (1981) is also numerical which ought to have some 
small differences with the actual solution. However, the 
trend of the data looks very good and reasonable. For 
further verification, the pressure derivative conventionally 
used in transient pressure analysis was estimated from the 
simulated data. According to Katime-Meindl and Tiab 
(2001), who were the first to publish the pressure 
derivative behavior for pseudoplastic fluids, during radial 
flow regime the pressure derivative increases as the 
power-law index decreases? It means, the smaller the n 
value the more pronounced the pressure derivative from 
the horizontal position. For Newtonian behavior a 
horizontal line is obtained. This behavior is confirmed by 
the results shown in Figure-4 which agree with the 
expectations of the authors. 
 

Table-1. Data used for simulator calibration. 
 

Parameter Value 
re, ft 2625 

ct, 1/psi 6.89 x 10-6 
PR, psi 2500 

h, ft 16.4 
q, bpd 300 
t, day 9 
φ, % 0.2 
∆t, hr 0.01 
k, md 100 
rw, ft 0.33 

H, cp sn-1 20 
B, rb/STB 1 

n 0.6 
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Figure-3. Semilog plot of the results. 
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Figure-4. Pressure and pressure derivative of 
a simulated test. 

 
5. CONCLUSIONS 

A numerical solution using the finite-difference 
method was obtained for a radial composite non-
Newtonian/Newtonian reservoir. Results were successfully 
compared to the numerical solution obtained by Lund and 
Ikoku (1981). Also, pressure derivative behaves as 
expected. 
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Nomenclature 
 

B Oil formation factor, rb/STB 
ct System total compressibility, 1/Pa 
h Formation thickness, m 
H Consistency (Power-law parameter), cp sn-1 
k Permeability, m2

n Flow behavior index (power-law parameter)
P Pressure, psi 
PR Reservoir pressure, Pa 
q Flow rate, m3/s 
rw Radius, m 
s Time level 
t Time, s 

t*∆p’ Pressure derivative, psi 
Vr Cell volume, m3 

 

Greek 
∆ Change, drop 
∆t Time step, s 
φ Porosity, fraction 
µ Viscosity, Pa s 
µ Effective viscosity for power-law fluids, N 

n (1+n)
λ Mobility, m4/N s 
λeff Effective mobility for power-law fluids, m3+n/N 

n
ω Dimensionless storativity (capacity) ratio 
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Suffices 
a Location of the non-Newtonian fluid front 

app Apparent 
e External 

eff Effective 
i Initial conditions, discretization index 
j Grid point at the non-Newtonian fluid front 
N Newtonian 

NN Non-Newtonian 
w Wellbore 
m Matrix, slope 

max Maximum 
min Minimum 
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APPENDIX - visual basic code 
Dim R () As Double, DR () As Double, R1 () As Double, 
DR1 () As Double 
Dim AAA () As Double, B () As Double, F () As Double, 
CCC () As Double, DDD () As Double 
Dim P () As Double, GG () As Double, QQ () As Double, 
W () As Double, VM as Double, Ro as Double, Jmodel as 
Double 
Dim Re as Double, Ct as Double, PR as Double, H as 
Double, HC as Double, Qo as Double, Tiempo as Double 
Dim Por as Double, DT as Double, K as Double, rw As 
Double, BETA As Double, n As Double, UN as Double 
Dim Celdas as Double, Ueff as Double, Uapp () As 
Double, G1 as Double, G2 as Double, Alfa as Double 
Dim i As Long, j As Long, v As Long, Temp1 as Double, 
Temp2 as Double, Ri as Double, X As Long 
Const Pi = 3.141592654 
Private Sub Command1_Click () 
Re = 2625: Ct = 6.89E-6:    Celdas = 500:    PR = 2500 
H = 16.4: Qo = 300: Tiempo = 9: Por = 0.2: DT = 0.01 
K = 100: rw = 0.33: HC = 20: n = 0.6: BETA = 1: UN = 3 
Ueff = (HC / 12) * (9 + 3 / n) ^ n * (9.869E-16 * 150 * K 
* Por) ^ ((1 - n) / 2)   
G1 = 3792.58489625175 * n * Por * Ct / K 
G2 = 3792.58489625175 * Por * Ct * UN / K 
Ri = 131.2 
ReDim R(1 To Celdas), DR(1 To Celdas), R1(1 To 
Celdas), DR1(1 To Celdas - 1), Uapp(1 To Celdas) 
ReDim AAA(1 To Celdas), B(1 To Celdas), F(1 To 
Celdas), CCC(1 To Celdas), DDD(1 To Celdas) 
ReDim GG (1 to Celdas), QQ (1 to Celdas), W (1 to 
Celdas) 
Alfa = (Re / rw) ^ (1 / (Celdas - 1)) 
Numbertest = 24 * Tiempo / DT 
R (1) = rw 
For i = 2 to Celdas 
R (i) = Alfa * R (i - 1) 
Next i 
For i = 1 to Celdas - 1 
DR1 (i) = R (i + 1) - R (i) 
Next i 
For i = 1 to Celdas 
If i = Celdas Then 
R1 (i) = Re 
Else 
R1 (i) = ((Alfa - 1) * R (i)) / (Log (Alfa)) 
If R1 (i) < Ri Then X = i 
End If 
Next i 
For i = 1 to Celdas 
If i = 1 Then 
DR (i) = R1 (i) - R (i) 
Else 
DR (i) = R1 (i) - R1 (i - 1) 
End If 
Next i 
For i = 1 to Celdas 
Uapp (i) = Ueff * (317196.865977076 * H * R (i) / (Qo * 
BETA)) ^ (1 - n) 'Viscosidad Aparente 
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Next i 
VM = Pi * H * (R1 (1) ^ 2 - rw ^ 2) / (5.615 * BETA) 
ReDim P (0 to Numbertest, 1 to Celdas) 
For i = 1 to Celdas     
P (0, i) = PR     
Next i 
i = 1 
Do Until i = X + 1                   
i = i + 1 
B (i) = R1 (i - 1) ^ n / (R (i) ^ n * DR (i) * DR1 (i - 1)) 
Loop 
For i = X + 2 to Celdas              
B (i) = R1 (i - 1) / (R (i) * DR (i) * DR1 (i - 1)) 
Next i 
i = 0 
If X = 0 Then X = 1 
Do Until i = X - 1                   
i = i + 1 
AAA (i) = R1 (i) ^ n / (R (i) ^ n * DR (i) * DR1 (i)) 
Loop 
For i = X To Celdas - 1 'Region Newtoniana "n=1" 
AAA (i) = R1 (i) / (R (i) * DR (i) * DR1 (i)) 
Next i 
i = 0 
Do Until i = X                       
i = i + 1 
F (i) = G1 * Uapp (i) / DT 
Loop 
For i = X + 1 to Celdas - 1          
F (i) = G2 / DT 
Next i 
If Ri > 0 And Ri < Re Then            
B(X) = DR1(X) / DR1(X - 1) 
AAA(X) = Uapp(X) / UN 
F(X) = 0 
End If 
CCC (1) = - (AAA (1) + F (1)) 
CCC (Celdas) = - (B (Celdas) + F (Celdas)) 
For i = 2 to Celdas - 1 
CCC (i) = - (AAA (i) + B (i) + F (i)) 
Next i 
For v = 1 To Numbertest 
For i = 1 to Celdas 
If i = 1 Then 
DDD (i) = -F (i) * P (v - 1, i) - 158.024370659982 * (Qo / 
(K * VM)) * Uapp (i) 
Else 
DDD (i) = -F (i) * P (v - 1, i) 
End If 
Next i 
QQ (1) = AAA (1) / CCC (1) 
GG (1) = DDD (1) / CCC (1) 
For j = 2 to Celdas 
W (j) = CCC (j) - (B (j) * QQ (j - 1)) 
GG (j) = (DDD (j) - (B (j) * GG (j - 1))) / W (j) 
QQ (j) = AAA (j) / W (j) 
Next j 
P (v, Celdas) = GG (Celdas) 
For j = Celdas - 1 To 1 Step -1 

P (v, j) = (GG (j) - (QQ (j) * P (v, j + 1))) 
Next j 
Next v 
Nmax = Numbertest 
Temp1 = 1 / (G2 * rw ^ 2) 
Temp2 = 141.2 * (UN / K * (Qo * BETA / (H))) 
Ro = R1 (1) 
Jmodel = 0.00708 * K * H / (Uapp (1) * Log (Ro / rw)) 
For i = 1 to Nmax 
P (i, 1) = P (i, 1) - Qo / Jmodel 
Porc = i / Nmax * 100 
Next i 
End Sub 


