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ABSTRACT 

The popular methods of analysis of thin rectangular plates have been numerical and classical procedures. These 
methods, especially the classical method have always been tedious and rigorous. In this study, the mathematical model, 
that is based on direct variational procedures and potential energy principle, is developed and successfully applied to: (i) 
Thin rectangular Plates with two opposite edges clamped and other opposite edges simply supported and (ii) Thin 
rectangular plates with one edge clamped and the three other sides simply supported. The coordinate functions, which must 
satisfy the geometric and natural boundary conditions, are carefully constructed and applied into classical plate equation. 
The plate equation is thus integrated and the integrand minimized to obtain the unknown coefficients which when 
substituted back in deformation equation of mid-surface of plate gives the deformation surface of plate in analytical form. 
This enables the evaluation of deflections and bending moments at any arbitrary point on the plates unlike the numerical 
methods which only give these results at nodal points. The results obtained from this study have excellent comparison with 
those of numerical and classical solutions obtained from literature. The study also clearly shows that direct variational 
method circumvents the tedious and rigorous procedures involved in the classical and numerical methods. 
 
Keywords: bending moment, deflections, direct variational method, energy principle, thin rectangular plate. 
 
1. INTRODUCTION 

Ventsel and Krauthemmer (2001) classified 
plates into thick, membranes and thin plates. To be 
considered in this research work is thin rectangular plates 
which are intermediates between thick and membrane 
plates. Plates may be classified as isotropic or orthotropic. 
Isotropic plates refer to plates whose material properties in 
all directions at a point are same while anisotropic or 
orthotropic plates refer to plates whose material properties 
are direction dependent. The predominant transverse loads 
on the plates are static and dynamic in nature. In this 
study, isotropic thin rectangular plates with static 
transverse loads are considered. Due to prevailing and 
frequent uses of plates in structural, mechanical and 
aeronautical Engineering; a lot of researches are being 
carried out on plates. Plates are predominantly used in 
engineering due to its light weight, economy and its ability 
to withstand heavy loads. The loads on the plate could be 
uniformly distributed, partially distributed or concentrated 
loads. 

The support conditions of plates may be different 
on each side of four sided plate. A pair of parallel sides 
may be simply supported and other two sides clamped or 
two adjacent sides may be clamped with other two sides 
simply supported or free. In the present study, 
investigations are to be carried out on plates with two 
boundary conditions: (i) Plate with two opposite sides 
simply supported and the other opposite sides clamped. (ii) 
Plate with two adjacent sides clamped and other adjacent 
sides simply supported. 

Before now, the common method of analysis has 
been classical solution using either trignometrical or 
double series. This was followed by numerical methods 
like Finite Element Method, Boundary Element Method, 
Finite Strip Method, Grid work Method, Finite Difference 

Methods etc. Dey (1981) researched on the bending and 
deflection analysis of rectangular plate using a 
combination of basic functions and Finite Difference 
energy technique in what is called “Semi-numerical 
Analysis of Rectangular Plates in Bending”. Gierlinski and 
Smith (1984) utilized Finite Strip approach to determine 
the Geometric non-linear analysis of thin walled 
structures. The theory used is based on moderately large 
displacement assumptions giving non-linear strain-
displacement relations but linear curvature-displacement 
relations. Mbakogu and Pavlovic (1988) applied algebra to 
the classical problems in plate theory. Based on literature 
survey conducted, little analytical work is done on plate 
using direct variational procedures to solve the plate 
bending problems. Taylor and Govindjee (2002) utilized 
double cosine series expansion and exploitation of the 
Sherman-Morrison-woodbury formula. Zenkour (2003) in 
his works on “Exact Mixed-Classical Solution for the 
Bending Analysis of Shear deformable Rectangular 
Plates” discovered that thin plate model does not provide a 
very good analysis of plates in which the thickness-to-
length ratio is relatively large. The method is very difficult 
but accurate. Hasebe and Wang (2002) also applied Green 
functions for the bending of thin plates under various 
boundary conditions and applications. The application of 
Green’s function by Hasebe and Wang investigated the 
interaction of a hole or inclusion with a crack and the 
interaction of the debonded inter-surface with a crack 

This work intends to utilize the Direct variational 
method as formulated by Ritz to solve plates: (i) Thin 
Rectangular plates with 2 opposite sides fixed and other 
opposite sides simply supported (ii) Thin Rectangular 
plates with 2 adjacent sides clamped and other adjacent 
sides simply supported. 
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2. FORMULATION OF PLATE EQUATION USING  
    ENERGY PRINCIPLE 

The general equation of plate using total potential 
Energy principles consists of strain Energy of deformation 
U and potential Energy of External work we, assuming the 
element of the structure under the transverse load remains 
elastic and is under adiabatic condition. Obeying strictly 
Hooks law, the Strain Energy of the plate is:  
 

1 (1)
2 x x y y xy xyduϑ σ ε σ ε τ γ= + + −∫  

 

Where xσ  = normal stress along the x-axis 

yσ
 = normal stress along the y-axis 

xyτ
 = shear stress along the x-y plane. 

,x y xyandε ε γ
are the respective strains on x, y, axes and 

x-y plane. 
 
Where E = modulus of elasticity 
ϑ = Poisson ratio 
 

The Strain Energy U can be written in terms of 
curvature by substituting the values of stresses and Strains 
of equations 2(a-c) and 3 (a-c) into equation (1) and 
simplifying to obtain 
 

( )

( )

2 22 2 2

2 22

22 2 2

2 2

1
2 1

2 . 2 1 ] _ (2)

A

z w wU dz
x x

w w w dxdy
x y x y

ε
ϑ

ϑ ϑ

⎡⎛ ⎞ ⎛ ⎞∂ ∂
= + +⎢⎜ ⎟ ⎜ ⎟∂ ∂− ⎝ ⎠ ⎝ ⎠⎣

⎛ ⎞∂ ∂ ∂
+ − ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

∫ ∫∫
 

 
Integrating the first term of Equation (2) over the 

entire thickness of the surface from 2
h−

 to 2
h

and 
simplifying, we obtain 
 

( )

2 22 2 2 2

2 2 2 2

2
2

2 .
2

2 1 _ (3)

D w w w wU
x x x y

w dxdy
x y

ϑ

ϑ

⎡⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂
= + + +⎢⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎢⎝ ⎠ ⎝ ⎠⎣

⎛ ⎞∂ ⎤− ⎜ ⎟ ⎦∂ ∂⎝ ⎠

∫∫
 

 

Where D = Flexural Rigidity = 

3

212(1 )
Eh

ϑ−  
 

In the present study, the plate is acted upon by 
uniformly distributed transverse load. Therefore, the 
external work We =  

( , ) . (6)q w x y dxdy −∫  
 
Therefore total potential Energy 
 
= (7 )xtU We a− −  
 

= 

( ) ]

2 22 2 2 2

2 2 2 2

22

2 .
2

2 1 _ (7 )

D w w w w
x y x y

w q dxdy b
x y

ϑ

ϑ

⎡⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂
+ + +⎢⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎢⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣

⎛ ⎞∂
− −⎜ ⎟∂ ∂⎝ ⎠

∫∫
 

 
3. METHODOLOGY 

The Modified Direct variational method of Ritz is 
adopted here. Apart from satisfying geometric Boundary 
conditions, the natural boundary conditions are deemed to 
be satisfied. It is based on principle of minimum total 
potential Energy. 

The total potential Energy of plate from equation 
7(b) is:  
 

( ) }

2 22 2 2 2

2 2 2 2

22

2 .
2

2 1 ( , ) _ (4)

D w w w w
x y x y

w qW x y x y
x y

ϑ

ϑ

⎡⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂⎧∏= + + +⎢⎨ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎩ ⎢⎝ ⎠ ⎝ ⎠⎣
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− − ∂ ∂⎜ ⎟∂ ∂⎝ ⎠

∫∫
 

 
Where W (x,y) is the plates deformation surface which is 
being approximated in this study as a n-term variable – 
Separable polynomial as:  
 

1 1 1 2 2 2 3 3 3( ) ( ) ( ) ( ) ( ). ( )
... ( ). ( ) (5)n n n

C x y C x y C x y
C x y

φ ϕ φ ϕ φ ϕ
φ ϕ

= + +
+ −  

 
1 2 3 1 2 3, , ... , , , ...

.
( ) ( )

n n

i i

where and areconstructed
co ordinate functions in x and y axes
respectively

y is derviable from x by replacing x by y and a by b

φ φ φ φ ϕ ϕ ϕ ϕ

ϕ φ

−  

 
Equation (5) could be simplified further by putting  
 

1 1 1

2 2 2

3 3 3

( ). ( ),
( ). ( )
( ). ( )

.

.

.
( ). ( ) (6)n n n

h x y
h x y
h x y
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φ ϕ
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φ ϕ
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=
=
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Substituting equation (2) into equation (8), the 
deformation surface of the plate could now be written as:  
 

1 1 2 2 3 3( , ) ... (7 )
( , ) (7 )

n nW x y C h C h C h C h a
W x y HC b

= + + + + −
= −

 

 
Where H = [h1     h2      h3   h4] 
 
C = [C1   C2   C3 C4]. 
 

The functions of H polynomial of equation 7(b) 
must satisfy the kinematic boundary conditions and are 
linearly independent and continuous. These functions of 
equation (7) are subsequently substituted into the total 
potential Energy equation of (4) above and on simplifying 
after matrix multiplication rule, we obtain: 
 

}

. . . .
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=
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=
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=
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For the Equilibrium condition of the plate under 

the transverse loading to be maintained, the total potential 
Energy Π  will be minimized. 
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4
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b
b
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b
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⎣ ⎦  

 
On evaluation of the unknown coefficients, C1, 

C2
, C3, and C4 from the simultaneous equation (14b), the 

coefficients are substituted into equation (10) to obtain the 
deformation surface of the plate in analytical form 
Subsequently the deflection and moments on any arbitrary 
point on the plate can be obtained using the following 
equations. 
 

2 2

2 2

( , ) (13 )

(13 )x

W x y H C a

w wM D b
x y

ϑ

= −

⎛ ⎞∂ ∂
= − + −⎜ ⎟∂ ∂⎝ ⎠  

 
2 2

2 2 (13 )y
w wM D c

y x
ϑ

⎛ ⎞∂ ∂
= − + −⎜ ⎟∂ ∂⎝ ⎠  

 

( )
2

2 1 . (13 )xy
wM D d

x y
ϑ ∂

= − − −
∂ ∂

 

 
4. ANALYSIS OF PLATES AND THE RESULTS 
 
4.1 Thin rectangular plate with two opposite edges  
       simply supported and other two opposite edges  
       clamped under uniformly distributed load 
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Figure-1. Thin rectangular plate with two (2) edges 
simply supported and two (2) edges clamped and 

subjected to uniform distributed load. 
 

The boundary conditions for plates with two 
opposite edges simply supported and the other two edges 
clamped are: 
 

2

2( ) ( ) 0, (14 )

( ) ( ) 0, (14 )

ww x x at x a a
x
ww y y at y b b
x

∂
= = −
∂
∂

= = −
∂

 

 
The constructed co-ordinate functions that satisfy 

the above boundary conditions are: 
 

( )
3 4

1 2

3 5 6

3 2

( ) ( ) 2 15

( ) ( ) 3 5 3 (15 )

x x xx x a
a a a

x x x xx x b
a a a a

φ φ

φ φ
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⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= = − + − −⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 

 
Similarly, the respective constructed co-ordinate 

functions in the y-axis are: 
 

2 3 4

1 2

2 3 5 6

3 4

( ) ( ) 2 (15 )

( ) ( ) 3 5 3 (15 )

y y yy y c
b b b

y y y yy y d
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The deformation mid surface of the plate is represented 
by:  
 

( )
1

( , ) ( ) ( ) 16
n

i i i
i

w x y c x yφ ϕ
=

= −∑  

The above equation is however broken down 
respectively into one-term, two- term, three-term and four- 
term polynomials as: 
 

( )
( )
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1 1 1 2 2 2
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φ ϕ φ ϕ

φ ϕ
φ ϕ φ ϕ

φ ϕ φ ϕ
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−
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Where 1, 2 3 4, , ,c c c and c are the unknown coefficients to 
be determined, while   

1 2 3 4 1 2 3 4( ), ( ), ( ), ( ) ( ), ( ), ( ), ( )x x x x and y y y yφ φ φ φ ϕ ϕ ϕ ϕ
are as represented in equations 15(a-d) above. 
 

The one-term polynomial of equation (16a) is 
substituted into equation (8) via equation (9). The potential 
equation (9) is integrated and the integrand subsequently 
minimized to obtain the unknown coefficient, 1c . The 
determined coefficient is however substituted back into the 
equation of deformation surface of plate to obtain the 
deflection of the plate in analytical form. The maximum 
deflection and moments at the mid-point and other 
arbitrary points are then obtained at various plate aspect 
ratios. The same evaluations is repeated respectively using 
two-term, three-term and four-term polynomials as 
represented in equations 16(b-d) and the results obtained 
are presented in Tables 1 to 4. 
 
4.2 Thin rectangular plate with 3 edges simply  
       supported and the other edge clamped under  
       uniformly distributed load. 
 

 
 

Figure-2. Thin Rectangular plate with 3 edges simply 
supported and the other edge fixed and subjected to 

uniformly distributed load.  
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The boundary conditions for plate with 3 edges 
simply supported and the fourth edge clamped are: 
 

( )

( )

( )

2

2

2

2

( ) ( ) 0 0, 17

( ) ( ) 0 0 17

( ) ( ) 0 17

ww x x at x a a
x
ww y y at y b

y
ww y y at y b c
y

∂
= = = −
∂
∂

= = = −
∂
∂

= = = −
∂  

 
The algebraic functions which are continuous and 

at the same time satisfy the geometric and natural 
boundary conditions of equations 17(a-c) above are: 
 

( )
3 4

1 2( ) ( ) 2 18x x xx x a
a a a

φ φ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= = − + −⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 

 

( )
3 5 6

3 2( ) ( ) 3 5 3 18x x x xx x b
a a a a

φ φ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= = − + −⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠  

 

( )
2 3 4

1 2( ) ( ) 2 18y y yy y c
b b b

ϕ ϕ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= = − + −⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠  

 

( )
2 3 5 6

3 4( ) ( ) 3 5 3 18y y y yy y d
b b b b

ϕ ϕ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= = − + −⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 

 
Similarly, the algebraic equations representing 

the deformation surface of the plate is represented as in 
equation (16) as: 
 

( )
1

( , ) ( ) ( ) 19
n

i i i
i

w x y c x yφ ϕ
=

= −∑  

 

This could be represented in the form of one-
term, two-term, three-term and four-term polynomial as in 
equations 16(a-d). 
 

( )

( )

( )

1 1 1 2 2 2

1 1 1 2 2 2

3 3 3

1 1 1 2 2 2

3 3 3 4 4 4

( , ) ( ). ( ) ( ). ( ) 19
( , ) ( ). ( ) ( ). ( )

( ). ( ) 19
( , ) ( ). ( ) ( ). ( )

( ). ( ) ( ). ( ) 19

w x y c x y c x y b
w x y c x y c x y

c x y c
w x y c x y c x y

c x y c x y d

φ ϕ φ ϕ
φ ϕ φ ϕ

φ ϕ
φ ϕ φ ϕ
φ ϕ φ ϕ

= + −

= + +

−

= + +

+ −

 

 

1, 2 3 4, , ,c c c and c are the unknown coefficients of 
deformation surface of plate while  

1 2 3 4 1 2 3 4( ), ( ), ( ), ( ) ( ), ( ), ( ), ( )x x x x and y y y yφ φ φ φ ϕ ϕ ϕ ϕ
are the constructed co-ordinate functions as represented in 
equations 18(a-d) above. Similar evaluations are 
performed as in section 4.1 using one-term, two-term, 
three-term and four-term polynomials of the equations 
19(a-d) The results of deflections and moments obtained 
for various plate aspect ratios are presented on Tables 1 to 
3. On application of uniformly distributed load on plate 
with three edges simply supported and the other edge 
clamped as shown in Figure-2 above, the respective values 
of equations 19(a-d) are substituted into equations 7(a-b). 
Subsequently, the result obtained is substituted into 
equation (4). The mathematical expression is further 
integrated and the integrand minimized and solved to 
determine the coefficients. The coefficients are 
respectively substituted back into equation 9(a-d) to obtain 
the approximate deformation surface of the plate in 
analytical form. 

Consequently, the deflection and moments of the 
isotropic rectangular plate with 3 edges simply supported 
and the other edge clamped are obtained for various plate 
aspect ratios using equations 13(a-c) and 13(d), 
respectively. These results are presented on Tables 6 
through 8. 
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Table-1. Maximum deflection coefficients (α) in isotropic thin rectangular plate with two opposite edges clamped 
and the other opposite edges simply supported and subjected to uniformly distributed load for various plate 

aspect ratios (υ = 0.30). 
 

Deflection (Wmax)= 
4q a

D
α ,α  at x = a/2, y = b/2 

Present study Span ratio 
= (b/a) 

Classical 
method 1 term of h 2 terms of h 3 terms of h 4 terms of h 

1.0 0.00192 0.00199(3.65%) 0.00196(2.08%) 0.00191(-0.52%) 0.00191(-0.52%) 

1.1 0.00251 0.00261(3.98%) 0.00257(2.39%) 0.00252(0.40%) 0.00252(0.40%) 

1.2 0.00319 0.00330(3.45%) 0.00323(1.25%) 0.00319(nil) 0.00319(nil) 

1.3 0.00388 0.00402(3.61%) 0.00393(1.29%) 0.00389(0.26%) 0.00389(0.26%) 

1.4 0.00460 0.00477(3.70%) 0.00464(0.87%) 0.00460(nil) 0.00460(nil) 

1.5 0.00531 0.00551(3.7%) 0.00535(0.75%) 0.00531(nil) 0.00531(nil) 

1.6 0.00603 0.00624(3.48%) 0.00604(0.16%) 0.0060(-0.50%) 0.0060(-0.50%) 

1.7 0.00668 0.00695(4.04%) 0.00670(0.30%) 0.00666(-0.30%) 0.00666(-0.30%) 

1.8 0.00732 0.00762(3.93%) 0.00732(nil) 0.00728(nil) 0.00732(nil) 

1.9 0.00790 0.00826(4.56%) 0.00790(nil) 0.00787(-0.40%) 0.00787(-0.40%) 

2.0 0.00844 0.00885(4.86%) 0.00843(-0.12%) 0.00840(-0.47%) 0.00840(-0.47%) 

3.0 0.01168 0.01281(9.67%) 0.01148(-1.71%) 0.01147(1.80%) 0.01147(1.80%) 
 

 The values in the bracket indicate the % variation of the present study from the classical solution 
 

Table-2. Maximum short span moment’s coefficients (β) in a thin rectangular plate with two opposite edges 
clamped and the other opposite edges simply supported and subjected to uniformly distributed load (υ = 0.30). 

 

Short span moment (Mmax) = 2qaβ  : β  ,
 at x = a/2, y = b/2 

Present study Span ratio 
= (b/a) 

Classical 
method 1 term of h 2 terms of h 3 terms of h 4 terms of h 

1.0 0.0244 0.0286(17.21%) 0.0274(12.30%) 0.0238(-2.0%) 0.0239(-2.0%) 

1.1 0.0307 0.0355(15.64%) 0.0338(10.09%) 0.0302(-1.65%) 0.0305(-0.6%) 

1.2 0.0376 0.0427(13.56%) 0.0404(7.45%) 0.0370(-1.60%) 0.0371(1.3%) 

1.3 0.0446 0.0501(12.33%) 0.0473(6.05%) 0.0439(9.86%) 0.0440(-1.34%) 

1.4 0.0514 0.0575(11.88%) 0.0540(5.06%) 0.0508(-1.17%) 0.0509(-0.97%) 

1.5 0.0585 0.0647(10.60%) 0.0605(3.42%) 0.0575(-1.7%) 0.0572(-2.22%) 

1.6 0.065 0.0716(10.15%) 0.0664(2.15%) 0.0639(-1.69%) 0.0642(-1.23%) 

1.7 0.0712 0.0783(9.17%) 0.0726(1.97%) 0.0699(-1.82%) 0.0700(-1.69%) 

1.8 0.0768 0.0845(10.03%) 0.0780(1.56%) 0.0755(-1.67%) 0.0783(1.95%) 

1.9 0.0821 0.0903(9.99%) 0.0830(1.10%) 0.0806(-1.80%) 0.0806(-1.80%) 

2.0 0.0844 0.0956(13.27%) 0.08743.55%) 0.0852(-0.95%) 0.0859(-1.78%) 

3.0 0.1144 0.1209(6.68%) 0.1116(-2.46%) 0.1105(-3.41%) 0.1111(-2.88%) 
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Table-3. Maximum long span moments coefficients (β) in a thin rectangular plate with 2 opposite edges simply supported 
and the other 2 opposite edges clamped and subjected to uniformly distributed load (υ = 0.30). 

 

Long span moment (Mmax) = 2
1qaβ

:             1β , 
 at x = a/2, y = b/2 

Present study Span ratio 
= (b/a) 

Classical 
method 1 term of h 2 terms of h 3 terms of h 4 terms of h 

1.0 0.0332 0.0375(12.95%) 0.0343(3.31%) 0.0326(-1.81%) 0.0327(-1.5%) 

1.1 0.0371 0.0421(13.48%) 0.0378(2.96%) 0.0362(-2.43%) 0.0365(-1.62%) 

1.2 0.0400 0.0462(15.5%) 0.0407(1.75%) 0.0392(-2.0%) 0.0395(-1.25%) 

1.3 0.0426 0.0497(16.67%) 0.0431(1.17%) 00417(-2.11%) 0.0417(-2.11%) 

1.4 0.0448 0.0527(17.63%) 0.0448(nil) 0.0435(-2.90%) 0.0436(-2.67%) 

1.5 0.0460 0.0551(19.78%) 0.0460(nil) 0.0448(2.61%) 0.0445(-3.2%) 

1.6 0.0469 0.0570(21.54%) 0.0467(-0.43%) 0.0456(-2.77%) 0.0458(-2.35%) 

1.7 0.0475 0.0585(23.16%) 0.0469(-1.28%) 0.0459(-3.37%) 0.0460(-3.16%) 

1.8 0.0477 0.0596(24.95%) 0.0469(-1.68%) 0.0459(-3.77%) 0.0477(nil) 

1.9 0.0476 0.0604(26.89%) 0.0465(-2.31%) 0.0457(-4.01%) 0.0457(-4.01%) 

2.0 0.0474 0.0609(28.48%) 0.0460(-2.95%) 0.0452(-4.64%) 0.0456(-3.6%) 

3.0 0.0419 0.597(42.48%) 0.0377(-10%) 0.0375(-10.02%) 0.0421(0.47%) 
 

 The values in the bracket indicate the % variation of the present study from the classical solution 
 

Table-4. Maximum long span edge moments coefficients ( "β ) in a thin rectangular plate with 2 opposite edges 
simply supported and the other 2 opposite edges clamped and subjected to uniformly distributed load (υ = 0.30). 

 

Long span moment (Mmax) = 2"qaβ  ,     : "β at x = a/2, y = b/2 

Present study Span ratio 
= (b/a) 

Classical 
method 1 term of h 2 terms of h 3 terms of h 4 terms of h 

1.0 -0.0697 -0.0636(-8.75%) -0.0733(5.16%) -0.0719(3.16%) -0.0716(2.72%) 

1.1 -0.0787 -0.0691(-12.20%) -0.0820(4.19%) -0.0808(2.67%) -0.0801(1.78%) 

1.2 -0.0868 -0.0733(-15.55%) -0.0896(3.23%) -0.0887(2.19%) -0.0885(1.96%) 

1.3 -0.0938 -0.0762(-18.76%) -0.0962(2.49%) -0.0954(1.71%) -0.0953(-1.60%) 

1.4 -0.0998 -0.0799(-19.94%) -0.1017(1.90%) -0.1010(1.20%) -0.1008(1.0%) 

1.5 -0.1049 -0.0784(-25.26%) -0.1061(-2.76%) -0.1055(0.57%) -0.1061(1.14%) 

1.6 -0.1090 -0.0780(-28.40%) -0.1095(0.45%) -0.1090(nil) -0.1086(-0.36%) 

1.7 -0.1122 -0.0770(-31.37%) -0.1121(0.09%) -0.1116(-0.53%) -0.1115(-0.62%) 

1.8 -0.1152 -0.0753(-34.64%) -0.1138-1.21%) -0.1135(-1.48%) -0.1135(-1.48%) 

1.9 -0.1174 -0.0732(-41.21%) -0.1149(-2.13%) -0.1146(-2.39%) -0.1145(-2.47%) 

2.0 -0.1191 -0.0708(-40.55%) -0.1154(-3.11%) -0.1151(3.36%) -0.1145(-3.86%) 
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Table-5. Comparison of finite difference method, classical solution  and present study for square rectangular plate with 
two opposite edges clamped and other two edges simply supported under a Uniformly distributed load  (υ = 0.3). 

 

Matrix 
size Solution method Wmax = 

4pa
D

α
 

α
 

Mxmax(span)= 2qaβ  

β  

My(span) =
2

1qaβ  

1β  

Mymax(edge)= 11 2qaβ  
11β  

4 x 4 0.00247 (28.6%) 0.02896(18.6%) 0.03344 (0.7%) -05018 (-25%) 

8 x 8 
Finite difference 

0.002088 (8.3%) 0.02586 (6.0%) 0.03338 (0.5%) -0.06489 (-7.0%) 

 Classical  
method 0.00192 0.0244 0.0332 -0.0697 

1 x 1 0.00199(3.65%) 0.0286(17.21%) 0.0375(12.95%) -0.0636(-8.75%) 

2 x 2 0.00196(2.08%) 0.0274(12.30%) 0.0343(3.31%) -0.0733(5.16%) 

3 x 3 0.00191(-0.52%) 0.0238(2.0%) 0.0326(-1.81%) -0.0719(3.16%) 

4 x 4 

Present study 

0.00191 (-0.52%) 0.0239 (-2.05%) 0.0327 (-1.5%) -0.0716 (2.7%) 
 

 The values in the bracket indicate the % variation of the present study from the classical solution  
 (source- Aginam, 2011) 

 
Table-6. Maximum deflection coefficients (α) in isotropic thin rectangular plate with 3 edges simply supported 
and the other edge clamped and subjected to uniformly distributed load for various plate aspect ratios (υ =0.30). 

 

Deflection (Wmax) = 
4qa

D
α α , at x = a/2, y = b/2 

Present study Span ratio 
= (b/a) 

Classical 
method 1 term of h 2 terms of h 3 terms of h 4 terms of h 

0.5 0.00031 0.00033 0.00033 0.00030 0.00030 

1/1.5 0.00083 0.00087 0.00087 0.00084 0.00084 

1/1.4 0.00104 0.00109 0.00108 0.00105 0.00105 

1/1.3 0.00133 0.00136 0.00136 0.00132 0.00132 

1/1.2 0.00168 0.00172 0.00172 0.00168 0.00168 

1/1.1 0.00218 0.00220 0.00219 0.0021 0.00215 

1.0 0.0028 0.00282(0.71%) 0.00281(0.36%) 0.00276(-1.43%) 0.00276(-1.43%) 

1.1 0.0035 0.00354(1.14%) 0.00352(0.57%) 0.00348(-0.57%) 0.00348(-0.57%) 

1.2 0.0043 0.00429(-0.23%) 0.00426(-0.94%) 0.00422(-1.36%) 0.00422(-1.36%) 

1.3 0.0050 0.00503(0.60%) 0.00499(-0.2%) 0.00495(-1%) 0.00495(-1.0%) 

1.4 0.0058 0.00576(-0.69%) 0.00571(-1.55%) 0.00567(-2.24%) 0.00567(-2.24%) 

1.5 0.0064 0.00646(0.94%) 0.00639(-0.16%) 0.00635(-0.78%) 0.00635(-0.78%) 

1.6 - 0.00713 0.00703 0.00700 0.0070 

1.8 - 0.00833 0.00819 0.00816 0.00816 

1.9 - 0.00887 0.00870 0.00867 0.00867 

2.0 0.0093 0.00937(0.75%) 0.00917(-1.40%) 0.00914(-1.75%) 0.00917(-1.40%) 
 

 The values in the bracket indicate the % variation of the present study from the classical solution 
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Table-7. Maximum short moment coefficient ( β ) in isotropic thin rectangular plate with three edges simply 
supported and one edge clamped and subjected to uniformly distributed load (υ = 0.30). 

 

Short span moment(Mxxmax) = 2qaβ  β , at x = a/2, y = b/2 

Present study Span ratio 
= (b/a) 

Classical 
method 1 term of h 2 terms of h 3 terms of h 4 terms of h 

0.5 0.00575 0.0079 0.0079 0.0056 0.0056(-2.61%) 

1/1.5 0.0124 0.0154 0.0154 0.0125 0.0125(0.81%) 

1/1.4 0.0153 0.0181 0.0180 0.0150 0.0150(-1.96%) 

1/1.3 0.0183 0.0214 0.0213 0.0182 0.0181(-1.09%) 

1/1.2 0.0222 0.0255 0.0253 0.0222 0.0220(-0.90%) 

1/1.1 0.0273 0.0307 0.0304 0.0273 0.0271(-0.73%) 

1.0 0.0340 0.0372(9.41%) 0.0369(8.5%) 0.0337(-0.88%) 0.0336(-1.18%) 

1.1 0.041 0.0445(8.54%) 0.0441(7.56%) 0.0410(nil) 0.0410(nil) 

1.2 0.049 0.0519(5.92%) 0.0512(4.49%) 0.0482(-1.42%) 0.0483(-1.42%) 

1.3 0.056 0.0590(5.36%) 0.0582(3.93%) 0.0553(-1.25%) 0.0553(-1.25%) 

1.4 0.063 0.0659(4.60%) 0.0648(2.86%) 0.0621(-1.43%) 0.0621(-1.43%) 

1.5 0.069 0.0724(4.93%) 0.0710(2.90%) 0.0685(-0.72%) 0.0685(-0.72%) 

1.6 - 0.784 0.0768 0.0744 0.0743(n/a) 

1.8 - 0.0892 0.0870 0.0849 0.0850(n/a) 

1.9 - 0.0940 0.0914 0.0894 0.0894(n/a) 

2.0 0.094 0.0984(4.68%) 0.0954(1.49%) 0.0935(-0.21%) 0.0938(-0.21%) 
 

 The value in the bracket indicates the % variation of the present study from the classical solution 
 

Table-8. Maximum long moment coefficient ( 1β ) in isotropic thin rectangular plate with three edges simply 
supported and one edge clamped and subjected to uniformly distributed load (υ = 0.30). 

 

Long  span moment (Mxxmax) = 2
1 qaβ , 1β ,

 at x = a/2, y = b/2 

Present study Span 
ratio 

= (b/a) 

Classical 
method 1 term of h 2 terms of h 3 terms of h 4 terms of h 

0.5 0.015 0.0167 0.0166 0.0149 0.0148 

1/1.5 0.0240 0.0261 0.0259 0.0242 0.0242 

1/1.4 0.0265 0.0287 0.0282 0.0267 0.0267 

1/1.3 0.0296 0.0316 0.0313 0.0296 0.0296 

1/1.2 0.0326 0.0348 0.0344 0.0328 0.0326 

1/1.1 0.0355 0.0382 0.0377 0.0362 0.0361 

1.0 0.039 0.0419(7.44%) 0.0412(5.6%) 0.0398(2.05%) 0.0397(1.79%) 

1.1 0.042 0.0453(7.86%) 0.0443(5.48%) 0.0430(2.38%) 0.0430(2.38%) 

1.2 0.044 0.0481(9.32%) 0.0467(6.28%) 0.0455(3.41%) 0.0455(3.41%) 

1.3 0.045 0.0502(11.56%) 0.0486(8%) 0.0475(5.55%) 0.0474(5.33%) 

1.4 0.047 0.0519(10.42%) 0.0499(6.17%) 0.0488(3.83%) 0.0487(3.62%) 

1.5 0.048 0.0531 0.0507 0.0498(3.75%) 0.0498(3.75%) 

1.6 - 0.0539 0.0512 0.0503 0.0503(n/a) 

1.8 - 0.0549 0.0514 0.0507 0.0508(n/a) 

1.9 - 0.0550 0.0513 0.0506 0.0506(n/a) 

2.0 0.047 0.0551 0.0510 0.0504 0.0505(7.45%) 
 

 The values in the bracket indicate the % variation of the present study from the classical solution 
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5. DISCUSSION OF RESULTS 
 
5.1 Thin rectangular plate with 2 opposite edges simply  
      supported and the other opposite edges clamped 

Table-1 compares the maximum deflection 
coefficient (α) of the study with the classical solution 
(Timoshenko and Woinosky-Kreiger, 1959). The results 
obtained from the study show satisfactory agreement with 
the classical solution. The accuracy of the results improves 
as the number of terms in the polynomials increase, 
producing better results at the three and four term 
polynomials. The percentage variation of the results of this 
study with the classical solution ranges from nil (at aspect 
ratios of 1.2, 1.4, 1.5, and 1.8) to a maximum of 1.85 % at 
3.0).  

For the results of maximum bending moment 
coefficient for uniformly distributed load as shown in 
Tables 2 through 4, the results show satisfactory 
agreement with the classical solution. The comparison of 
results (Aginam, 2011) with Finite difference method 
(FDM) and classical solution for a square plate depicts that 
the direct variational method has a deviation of about 
0.5% with the classical solution while Finite difference 
method (FDM) has about 8.3% (Table-5). 

Also the percentage variation of the Finite 
difference and Direct variational methods with the 
classical solution for the mid span moments on the short 
span for square plate are 6% (for 8 x 8 matrix) and (3 x 3 
matrix), respectively. For moment coefficients at the edge 
of long span, similar comparison shows that the 
percentage variation for finite difference is 7% and the 
direct variational method is 2.7% (Table-5). 
 
5.2 Thin rectangular plate with 3 edges simply  
      supported and the other edge clamped 

The results of maximum deflection coefficient (α) 
in isotropic rectangular plate with 3 edges simply 
supported and other edge clamped are compared with the 
classical solution (Table-6). For the plate aspect ratios of 
1.0 to 2.0 considered, there is satisfactory agreement of the 
results of direct variational approach with the classical 
solution. The percentage deviation from the classical 
solution ranges from nil (at aspect ratios of 1/1.2 to 
maximum of 2.24 at 1.4%. The validity of the results of 
the present study is equally amplified when the maximum 
short span and long span coefficients are compared with 
the results of the classical solutions. For plate aspect ratios 
of 0.5 to 2 considered, the percentage variation of results 
of the present study from the classical solutions for short 
span moment ranges from nil at plate aspect ratio of 1.10 
to maximum value of 2.61% as plate aspect ratio of 0.5 
(Table-7). Also, as plate aspect ratio increases, the short 
span moments increases. 

For long span moment coefficient, results 
converge excellently at 3-term polynomials. Also for plate 
aspect ratios of 0.5 to 2 considered, there is increase of 
long span moment coefficient as the plate aspect ratio 
increases up to 2. Thus, the optimum value of long span 
coefficients is obtained at the plate aspect ratio of 1.8. 

6. CONCLUSION AND CONTRIBUTION TO  
    KNOWLEDGE 

In the course of this study, several methods of 
analyses especially the numerical methods such as finite 
element, finite difference, finite strip etc were extensively 
reviewed. The most widely accepted classical solution 
method, though acknowledged as satisfactory for most 
Engineering problems, is usually very tedious and 
rigorous. In view of these antecedent problems, direct 
variational method under the principle of total potential 
energy is formulated to circumvent the rigorous 
procedures inherent in the analysis of classical solution. 
The study adopted here provides the evaluation of plate 
analysis without necessarily solving the differential plate 
equation.  

The algebraic functions which must satisfy 
geometric/essential boundary conditions are carefully 
constructed. These algebraic equations are then made to 
satisfy plate equations by minimization principle.  
The formulated method is successively applied to: 
 
a) Isotopic thin rectangular plate with two opposite edges 

simply supported and the remaining opposite edges 
clamped. 

b) Isotopic thin rectangular plate with 3 edges simply 
supported and the remaining edge clamped. 

 
 The loading applied to both plates is uniformly 
distributed load. The results of the analysis of maximum 
deflection at the center of span and the maximum positive 
moments at the center and the maximum negative 
moments at the supports are found to be in excellent 
agreement with classical solution. The results equally 
compares favorably with the numerical methods. 

To the best of my knowledge, this is the first 
attempt to extend the works of direct variational method in 
the analysis of thin rectangular plates. However, the good 
agreement of the results of the present study with the 
classical and numerical methods confirms the validity of 
the present study. The analytical method which 
circumvents the rigorous procedures inherent in classical 
and numerical methods in plate equations is very 
straightforward, cheap and easy. The method is very 
handy and could easily be understood by any practising 
engineer. Therefore, with the knowledge of mathematics, 
calculus of variation and with programmable calculators, 
plates of arbitrary boundary conditions can be analyzed for 
deflection, moments and possibly shear. Thus with 
maximum size of matrix method in the solution (4x4 in the 
present case), it makes the use of the present study very 
attractive. The proposed method has an advantage of 
having the solution in analytical form which can be used 
to carry optimization studies. The research method equally 
enables the determination of deflection, moments and 
shears at any arbitrary point on the plate unlike numerical 
methods that give results only at the nodal points. 
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