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ABSTRACT 

In an earlier paper we have prescribed a modified form of pre-regularization and used this prescription to study 
the renormalization of QED and Yang-Mills theory. We have seen that this is one of the best prescriptions in studying the 
quantum field theory problems. In this paper we have applied this prescription in studying the renormalization of QCD and 
also found the correspondingβ -function. Here also we obtained the same result as found by other regularization 
prescriptions. 
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1. INTRODUCTION 

Quantum electrodynamics (QED) is a gauge 
theory to study electromagnetic interactions, which is well 
established through rigorous study of many well known 
scientists and researchers. In the same way Gross and 
wilezek [1], Politzer [2] and Weinberg [3] showed that 
quantum chromodynamics (QCD) is a gauge theory to 
study strong interactions phenomena. QCD stemps from 
incorporating various remarkable ideas of hadronic 
physics, such as quarks, partons, colour and current 
algebra etc. Asymptotic freedom i.e., coupling strength 
decreases at short distances is the key point in establishing 
the theory of QCD. That means if the theory is 
asymptotically free then the quarks can interact weakly at 
short distances. 

The problem of renormalization in QED can be 
studied perturbatively through the use of regularization 
method. That means when we consider radiative 
corrections in QED Lagrangian then we have to evaluate 
loop diagrams which are not always finite. Then the 
problem of divergencies can be consistently studied by the 
use of proper regularization method. Although there are 
many regularization methods but not all regularization 
methods [4, 5, 6] are suitable for all problems even in 
QED and many of them can not be used in studying the 
problems of QCD. However, like dimensional 
regularization [4], pre-regularization [7] is one of the best 
prescriptions, which can be applied in studying the 
problems both in QED and QCD. 

In a recent paper [8] we have prescribed a 
modified form of pre-regularization and explained clearly 
why one needs to modify the original pre-regularization 
[7] method. In that paper we have demonstrated how the 
modified form of pre-regularization can be applied to 
study the renormalization problem and the calculation of 
β -function in QED and also in Yang-Mills theory. There 
we have explained the advantage of using modified form 
of pre-regularization than that of others. The main 
advantage of this prescription is that one can study the 
problem in physical dimension and the calculations are 
more simpler than that of other methods. 

Because of the simplicity and straight forward 
calculation of the combination of pre-regularization and 
modified form of pre-regularization it is plausible to check 
whether this modified method is applicable in the 
renormalization of QCD and other interested problems. In 
this view we are interested to apply this new prescription 
to study renormalization of QCD. 

In section 2, QCD Lagrangian is described and 
for renormalization of the theory at one-loop level 
appropriate Feynman diagrams are depicted. Since pre-
regularization is described in reference [7] and modified 
pre-regularization is describe in our earlier paper [8] that is 
why instead of describing the prescriptions we are using 
the prescription and relevant results to evaluate the loop 
diagrams in section 3. In section 4 we have found different 
renormalization constants from the calculation of section 
3, which are needed for renormalization of QCD. Then we 
have evaluated the β -function for QCD. 
 
2. QCD LAGRANGIAN AND ONE-LOOP  
    FEYNMAN DIAGRAMS 

Following [6, 7] we can write the QCD 
Lagrangian in the following form: 
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Here aBµ  is the colour gauge field similar to the 
iso-spin gauge field in the original Yang-Mills theory and 
g  is the strong interaction coupling constant, k  is the 

flavour index fnk ........,,3,2,1=  (number of quark 

flavour). That is, ,......,,,,: bcsduqk . 

Theλ ’s are the Gell-Mann matrices that satisfy 
the cSU )3( commutation relations 
 

22
,

2
cabcba if

λλλ
=⎥

⎦

⎤
⎢
⎣

⎡                                                        (5) 

 
And the normalization condition 
 

abbatr δλλ 2)( =                                                               (6) 
 

QED describes the interaction between gauge 
field i.e., photon and matter field i.e., electron. On the 
other hand QCD describes the interaction between colour 
gauge field i.e., gluon and quarks. In QED there is no self 
interaction between photon, but in QCD due to the last 
term in (2) there is self interaction between gluons. Hence 
we get some more Feynman diagrams than QED. The 
Lagrangian (1) satisfies cSU )3(  symmetries, so it has 
eight generators. 

To find the Feynman rules in a consistent way we 
have to add gauge fixing term and Faddeev-Popov ghost 
term to the Lagrangian (1). Then the complete Lagrangian 
can now be written as: 
 

∑ −+−=
m

k
kkk

aa
QCD qmDiqGGL )(ˆ

4
1

µ
µµν

µν γ  

))(()(
2
1 2 babaacbabc cDcBBBfg µ

µ
µ

µ
νµ α

∂+∂−+           (7) 

where α  is a parameter in covariant gauge and ac  is the 
Faddeev-Popov ghost field. 

From this Lagrangian now we are able to draw all 
loop diagrams. Since we are interested only to one-loop 
diagrams, so let us draw only the appropriate one-loop 
Feynman diagrams, which contributes to the problem of 
one-loop renormalization. The one-loop diagrams are:  
 
One-loop quark self-energy diagram  
 

 
 

Figure-1. 
 
One-loop gluon self-energy diagrams 
 

    
 

Figure-2(a)         Figure-2(b)         Figure-2(c) 
 
One-loop ghost self-energy diagram 
 

 
 

Figure-3. 
 
One-loop quark-gluon vertex 
 

 
 

              Figure-4(a)                    Figure-4(b) 
 

If we compare these diagrams with QED one-
loop diagrams [8], we can see that due to gluon and the 
presence of ghost field we got four extra diagrams which 
are depicted in Figure-2(b), Figure-2(c), Figure-3 and 
Figure-4(b). This is because photon can not interact with 
itself where as gluon can for which we got the Figure-2(b) 
and Figure-4(b). Again ghost field can interact with gluon 
and quark which is represented in Figure-2(c) and Figure-
3. Again Figure-2(b) and Figure-2(c) also one can get in 
Yang-Mills theory which is also evaluated in [8]. Since 
Figure-1, Figure-2(a) and Figure-4(a) are almost same as 
in QED diagram and Figure-2(b) and Figure-2(c) are same 
as Yang-Mills loops that we have demonstrated in [8] 
using modified form of pre-regularization, so in this paper 
we will only use these results except some minor 
replacement of the factors such as coupling constant g  

instead of e  and appropriate colour factor FC  which was 
absent in QED. However, we will evaluate the other 
diagrams using modified form of pre-regularization and 
taking the result of all loop- diagrams we will try to find 
the renormalization of QCD. Also we will evaluate the 
β -function with this modified form of pre-regularization. 
These calculations demonstrate the advantage of this 
method in evaluating loop-diagrams. 
 
3. EVALUATION OF ONE-LOOP QCD DIAGRAMS  
    WITH MODIFIED PRE-REGULARIZATION  
 
3.1. One-loop quark self-energy 

The one-loop contribution to the quark self-
energy is found from Figure-1. Using pre-regularization 
we can write the amplitude of quark self-energy as: 
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This is the same as equation (11) of [8]; except 

the factor g  for coupling constant and batt  for quark-
gluon vertex in a colour diagram. 

After doing the γ -algebra in 4-dimension and 
performing the 4-dimensional momentum integral we get 
(like equation (15) of [8]). 
 

12

2

2

2

32
)4)(0(

16
)( sttgmpttgp baba /+−/Γ−=∑ ππ

             (9)                                    

 
Using modified pre-regularization, that is 

replacing )0(Γ  by )2/(εΓ  where d−= 4ε ; d  is the 
dimension of the integral, the equation (9) can now be 
written as:  
 

termfinitempCgp F∑ +−/−= )4(
8

)( 2

2

επ
               (10)                                     

 
Here CF is the colour factors which come from batt . 

We have used the divergent parameter ε  for 
renormalization, which was absent in the original form of 
pre-regularization. 
 
3.2 One-loop gluon self-energy 

Figure-2(a) to Figure-2(c) contributes to the 
gluon self-energy in QCD; where as only Figure-2(a) 
arises in QED, which is not for gluon but for electron. The 
amplitude of Figure-2(a) is evaluated in [8] for QED. In 
QCD problem, we can use the same result for Figure-2(a) 
with appropriate corrections for quark-gluon vertex and 
colour factor. Hence we can write the amplitude of Figure-
2(a) as: 
 

termsfiniteppgpnTgpa
fF +−−=∏ )(1

6
)( 2)(

2

2

νµµνµν επ
             (11)                                                                                  

 
Similarly, writing the amplitudes of Figure-2(b) 

and Figure-2(c) following equation (56) and (59) of [8] we 
get, 
 

termsfiniteppgpCgpb
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termsfiniteppgpCgpc
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3
1

6
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16
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2

2
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       (13)                             

 
Form these calculation it is transparent that the 

amplitude of Figure-2(a) is transverse but amplitude of 
Figure-2(b) and Figure-2(c) are not individually 
transverse. But if we add the result of Figure-2(b) and 
Figure-2(c) then the result is transverse. Hence the total 

amplitude for one loop gluon self-energy is transverse 
which can be written in the following form:                                             
 

)(1
6

2
2

2

νµµνµν επ
ppgpnTg

fF −−=∏  

termsfiniteppgpCg
A +−+ )(1

24
5 2

2

2
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termsfiniteCnTppgpg
AfF +−−−= )54)((1

24
2

2

2

νµµνεπ
        (14) 

 
3.3. One-loop ghost self-energy 

In the ghost propagator only Figure-3 contributes 
to the ghost self-energy at the one-loop level. Using pre-
regularization method and substituting the proper 
Feynman rules we can write the amplitude of ghost self-
energy as:  
 

2
5

52
5

4

4
22

)(
)(

)(
1

)2(
)(

sk
g

spk
spk

pkdgiCp A +
++

++
−=∑ ∫ µν

νµπ
         (15) 

 
Where AC the colour factor is arises from the product of 
the structure constants. 
 After simplification and combining the 
denominators using Feynman identity we get: 
 

222
5

5
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)]1()[(
).(
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xxppxsk
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−+++
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Shifting the variable of integration keeping track 

of the surface terms with the help of pre-regularization this 
becomes: 
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                                              (17)                     

 
Performing the k-integral and x-integral using 

modified pre-regularization method, we obtain:   
 

∑ +−= termsfinitepgCp A
2

2
22

16
1)(
επ

                   (18)                      

 
Which is the amplitude of one-loop ghost energy. 
 
3.4. One-loop quark-gluon vertex 

In the quark-gluon vertex only the two diagrams 
Figure-4(a) and Figure-4(b) contributes at the one-loop 
level. The amplitude of Figure-4(a) is almost same as 
QED except the proper colour factor. Using the 
appropriate QCD Feynman rules and following the method 
of pre-regularization, the amplitude of Figure-4(a) is:  
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Doing the γ -algebra in 4-dimensions and after 

going through all algebraic and other technical 
manipulations and following equation (22) and equation 
(26) of [8] we can write the amplitude of Figure-4(b) in 
the following form: 
 

termsfiniteCCgpp AF +−=′Λ µµ γ
επ

)2/(
8

),(
2

2
1                     (20)                               

 
where )2/( AF CC −  came from the colour factor of 

cba ttt . 
 

Since the calculation of Figure-4(b) is 
complicated so let us give a bit detail of it in this paper. 
Following QCD Feynman rules the amplitude of Figure-
4(b) can be written as: 
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Combining the denominators using Feynman 

identity we get,  
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Using the above results in (21), we get: 
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Since the odd integrals of q vanishes, so after 

simplification the terms that contributes to the amplitudes 
are: 
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1I  and 2I  are of the form  
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N are the factors without q . 
 

Performing the q-integral we get the one-loop 
gluon vertex function in the form:  
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Adding (20) and (24) we get the full contribution 
to one-loop quark-gluon vertex:  
 

)2()1(
µµµ Λ+Λ=Λ  

termsfiniteCgCCg AAF +−−=
ε

γ
π

γ
επ µµ

1
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επ
)(

8
1 2

2
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4. RENORMALIZATION AND EVALUATION OF  
   β –FUNCTION IN QCD WITH MODIFIED PRE- 
   REGULARIZATION METHOD 

In section-3 using modified pre-regularization 
method, we have evaluated all one-loop graphs arise for 
renormalization of QCD model. From our result let us 
write all field renormalization constants in a convenient 
form. 
 
4.1. Renormalization constants 

The quark field renormalization constant qz  can 
be found from equation (10) which is:  
 

Fq Cgz
επ 2

2

8
1+=  

 

Putting 
π

α
4

1
2g

+=                                                         (26)                                                                                               

We can write qz  as:  
 

Fq Cz
επ

α 1
2

1+=                                                           (27)                                                                                         

 
Similarly, the gluon field renormalization 

constant Az   can be obtained from equation (14) which is: 
 

)54(
24

1 2

2

AffA CnTgz −−=
επ

                                   (28)                                                                  

 

)
3
5

3
4(1

2
1 AffA CnTz −−=

επ
α                                        (29)                                                              

 
Where we have used relation (26) 

The ghost field renormalization constant Cz  can 
be obtained from equation (18), which is: 
 

AC Cgz
επ
1

16
1 2

2
+=  

 

AC Cz
επ

α 1
4

1+=                                                           (30)                                                                                  

 

The quark-gluon vertex renormalization constant 

Γz  can be obtained from equation (25), which is: 

)(1
8

1 2

2

AF CCgz −−=Γ επ
 

)(1
2

1 AF CCz −−=Γ επ
α                                              (31) 

 
4.2. The β -function in QCD 

The beta function of any model or theory is the 
most important results to evaluate. Because it assures the 
correctness of the theory and also the validity of the 
renormalization prescription used in evaluating the 
diagrams. The relation between bare g and renormalization 
coupling constant Rg  is given by: 
 

2/2
1

ε
α µRgzg =                                                               (32)    

 
Where 

12)( −−
Γ= Aq zzzzα                                                        (33)    

 
Using equations (27), (29) and (31) we can 

calculate αz  in (33). 
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3
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α             (34)                    

 
This gives us the coupling renormalization 

constant with one-loop accuracy. This is a gauge invariant 
result, which is one of the strong check of our 
regularization method. 
Now, let us define renormalized Rα  as: 
 

π
α

4

2
R

R
g

=                                                                        (35)                     

 
Then using (32), we can write: 
 

ε
α µα

π Rz
g

=
4

2

                                                              (36)    

 
ε

α µαα Rz=                                                                  (37)  
 

This gives the relation between bare α and 
renormalized Rα . Taking ln on both sides of (37) we get 

µεαα α lnlnlnln ++= Rz                                           (38)                     
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Let us define,  
 

∑
∞

=

=
1

)(
ln

n
n

uF
z

ε
α

α                                                          (39)                                                                                    

 
Then equation (38) becomes 
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Again taking ln on both sides of (34), we get:  
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3
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3
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Comparing (41) with (39) for 1=n , we get the 

coefficient of one-loop divergent term: 
 

)(1)
3
4

3
11(

2
)( 2

1 α
επ

αα OnTCF ffA +−−=                  (42)                                                       

 
Then the β -function in QCD is: 
 

)()
3
4

3
11(

2
)()( 3

2

1
2 α

π
ααααβ OnTCF ffA +−−=′=      (43)                                    

 
In QCD the gauge group is )3(SU  and the 

quarks are in the fundamental representation. Hence if we 
consider 3=AC  and 2/1=fT  then equation (43) 
becomes: 
 

)()
3
211(

2
)( 2

2
α

π
ααβ On f +−−=                                 (44)                                                              

 
Equation (44) shows that if 16≤fn , then the 

β -function is negative. This implies that the gauge 
coupling in QCD becomes weaker at high energies and 
stronger at low energies. This behavior is called the 
asymptotic freedom. This is another strong check of our 
modified pre-regularization method.  
 
5. CONCLUSIONS 

The result in section-3 and 4 shows that modified 
pre-regularization is one of the best methods to apply in 
studying the problem in quantum field theory. Here we 
reproduced the same result with other regularization 
methods, such as dimensional regularization method for 
renormalization constants and β -function in QCD. The 

advantage of this method is that the calculation is straight 
forward and easy to handle. More rigorously we can say 
that the γ -algebra can be done more conveniently with 
this prescription. Because one can perform the algebra 
exactly in 4-dimensions or dimension that we are seeking 
to do. That means in this method we can study the 
problem in exact dimension and after calculation the 
divergent part is separated from the finite part. Then in the 
divergent part we can use some parameter to study other 
features of the problem. This sorts of clear cut separation 
and demonstration is absent is other regularization 
methods. 
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