A PREY-PREDATOR MODEL WITH AN ALTERNATIVE FOOD FOR THE PREDATOR AND OPTIMAL HARVESTING OF THE PREDATOR

K. Madhusudhan Reddy¹ and K. Lakshmi Narayan²

¹Vardhaman College of Engineering, Hyderabad, India
²SLC’S Institute of Engineering and Technology, Hyderabad, Piggipur, Hyderabad, India
E-Mail: kmsreddy.vee@gmail.com

ABSTRACT

The present paper deals with a prey-predator model comprising an alternative food for the predator in addition to the prey, and the predator is harvested under optimal conditions. The model is characterized by a pair of first order non-linear ordinary differential equations. All the four equilibrium points of the model are identified and the criteria for the stability are discussed. The possibility of existence of bioeconomic equilibrium is discussed. The optimal harvest policy is studied with the help of Pontryagin’s maximum principle [1]. Finally, some numerical examples are discussed.

Keywords: prey; predator, equilibrium points, stability, bionomic equilibrium, optimal harvesting, normal steady state.

1. INTRODUCTION

Ecology relates to the study of living beings in relation to their living styles. Research in the area of theoretical ecology was initiated by Lotka [2] and by Volterra [3]. Since then many mathematicians and ecologists contributed to the growth of this area of knowledge as reported in the treatises of Paul Colinvaux [4], Freedman [5], Kapur [6, 7] etc. Harvesting of multispecies fisheries is an important area of study in fishery modeling. The issues and techniques related to this field of study and the problem of combined harvesting of two ecologically independent populations obeying the logistic law of growth are discussed in detail by Clark [8, 9]. Chaudhuri [10, 11] formulated an optimal control problem for the combined harvesting of two competing species. Models on the combined harvesting of a two-species prey-predator fishery have been discussed by Chaudhuri and Saha Ray [12]. Biological and bionomic equilibria of a multispecies fishery model with optimal harvesting policy is discussed in detail by Kar and Chaudhari [13]. Recently Archana Reddy [14] discussed the stability analysis of two interacting species with harvesting of both species. Lakshmi Narayan, Pattabhiramacharyulu [15, 16] and Shiva Reddy [17] et al., have discussed different prey-predator models in detail. Most of the mathematical models on the harvesting of a multispecies fishery have so far assumed that the species are affected by harvesting only. A population model proposed by Kar and Chaudhuri, (c.f. Harvesting in a two-prey one-predator fishery: Bioeconomic model, ANZIAM J.45 (2004), 443-456) motivated the present investigation.

2. MATHEMATICAL MODEL

The model equations for a two species prey-predator system are given by the following system of non-linear ordinary differential equations employing the following notation:

\[N_1 \] and \[N_2 \] are the populations of the prey and predator with natural growth rates \(\alpha_1 \) and \(\alpha_2 \) respectively, \(\alpha_{i1} \) is rate of decrease of the prey due to insufficient food, \(\alpha_{i2} \) is rate of decrease of the prey due to inhibition by the predator, \(\alpha_{21} \) is rate of increase of the predator due to successful attacks on the prey, \(\alpha_{22} \) is rate of decrease of the predator due to insufficient food other than the prey; \(q_2 \) is the catch ability co-efficient of the predator, \(E \) is the harvesting effort and \(q_2E N_2 \) is the catch-rate function based on the CPUE (catch-per-unit-effort) hypothesis. Further both the variables \(N_1 \) and \(N_2 \) are non-negative and the model parameters \(a_1, a_2, \alpha_{11}, \alpha_{12}, \alpha_{21}, \alpha_{22}, q_2, E \) and \((a_2 - q_2E) \) are assumed to be non-negative constants.

\[
\frac{dN_1}{dt} = a_1 N_1 - \alpha_{11} N_1^2 - \alpha_{12} N_1 N_2
\]

\[
\frac{dN_2}{dt} = (a_2 - q_2E) N_2 - \alpha_{22} N_2^2 + \alpha_{21} N_1 N_2
\]

3. EQUILIBRIUM STATES

The system under investigation has four equilibrium states defined by:

a) The fully washed out state with the equilibrium point \(\bar{N}_1 = 0; \bar{N}_2 = 0 \)

b) The state in which, only the predator survives given by \(\bar{N}_1 = 0; \bar{N}_2 = \frac{(a_2 - q_2E)}{\alpha_{22}} \)

c) The state in which, only the prey survives given by \(\bar{N}_1 = \frac{a_1}{\alpha_{11}}; \bar{N}_2 = 0 \)

d) The co-existent state (normal steady state) given by:
\[
\overline{N}_1 = \frac{a_1, a_{22} - (a_2 - q, E) a_{12}}{a_1, a_{22} + a_{12}, a_{21}}; \quad \overline{N}_2 = \frac{(a_1 - q, E) a_{11} + a_{12}}{a_1, a_{22} + a_{12}, a_{21}}
\]

This state would exit only when \(a_{12} > (a_2 - q, E) a_{12} \) \(\alpha \)

4. STABILITY OF THE EQUILIBRIUM STATES

To investigate the stability of the equilibrium states we consider small perturbations \(u_1, u_2 \) in \(N_1 \) and \(N_2 \) respectively, so that

\[
N_1 = N_1 + u_1; \quad N_2 = N_2 + u_2
\]

By substituting (8) in (1) and (2) and neglecting second and higher powers of the perturbations \(u_1, u_2 \), we get the equations of the perturbed state:

\[
\frac{dU}{dt} = AU
\]

where

\[
A = \begin{bmatrix}
 a_1 - 2a_{11}, N_1 - a_{12}, N_2 & -a_{12}, N_1 \\
 a_{12}, N_2 & (a_2 - q, E) + a_{12}, N_1 - 2a_{22}, N_2
\end{bmatrix}
\]

The characteristic equation for the system is:

\[
\text{det} [A - \lambda I] = 0
\]

The equilibrium state is stable only when the roots of the equation (11) are negative in case they are real or have negative real parts in case they are complex.

The equilibrium states I, II, and III are found to be unstable, so we restricted our study to the normal steady state only.

4.1 Stability of the normal steady state

In this case the characteristic equation is

\[
\lambda^2 + (a_1, N_1 + a_{22}, N_2) \lambda + [a_{11}, a_{22} + a_{12}, a_{21}] N_1 N_2 = 0
\]

Since the sum of the roots of (12) is negative and the product of the roots is positive, the roots of which can be noted to be negative. Hence the co-existent equilibrium state is stable.

The solutions curves are:

\[
u_1 = \left[\frac{u_0 (\lambda_1 N_1) - u_0 a_{12} N_2}{\lambda - \lambda_1} \right] e^{\lambda_1 t} + \left[\frac{u_0 (\lambda_2 N_2) - u_0 a_{12} N_1}{\lambda_2 - \lambda_1} \right] e^{\lambda_2 t}
\]

\[
u_2 = \left[\frac{u_0 (\lambda_1 N_1) + u_0 a_{21} N_2}{\lambda_1 - \lambda_2} \right] e^{\lambda_1 t} + \left[\frac{u_0 (\lambda_2 N_2) + u_0 a_{21} N_1}{\lambda_2 - \lambda_1} \right] e^{\lambda_2 t}
\]

Where

\(\lambda_1, \lambda_2 \), are the roots of the equation (12).

5. GLOBAL STABILITY

Theorem: The Equilibrium state \((\overline{N}_1, \overline{N}_2) \) is globally asymptotically stable.

Let us consider the following Liapunov’s function

\[
V(N_1, N_2) = N_1 - N_1 - N_2 \ln \left[\frac{N_1}{\overline{N}_1} \right] + l \left[N_2 - N_2 \ln \left[\frac{N_2}{\overline{N}_2} \right] \right]
\]

where ‘l’ is positive constant, to be chosen later

Differentiating \(V \) w.r.t ‘t’, we get

\[
\frac{dV}{dt} = \left(\frac{N_1 - \overline{N}_1}{N_1} \right) \frac{dN_1}{dt} + l \left(\frac{N_2 - \overline{N}_2}{N_2} \right) \frac{dN_2}{dt}
\]

Substituting (1) and (2) in (16), we get

6. BIONOMIC EQUILIBRIUM

The term bionomic equilibrium is an amalgamation of the concepts of biological equilibrium as well as economic equilibrium. The economic equilibrium is said to be achieved when the total revenue obtained by selling the harvested biomass equals the total cost for the effort devoted to harvesting.

Let \(c_2 \) = fishing cost per unit effort of the predator, \(p_2 \) = price per unit biomass of the predator. The net economic revenue for the predator at any time \(t \) is given by:

\[
\text{Revenue} = p_2 (N_2 - \overline{N}_2) - c_2 \overline{N}_2
\]
\[R_z = (p_z q_z N_z - c_z)E \] \hspace{1cm} (18)

The biological equilibrium is \((N_1)_e, (N_2)_e, (E)_e\), where \((N_1)_e, (N_2)_e, (E)_e\) are the positive solutions of

\[a_1 N_1 - a_1 N_1^2 - a_1 N_1 N_2 = 0 \] \hspace{1cm} (19)

\[(a_2 - q_2 E) N_2 - \alpha_2 N_2^2 + \alpha_2 N_1 N_2 = 0 \] \hspace{1cm} (20)

and \((p_z q_z N_z - c_z) E = 0\) \hspace{1cm} (21)

From (21), we have

\[\{p_z q_z (N_2)_e - c_z\} (E)_e = 0 \Rightarrow (N_2)_e = \frac{c_z}{p_z q_z} \] \hspace{1cm} (22)

From (19) and (21), we get \((N_1)_e = \frac{1}{a_1} (a_2 - c_z) \frac{c_z}{p_z q_z}\) \hspace{1cm} (23)

From (20), (22) and (23), we get

\[(E)_e = \frac{1}{q_z^2} \left[\alpha_{21} (N_1)_e - \left(\alpha_{22} \frac{c_z}{p_z q_z} - a_z \right) \right] \] \hspace{1cm} (24)

It is clear that \((E)_e > 0\) if \(\alpha_{21} (N_1)_e \geq \left(\alpha_{22} \frac{c_z}{p_z q_z} - a_z \right)\) \hspace{1cm} (25)

Thus the bionomic equilibrium \(\{(N_1)_e, (N_2)_e, (E)_e\}\) exists, if inequality (25) holds.

7. OPTIMAL HARVESTING POLICY

The present value \(J\) of a continuous time-stream of revenues is given by:

\[J = \int_0^\infty e^{-dt} (p_z q_z N_z - c_z) Edt \] \hspace{1cm} (26)

Where \(\delta\) denotes the instantaneous annual rate of discount. Our problem is to maximize \(J\) subject to the state equations (1) and (2) and control constraints \(0 \leq E \leq (E)_{\text{max}}\) by invoking Pontryagin’s maximum principle.

The Hamiltonian for the problem is given by:

\[H = e^{-dt} (p_z q_z N_z - c_z) E + \lambda_1 (a_1 N_1 - a_1 N_1^2 - a_1 N_1 N_2) \]

\[+ \lambda_2 (a_2 N_2 - \alpha_2 N_2^2 + \alpha_2 N_1 N_2 - q_2 E N_2) \] \hspace{1cm} (27)

Where \(\lambda_1, \lambda_2\) are the adjoint variables.

Let us assume that the control constraints are not binding i.e., the optimal solution does not occur at \((E)_{\text{max}}\). At \((E)_{\text{max}}\) we have a singular control.

By Pontryagin’s maximum principle,

\[\frac{\partial H}{\partial E} = 0 \quad ; \quad \frac{d \lambda_1}{dt} = -\frac{\partial H}{\partial N_1} \quad ; \quad \frac{d \lambda_2}{dt} = -\frac{\partial H}{\partial N_2} \]

\[\frac{\partial H}{\partial E} = 0 \Rightarrow e^{-dt} (p_z q_z N_z - c_z) - \lambda_2 q_2 N_2 = 0 \Rightarrow \lambda_2 = e^{dt} \left(p_z - \frac{c_z}{q_z N_2} \right) \] \hspace{1cm} (28)

\[\frac{d \lambda_1}{dt} = -\frac{\partial H}{\partial N_1} \]

\[\lambda_1 (a_1 - 2 \alpha_1 N_1 - \alpha_2 N_2) + \lambda_2 (\alpha_2 N_2) \]

\[\Rightarrow \frac{d \lambda_1}{dt} = \left(\lambda_1 a_1 N_1 - \lambda_2 \alpha_2 N_2 E \right) \] \hspace{1cm} (29)

\[\frac{d \lambda_2}{dt} = -\frac{\partial H}{\partial N_2} \]

\[\lambda_2 (a_2 N_2 + \alpha_2 N_1 - q_2 E) \]

\[\Rightarrow \frac{d \lambda_2}{dt} = \left(\lambda_2 \alpha_2 N_2 + \lambda_1 \alpha_2 N_1 - e^{-dt} p_z q_z E \right) \] \hspace{1cm} (30)

From (28) and (29), we get \(\frac{d \lambda_1}{dt} - \lambda_1 E_1 N_1 = -B_1 e^{-dt}\)

Where \(B_1 = \alpha_{21} N_2 \left(p_z - \frac{c_z}{q_z N_2} \right)\)

Whose solution is given by \(\lambda_1 = \frac{B_1}{(\alpha_{21} N_1 + \delta)} e^{-dt}\) \hspace{1cm} (31)

From (30) and (31), we get \(\frac{d \lambda_2}{dt} - \lambda_2 \alpha_2 N_2 = -B_2 e^{-dt}\)

Where \(B_2 = \left[p_z q_z E - \frac{B_1}{(\alpha_{21} N_1 + \delta)} \right]\)

Whose solution is given by \(\lambda_2 = \frac{B_2}{(\alpha_{22} N_2 + \delta)} e^{-dt}\) \hspace{1cm} (32)

From (28) and (32), we get a singular path

\[\left(p_z - \frac{c_z}{q_z N_2} \right) = \frac{B_2}{(\alpha_{22} N_2 + \delta)} \] \hspace{1cm} (33)

Thus (33) can be written as:

\[F (N_2) = \left(p_z - \frac{c_z}{q_z N_2} \right) - \frac{B_2}{(\alpha_{22} N_2 + \delta)} \]

There exist a unique positive root \(\overline{N_2} = (N_2)_{\delta}\) of \(F (\overline{N_2}) = 0\) in the interval \(0 < \overline{N_2} < k_2\) if the
following hold $F(0) < 0, F(k_2) > 0, F'(N_2) > 0$ for $N_2 > 0$.

For $N_2 = (N_2)_\delta$, we get $(N_1)_\delta = \frac{1}{\alpha_1} \left(a_1 - \alpha_2 \frac{c_2}{p_2 q_2} \right)$ (34)

and

$$(E)_\delta = \frac{1}{q_2} \left[\alpha_{21} (N_1)_\delta - \left(\alpha_{22} \frac{c_2}{p_2 q_2} - a_2 \right) \right]$$ (35)

Hence once the optimal equilibrium $\left((N_1)_\delta, (N_2)_\delta \right)$ is determined, the optimal harvesting effort $(E)_\delta$ can be determined.

From (28), (31) and (32), we found that λ_1, λ_2 do not vary with time in optimal equilibrium. Hence they remain bounded as $t \to \infty$.

From (33), we also note that

$$\left(p_2 - \frac{c_2}{q_2 N_2} \right) = \frac{B_2}{(\alpha_{22} N_2 + \delta)} \to 0 \quad \text{as} \quad \delta \to \infty$$

Thus, the net economic revenue of the predator $R_2 = 0$.

This implies that if the discount rate increases, then the net economic revenue decreases and even may tend to zero if the discount rate tend to infinity. Thus it has been concluded that high interest rate will cause high inflation rate. This conclusion was also drawn by Clark [9] in the combined harvesting of two ecologically independent populations and by Chaudhuri [10] in the combined harvesting of two competing species.

8. NUMERICAL EXAMPLES

Let $\alpha_1 = 3, \alpha_1 = 0.12, \alpha_2 = 2, \alpha_2 = 0.12, \alpha_2 = 0.14, q_2 = 0.4, E = 15$.

Let $\alpha_1 = 3, \alpha_2 = 0.12, \alpha_2 = 2, \alpha_2 = 0.12, \alpha_2 = 0.14, q_2 = 0.4, E = 15$.

Figure-1. Shows the variation of the populations against the time.

Figure-2. Shows the trajectory of the prey and predator populations beginning with $N_1 = 45$ and $N_2 = 35$.

Figure-3. Shows the variation of the populations against the time.

Figure-4. Shows the trajectory of the prey and predator populations beginning with $N_1 = 25$ and $N_2 = 30$.
CONCLUSIONS

A prey-predator model with an alternative food for the predator, and the predator is harvested under optimal conditions. The model is characterized by a pair of first order non-linear ordinary differential equations. All the four equilibrium points of the model are identified and the criteria for the stability were discussed by using Lyponuv’s method. The bio-economic equilibrium point was identified and the optimal harvest policy was studied, and some numerical examples were discussed. Finally it was observed that the model was stabilized by harvesting.

REFERENCES

