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ABSTRACT 

Often, double-porosity models have been widely used for characterization of naturally fractured reservoirs. 
However, there is a need of using more complex mathematical models such as double-permeability to better describe 
fractured reservoirs. It has been noticed that the behavior of such reservoirs do not have the classical unit-slope during the 
transition period in double-porosity systems and the homogeneous behavior is also different since the second radial flow 
regime has a lower value as the matrix permeability contributes to the flow capacity. In this work, a model previously 
presented in the literature is used to understand the pressure and pressure derivative behavior of double-permeability 
systems with the purpose of developing a practical and easy methodology for their characterization which was successfully 
tested and verified with synthetic cases. 
 
Keywords: double permeability, interporosity flow parameter, dimensionless storage coefficient, flo capacity ratio, TDS technique. 
 
1. INTRODUCTION 

Modeling and characterizing naturally occurring 
formations is a challenging milestone for engineers in the 
oil industry due to geology aspects and complex flow 
nature. However, such reservoirs contain a significant 
amount of oil and gas reserves around the globe.  

The pioneer research on simulation of naturally 
fractured reservoirs was presented by Barenblatt, Zheltov 
and Kochina (1960) which used the concept of double-
porosity systems. Three years later, Warren and Root 
(1963) extended their model to well test analysis. Their 
system consisted of two media: blocks of matrix and a 
network of fractures. On one side, the matrix blocks 
contain most of the fluid volume and constitute a source of 
fluid for the fracture net. On the other side, fractures 
possess a relative small volume but a high permeability 
which enables fluid flow towards the well.  

For cases of high matrix permeability, the fluid 
from the matrix moves perpendicularly towards the 
fractures and parallel to the stratum in the direction of the 
well. This is recognized as double permeability model and 
was introduced by Hill and Thomas (1985). Then, Bremer, 
Winston and Vela (1985) developed a mathematical model 
and applied conventional analysis for well test 
interpretation. Also, Ehlig-Economides and Ayoub (1986) 
presented a mathematical model considering two 
formations separated by a thin layer of very low 
permeability. They also used the pressure derivative 
function and presented a type-curve matching well test 
interpretation procedure. A much more complex model 
was also presented by Lir and Chen (1987) with neither 
pressure behavior nor interpretation technique.  

Besides the λ and ω parameters introduced by 
Warren and Root (1963), a third one,κ, which represents 
the matrix-fracture flow capacity ratio, is introduced for 
the double-permeability model. The main objective of this 
work is to provide direct expression to estimate such 
parameters. 
 

2. MATHEMATICAL FORMULATION 
The dimensionless quantities introduced by 

Bremer et al. (1985) are: 
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Bremer et al. (1986) presented pressure solutions 

in the Laplace space for layers 1 and 2, Equations 8 and 
12. These solutions were used in this work. 
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Table-1. Reservoir, fluid and flow properties for simulation and examples. 
 

Parameter Simulation Example-1 Example-2 
q, STB/D 500 800 500 

Bo, rb/STB 1.15 1.4 1.5 
µo, cp 2.5 20 15 

ct, 1/psi 4x10-6 1x10-6 1x10-6 
h, ft 115 120 150 
φ, % 20 22 10 
rw, ft 0.5 

Pi, psi 5000 5000 3000 
k, md 50 160 150 

s 0 
C, bbl/psi 0 0 0.2 

λ 1x10-3-1x10-7 1x10-5 1x10-6 
ω 0.005-0.99 0.4 0.06 
κ 0.1-0.99 0.7 0.5 

 
3. INTERPRETATION METHODOLOGY 

The nature of the interpretation technique follows 
the philosophy of the TDS technique proposed by Tiab 
(1993). In order to study the pressure and pressure 
derivative behavior, several pressure tests for different 
combinations ofω,λ and κ were run with the information 
presented in the second column of Table-1.   

Notice in Figures 1 to 3 that as κ becomes smaller 
the matrix permeability increases and the homogeneous 

radial flow pressure derivative decreases indicating that 
the total permeability has increased. In Figure-4, a 
comparison between the double porosity and double 
permeability model is given. A double-porosity system is a 
special case of a double-permeability system when κ = 1. 
For such case (the highest possible value of κ used for the 
simulation was 0.99), the transition behavior takes longer 
in double-permeability case since the mass transfer is 
delayed due to the complexity of the system. 
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Figure-1. Pressure derivative behavior for ω = 0.05, λ = 1x10-5 and 0.1 ≤ κ ≤ 0.99. 
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Figure-2. Pressure derivative behavior for ω = 0.005, λ = 1x10-6 and 0.1 ≤ κ ≤ 0.99. 
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Figure-3. Pressure derivative behavior for ω = 0.08, λ = 1x10-7 and 0.1 ≤ κ ≤ 0.99. 
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Figure-4. Comparison of double porosity and double permeability models for 
ω = 0.05, λ = 1x10-5 and κ = 0.99. 

 
Using regression analysis was possible to find an 

expression to estimate κ from the ratio of the two radial 
pressure derivative values: 
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Another correlation using the ratio between the 
minimum and second radial derivative was obtained for 
estimating the dimensionless storage coefficient, ω;   
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Some other expressions for κ as a function of ω 

are presented in Table-2. These correlations use the ratio 
of the first radial and second radial (homogeneous-acting 
behavior) pressure derivatives. Since the influence of ω is 
very similar in double-porosity and double-permeability, 
the relationships presented by Engler and Tiab (1996) 
which use the ratio between the radial flow and minimum 
pressure derivatives and beginning and ending of the 
radial flow regimes (Equations 12 to 15) can be used. The 
following equation was found for the determination ofκ, 
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Where the constant, kte, is found graphically from Figure-5. 

Table-2. Equation of κ as a function of ω and the ratio of 
the radial pressure derivatives. 
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Figure-5. Graphical correlation for estimating the value of λ. 0.1≤ κ ≤0.99. 
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Figure-6. Effect of wellbore storage coefficient on the trough of the pressure derivative. 
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4. INFLUENCE OF WELLBORE STORAGE  
    COEFFICIENT 

As seen in Figure-6, the minimum value of the 
pressure derivative is affected by wellbore storage when 
CD ≥ 0.2 for κ = 0.8, λ = 1x10-6 and ω = 0.05. This 
research also concludes that the minimum pressure 
derivative (trough) is not affected by wellbore storage 
effects for any value of ω only if the wellbore storage 
coefficient is not greater than the values provided in 
Table-3 for a given value ofλ. 
 
Tabla-3. Conditions for effects of wellbore storage on the 

minimum pressure derivative. 
 

CD  
κ λ = 410−  λ = 510−  λ = 610−  λ = 710−  

0.1 3.89E+01 3.11E+02 1.94E+03 1.94E+04 
0.2 3.89E+01 3.11E+02 1.94E+03 1.94E+04 
0.3 3.89E+01 3.11E+02 3.11E+03 2.33E+04 
0.4 7.77E+01 7.77E+01 7.77E+03 3.85E+04 
0.5 7.77E+01 7.77E+01 7.77E+03 7.77E+04 
0.6 7.77E+01 7.77E+01 7.77E+03 7.77E+04 
0.7 7.77E+01 7.77E+01 7.77E+03 7.77E+04 
0.8 7.77E+01 7.77E+01 7.77E+03 7.77E+04 
0.9 1.55E+02 1.55E+03 7.77E+03 7.77E+04 

0.99 1.55E+02 7.77E+02 7.77E+03 7.77E+04 
 

Tiab, Igbokoyi and Restrepo (2007) presented 
Equations 16 to 19 to correct the minimum for the 
influence of wellbore storage effects. 
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Observe that Equation 18 considers the second 
radial flow regime which for that corresponds to the 
fracture net permeability. For the double-permeability 
case, this value is smaller since the matrix permeability 
forces the second radial flow to have a smaller pressure 
derivative value than the first radial flow pressure 
derivative. 
 
5. SYNTHETIC EXAMPLES 
 
5.1. Example-1 

Figure-7 presents the pressure and pressure 
derivative data for a simulated test run with the 
information given in the third column of Table-1. It is 
requested to validate the equations for estimating the 
double-permeability reservoir parameters. 
 
Solution 

The following information was read from Figure-
7: 
 

(t*∆P’) min = 12.3154121 psi tmin = 7.048574 hr (t*∆P’) r2 = 
57.62287 psi 
 

Equations 13, 14 and 15 were used to estimate 
values of κ = 0.7174, ω = 0.4017 and λ of 1.046x10-5 with 
relative deviation errors of 2.49, 0.4324 and 4.585 %, 
respectively. This demonstrates that the developed 
equations provide values within a reasonable range of 
error. 
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Figure-7. Pressure and pressure derivative log-log plot for example-1. 
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Figure-8. Pressure and pressure derivative log-log plot for example-2. 
 
5.2. Example-2 

Figure-8 also presents pressure and pressure 
derivative data generated with the information taken from 
the fourth column of Table-1. The purpose of this example 
is to validate Equations 16 to 19 to estimate the influence 
of the wellbore storage coefficient on the minimum value 
of the pressure derivative. 
 
Solution  

The following information was obtained from 
Figure-8. 
 

(t*∆P’) min = 9.5295 psi          tmin = 45.523 hrs                     
(t*∆P’) r2 = 17.6179 psi    (t*∆P’) min = 6.2176 psi (value 
without wellbore storage effects) 
 

Using Equation 16, Tiab et al. (2007), a value of 
8.2417 psi is obtained for the corrected value of the 
minimum pressure derivative which represents a deviation 
error of 32.6% compared to the minimum when no 
wellbore storage was considered. However, if the first 
(masked) radial flow pressure derivative is estimated using 
the input fracture network permeability with Equation 2.7 
from Tiab (1993) its value corresponds to 6.505 psi 
providing a deviation error of 4.62% which makes the 
solution more attractive. 
 
6. ANALISYS OF RESULTS 

Only two examples are presented for space 
reasons. However, the obtained results provide low 
deviation values for the double-permeability parameters as 
compared to the input simulation values which confirm 
that the developed methodology works well. On the other 
side, using the correction of the minimum pressure 
derivative as proposed by Tiab et al. (2007) and error of 
32.55% is obtained. However, that correction was given 
assuming that the value of the pressure derivative during 
the second radial flow regime is replaced by the first one 
which is masked but can be estimated from Equation 2.7 
from Tiab (1993) using the input permeability. Under this 
situation the deviation error reduces to 4.62% which 
allows to recommend the above mentioned correction. 
 

CONCLUSIONS 
New expressions to estimate the interporosity 

flow parameter, λ, the dimensionless storage coefficient, 
ω, and the flow capacity ratio, κ, where developed and 
verified using characteristic points read from the pressure 
and pressure derivative plot for cases of no wellbore 
storage. The correction of the minimum pressure 
derivative provided by Tiab et al. (2007) may be used if 
the masked radial pressure derivative occurring before the 
transition period can be estimated from the network 
permeability. 
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NOMENCLATURE 

B Oil volume factor, rb/STB 
ct System compressibility, 1/psi 
C Wellbore storage coefficient, bbl/psi 

CD 
Dimensionless Wellbore storage coefficient referred to the layer 
production  

CDV 
Dimensionless Wellbore storage coefficient referred to the total 
system  

h Formation thickness, ft 
k Permeability (horizontal), md 
kv Vertical permeability, md 

K0,K1 Bessel functions, second type 
K0

1 Bessel functions ratio 
Kte Constant the graphical λ determination  
ℓ Laplace transform variable 
P Pressure, psi 
Pw Well pressure, psi 
PD Dimensionless pressure 
q Flow rate, BPD 
r Radius, ft 
rD Dimensionless radius 
re External radius, ft 
rw Wellbore radius, ft 
s Skin factor 
t Time, hr 
tD Dimensionless time  

tDmin Dimensionless time at the minimum point 
tmin Time at the minimum point, hr 
tDV Dimensionless time referred to the total system 

tD*PD’ Dimensionless pressure derivative 
t*∆P’ Pressure derivative, psi 

 
Greek 

ω Dimensionless storage coefficient 
φ Porosity, fraction 
λ Interporosity flow parameter 
κ Capacity flow ratio  
µ Oil viscosity, cp 

 

Suffices 
1 Zone 1 properties (Fracture) 
2 Zone 2 properties (Matrix) 
D Dimensionless 
DV Dimensionless vertical 
DH Dimensionless horizontal 
i Properties of zone i 
min Minimum 
r Radial  
w Well 

 


