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ABSTRACT 

In recent years, the constant increase in oil prices and declining reserves of conventional crude has changed the 
exploitation of deposits that were economically unattractive to be produced as an alternative way to keep the world’s oil 
supply. Heavy oil deposits are mainly characterized by having high resistance to flow (high viscosity), which makes then 
difficult to produce. Since oil viscosity is a property that is reduced by increasing the temperature, thermal recovery 
techniques, such as steam injection or in-situ combustion, have been converted over the years into the main tool for tertiary 
recovery of heavy oil. Usually, well tests from enhanced oil recovery projects, such as steam injection, in-situ combustion, 
and CO2 flooding projects, are analyzed using a radial, two-region composite reservoir model. However, a three-region 
model may be more appropriate in many cases since a transition zone may be developed. In this work, the use of an 
existing analytical solution for the transient pressure response of a well in a radial, three-region reservoir is applied to 
develop a methodology utilizing a pressure and pressure derivative plot is developed for three-region composite reservoirs 
so that mobility and the distance to the radial discontinues are estimated. The methodology was successfully verified by its 
application to synthetic examples. 
 
Keywords: pressure, radial flow, storativity ratio, mobility, radial discontinuity. 
 
INTRODUCTION 

The determination of the swept volume in a 
thermal oil recovery process is of primary concern. 
Estimation of the swept volume at intermediate stages of 
the operation, either in-situ combustion or steam injection, 
makes the early economic evaluation of the field 
operations possible. 

The pressure behavior of a composite reservoir 
has been extensively considered. Watenbarger and Ramey 
(1970) modeled a finite-thickness skin region as a 
composite system and obtained the pressure transient 
behavior for such systems using finite differences. Their 
solutions correspond to a range of mobility ratio varying 
from 0, 1 to 3, 6. Brown (1985) investigated pressure 
derivative behavior of composite reservoirs but they 
limited his study to mobility and storativity ratios in the 
order of 0, 4 to 2 and 0, 3 to 30, respectively. 

Gates and Ramey (1978) showed that the fuel 
concentration of an in-situ combustion oil recovery is an 
important parameter, which can control the economic 
results of this kind of operation. It is shown that fuel 
concentration may be determined by a number of methods. 
The total fuel consumption may be divided by the swept 
volume to obtain field estimates of the fuel concentration. 

As far as the field of well test interpretation is 
concerned, some few researches can be named. Satman et 
al. (1980) presented an analytical solution for a two-zone, 
infinitely large composite reservoir undergoing a thermal 
recovery process. They specified constant rate as the inner 
boundary condition and neglected wellbore storage effects. 
They used the conventional straight-line method as the 
interpretation technique.  

A year later, Walsch et al. (1981) conducted an 
analysis of pressure fall-off testing using a simplistic 
model. They found a long transition zone between two 

semilog straight lines for the swept and unswept regions 
obeying a pseudosteady-state behavior. They calculated 
the swept zone volume using mean values of temperature 
and pressure by applying the conventional straight-line 
method. 

Two-region composite reservoirs models have 
been used to analyze pressure transient data from 
enhanced oil recovery projects. Three-region composite 
reservoir models have been used less frequently to analyze 
well test from enhanced oil recovery projects. Ambastha 
and Ramey (1989) presented a review of methodologies 
used to interpret well test data from enhanced recovery 
projects along with several design and interpretation 
relationships developed from an analysis of a well test 
response for a well located in a two-region composite 
reservoir. An analytical solution in the Lap lace space for 
the transient pressure behavior of a well in a three-region 
composite reservoir has been presented by Onyekonwu 
(1985), and Barua and Horner (1987). To study the effects 
of an intermediate region on the deviation time method 
and the pseudo steady state method, an analytical solution 
for a three-region reservoir presented by Onyekonwu 
(1985) is useful. Ambastha and Ramey (1992) reported for 
the first time the analysis of the pressure derivative for the 
systems under discussion. Recently Escobar, Martínez and 
Bonilla (2011) presented a methodology to analyze the 
pressure and pressure derivative behavior for different 
mobility and diffusivity ratios without using type-curve 
matching to analyze well test under thermal recovery 
conditions. 

In this work, the Onyekonwu model is used to 
generate the pressure and pressure derivative behavior for 
different mobility and diffusivity ratios so that a 
methodology without using type-curve matching to 
analyze well test under thermal recovery conditions is 
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presented. This is the first analytical methodology 
available. The model does not take into account the 
compressibility effects due to the possible presence of gas 
phase from the combustion process. 
 
THREE-REGION COMPOSITE RESERVOIR 
MODEL 
 Figure-1 shows an idealized three-zone model, 
Onyekonwu (1985). Region 1 is the swept volume. Region 
2 is the transition zone and is the region of rapidly 
changing mobility. Region 3 represents the zone that 
contains low mobility fluid. Assumptions implicit in the 
development of the model include: 
 
a) The formation is homogeneous, horizontal, and of 

uniform thickness. 
b) Flow is radial, and gravity and capillary effects are 

negligible. 
c) In the three regions, the fluid is considered to be of 

slight constant compressibility but the fluid mobility 
and compressibility may be different. 

d) The pressure gradient in the reservoir is considered to 
be small. 

e) Other assumptions inherent to Darcy’s law. 
 
 The diffusivity equation in dimensionless form 
for the three regions can be written as follows: 
 
For Region-1 
 

2
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r r r t
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12
1 2t t

k k
c c

η
φµ φµ
⎛ ⎞ ⎛ ⎞

= ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

      (3) 

 
For Region-3 
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The inner and outer boundary conditions are 
given as follows: 
 

1

1

1
D

D wD D
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=
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( )3lim , 0
D

D D Dr
P r t

→∞
=        (8) 

 
Equation (6) states that dimensionless wellbore 

unloading rate plus the dimensionless sand face flow rate 
equals the dimensionless surface flow rate. Equation (7) 
introduces a steady-state skin effect and thus, a pressure 
drop at the sand face which is proportional to the sand face 
flow rate. Equation (8) is a mathematical representation of 
an infinite system. The outer boundary conditions in 
dimensionless form are as follows: 
 

1 2 1at  D D D DP P r R= =      (9) 
 

2 3 2at  D D D DP P r R= =    (10) 
 

Equations (9) and (10) state that there is pressure 
continuity at the discontinuous interfaces at RD1 and RD2. 
Also there is continuity of flux at the interfaces which 
mathematically is given by: 
 

2 1
12 1      at   D D

D D
D D

P PM r R
r r

∂ ∂
= =

∂ ∂
   (11) 

 

3 2
23 2      at   D D

D D
D D

P PM r R
r r

∂ ∂
= =

∂ ∂
   (12) 

 
The initial conditions which state that the 

pressure in the system was at an initial value Pi, are also 
represented in dimensionless form as follows: 
 

1 1( ,0) 0 1  D D D DP r r R= ≤ ≤    (13) 
 

2 1 2( ,0) 0  D D D D DP r R r R= ≤ ≤   (14) 
 

3 2( ,0) 0  D D D DP r R r= ≤ ≤ ∞    (15) 
 
FUNDAMENTAL EQUATIONS 

The dimensionless quantities used in this work as 
defined as: 
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Figure-1. Three-zone model of the porous system. 
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EFFECT OF MOBILITY AND STORITIVITY 
RATIO 

Figure-2 shows the effect of M12 on pressure 
derivative on pressure derivative behavior for a fixed FS12, 
FS13, M13 and R2. As mobility between regions 1 and 2 
increases, the pressure derivative goes through a first 
maximum value, while the latter remains almost constant 
until the relationship of the mobility ratios is equal to 
unity. The second radial flow is not visible due to the 
contrast in the properties between regions 2 and 3. 
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Figure-2. Effect of mobility ratio between regions 1 and 2. 
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Figure-3 shows the effect of M13 on the pressure 
derivative behavior for fixed values of FS12, FS13, M12 and 
R2. As mobility between regions 1 and 3 increases, the 
pressure derivative goes through a first maximum value 
which remains unaltered, while the latter increases its 
value. 

Figure-4 shows the effect of FS12 on the pressure 
derivative behavior for fixed values of FS13, M12, M13 and 
R2. As storativity ratio between regions 1 and 2 increases, 
the value of the maximum second derivative also increases 
and moves to the right-hand side. 

Figure-5 shows the effect of Fs13 on the pressure 
derivative behavior for fixed values of FS12, M12, M13 and 
R2. As storativity ratio between regions 1 and 3 increases, 

the value of the maximum second derivative also 
increases, but the time of the second peak remains 
unaltered. 
 
SWEPT REGION VOLUME AND DISCONTINUITY 
RADIUS OF THE INTERMEDIATE REGION 

The permeability of the inner zone or swept 
region is found using the following equation, Tiab (1993): 
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Figure-3. Effect of mobility ratio between regions 1 and 3. 
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Figure-4. Effect of storativity ratio between regions 1 and 2. 
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Figure-5. Effect of storativity ratio between regions 1 and 3. 
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Figure-6. Effect of R2 on pressure derivative with tDR1. 
 
The skin factor is found: 
 

( ) ( )
1 1 1

2
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1 ln 7 43
2

r r

t wr

P k ts ,
t * P' c rφµ

⎛ ⎞⎛ ⎞∆
= ⎜ − + ⎟⎜ ⎟⎜ ⎟⎜ ⎟∆ ⎝ ⎠⎝ ⎠

 (24) 

 
The radius of swept region is estimated with the 

end of first radial flow at tRD1 = 0.18 (See Figure-6). 
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1 1

1
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0,001465 er
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k tR
cµ φ

=                                              (25) 

 
The pressure derivative has a first maximum in 

the transition between the first and second region. The 
developed equations of dimensionless time at this point 
are: 
 

( ) ( )12max1
12 2,76 0,276logRD St M F= − , for 1 < FS12 < 45 

and R2/R1 > 15                                                            (26) 
 
( ) ( )12max1

12 1,68 0,38logRD St M F= + , for FS12 ≥ 45 and 
R2/R1 > 15                                                            (27) 
 

Replacing the dimensionless terms in Equations 
26 and 27, the mobility in the outer region according to the 
value of Fs12 is given by: 
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The equation of the dimensionless pressure 
derivative at the first maximum point (peak), corrected by 

Ambastha and Ramey (1989) is: 
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Figure-7. Effect of R2 on pressure derivative. 
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Figure-8. Effect of R2 on pressure derivative. 
 
( ) ( )12max1

* ' 12 0,304 0,4343logD D St P M F= + , for 
M12 > 1 and R2/R1 > 15                                             (30) 
 

Replacing the dimensionless terms in Equation 
(30), it yields: 
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 (31) 

Figure-7 shows when then relationship between 
the radius of the second region and the swept region is 
greater than or equal to 7. Two maxima are observed in 
the pressure derivative, and based on the value of tDr2, the 
second maximum remains constant. For R2/R1 ≥ 7, the 
dimensionless pressure derivative of the second peak is 
estimated with: 

 

( ) 12 12
max 2

13 13

* 13 0,16077835ln 0,36060599 12 0,034756599ln 0,10347416S S
D D

S S

F Ft P M M
F F

⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞
= − + + − +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

  (32) 

 
Replacing the dimensionless terms: 
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This is valid for FS12/FS13 ≤ 0, 4. The dimensionless time of the second peak is estimated with: 
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Which is valid for 0, 1 ≤ FS12/FS13 ≤ 0, 4 when M13/M12 > 1. 
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This is valid for 0, 01 ≤ FS12/FS13 < 0, 1 and 0, 1 ≤ FS12/FS13 ≤ 0, 4 when M13/M12 = 1. Replacing the dimensionless terms in 
Equations (34) and (35), the radius of second region according to the value of FS12/FS13 is given by: 
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Figure-8 shows when then the relationship 

between the radius of the second region and the first 
region is less than 7. The pressure derivative behaves as a 
reservoir composed by two zones, being observed only the 
second maximum which is not constant. 

If R2/R1 < 7 is not possible to determine the 
mobility of the second region, because it depends on all 
the variables studied since they are not kept constant. For 
1, 1 ≤ R2/R1 < 3.5 and 0, 01 < FS12/FS13 < 0, 1: 
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For 0, 1 < FS12/FS13 < 0, 3 
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2

12 1max 12

13 1313
S DR S

S S

F t Fln jln ln
F M F

⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞+⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠

                            (39) 

 
For 0, 3 < FS12/FS13 < 0, 6 
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2
(1,5) 2

1max 1max1 1max 1max

(1,5) 2 (2,5)

12 12 12 12

13 13 13 13

ln

13 13 13 13
DR DR DR DR

S S S S

S S S S

R b c d ea
t tR t tln
M M M M

F F F Ff g h i
F F F F

⎛ ⎞
= + + + +⎜ ⎟ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎝ ⎠ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
+ + + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

                      (40) 

 

For 3, 5 ≤ R2/R1 < 7: 
 

2 6 3
max

2 1 2 6 3
max

2,6766673 0,22589317( ) 0,17183862( 13) 0,0014327696( 13) 5,3310075 10 ( 13)
1 0,014790427( ) 0,1460338( 13) 0,0004564009( 13) 1,523638 10 ( 13)

DR

DR

t M M x MR R
t M M x M

−

−

⎛ ⎞− + − +
= ⎜ ⎟− − − +⎝ ⎠

                (41) 

 
The permeability of the outer region is found using the following equation: 
 

( )
3

3
3

70,6
* '

a

r

q Bk
h t P

µ
=

∆
                            (42) 

Table-1. Constants values for Equations (38) to (40). 
 

Coefficient Equation (38) Equation (39) Equation (40) 
a 1,148056075 -1,65348167 -123,171636754 
b -0,054300723 0,359685904 -96,912384629 
c -0,1111916097 3,633603633 518,685599496 
d -29,28054451 0,7867843589 -1098,051770102 
e -31,94854034 -0,53215988 1004,175610598 
f 0,0085109453 0,011789055 2761,218331423 
g -0,024785904 0,024704553 -7677,7631303581 
h 194,799992696 0,140924797 7924,945179820 
i 208,154701539 0,18132819 -2877,195951804 
j 0,15346215629 0,202918526 - 
k 0,84388292168 1,930425704 - 

 
5. EXAMPLES 
 
Example-1 

Table-1 contains reservoir and fluid properties for 
an example presented by Onyekonwu and Ramey (1986). 
Pressure and pressure derivative data are reported in 
Figure-9. Characterize the reservoir and estimate the 
radius of inner and intermediate region. 
 
Solution  

The log-log plot of pressure and pressure 
derivative against injection time is given in Figure-9. From 
that plot the following information was read: 
 

 
 

Table-3 presents the results for the examples 
along with the respective equations. The results are placed 
in the appropriate order as the parameters are calculated. A 
deviation error for most of the parameters is also provided. 

Table-2. Reservoir and fluid data for examples. 
 

PARAMETER Example-1 Example-2 
qa, STB/D 100 100 
B, bbl/STB 1, 5 1, 2 

h, ft 50 50 
rw, ft 0.5 0.5 

(φct)1, 1/psi 4x10-7 4x10-7 
(φct)2, 1/psi 8x10-8 4x10-8 
(φct)3, 1/psi 1, 16x10-8 4x10-9 
λ1, md/cp 50 50 
λ2, md/cp 2 10 
λ3, md/cp 0, 05 2 

R1, ft 68, 5 100 
R2, ft 105 1100 
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Figure-9. Pressure and pressure derivative for example-1. 
 
Example-2 

An injection test was simulated using the 
information from Table-2. Pressure and pressure 
derivative data are reported in Figure-10. Characterize the 
reservoir and estimate the radius of inner and intermediate 
region. 
 
Solution  

The log-log plot of pressure and pressure 
derivative against injection time is given in Figure-10. 
From that plot the following information was read: 
 

 
 

As for example-1, Table-3 also presents the 
results for example-2 along with the respective equations. 
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Figure-10. Pressure and pressure derivative for example-2. 
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Table-3. Results of examples. 
 

Parameter Equation Example-1 % error Example-2 % error 
(k/µ)1, md/cp 23 50,84 1,7 50,73 1,46 

s 24 0,055 - 0,067 - 
R1, ft 25 65,44 4,5 100,17 0,17 

(k/µ)3, md/cp 42 0,049 2 1,98 1 
FS12 21 5 0 10 0 
FS13 22 34,483 0,0007 100 0 
M13 20 1037,55 3,75 25,62 2.48 

(k/µ)2, md/cp 33 - - 11,7 17 
M12 19 - - 4,33 13.4 

R2, ft 38 111,38 6,07 1161.8 5.31 
 
ANALYSIS OF RESULST 

As observed in Table-3, the estimated parameters 
are very acceptable with absolute deviation errors even of 
zero. For the second exercise, the estimated mobility of 
region 2 is 11, 7 md/cp. If compared with the actual value 
of 10 md/cp, it falls into an adequate range although the 
absolute error is 17%. Most of the values agree certainly 
well with the expected results indicating that the 
developed equations are useful. 
 
CONCLUSIONS 

Pressure derivative behavior for three-region 
composite reservoirs with mobility and storativity ratio 

contrast was studied and a methodology to estimate the 
distance inner and intermediate regions and mobility ratios 
were introduced and successfully tested with synthetic 
examples. Comparing to the actual values, the estimated 
parameters fall into an adequate range of values this 
indicates that the provided equation are well developed. 
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Nomenclature 

 
B FVF, rb/STB 
ct System total compressibility, 1/psi 
Fs Storativity ratio 
h Formation thickness, ft 
k Permeability, md 
M Mobility ratio 
p Pressure, psi 
qa Flow/injection rate, STB/D 
R Discontinuity Radius, ft 
r Radius, ft 
s Skin Factor 
t Time, hr 

tDR Dimensionless time based on R 
t*∆p’ Pressure derivative, psi 

 
Greeks 

∆ Change, drop 
φ Porosity, Fraction 
µ Viscosity, cp 
λ Mobility, md/cp 
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Suffices 
1 Inner region 
2 Intermediate region 
3 Outer region 
D Dimensionless 

max Maximum dimensionless pressure derivative or time 
w Wellbore 
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