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ABSTRACT 

A Modified Artificial Bee Colony (ABC) algorithm for Economic Dispatch (ED) problem has been proposed. The 
Artificial Bee Colony (ABC) algorithm which is inspired by the foraging behavior of honey bee swarm gives a solution 
procedure for solving economic dispatch problem. It provides solution more effective than Genetic Algorithm (GA), 
Particle Swarm Optimization (PSO) and Ant Colony Optimization (ACO). However, ABC is good at exploration but poor 
at exploitation; its convergence speed is also an issue in some cases. To overcome this deficiency, this paper proposes a 
Modified ABC algorithm (MABC). The performance of the proposed algorithm (MABC) is applied to and tested on IEEE- 
6 unit and IEEE- 13 unit systems. The results of the proposed algorithm are compared with that obtained by the basic ABC 
algorithm, lambda - iteration method to prove the validity and effectiveness of the proposed algorithm. 
 
Keywords: economic dispatch, modified artificial bee colony, optimization. 
 
1. INTRODUCTION 

The economic dispatch problem is one of the 
fundamental issues in power systems in order to obtain 
stable, reliable and secure benefits. The objective of an ED 
problem is to schedule the committed generating units so 
as to meet the required load demand at minimum operating 
cost while satisfying all the equality and inequality 
constraints of the units [1]. To solve the ED problem, a 
wide variety of optimization techniques have been applied. 
Over the past years, a number of approaches have been 
developed for solving this problem using mathematical 
programming, i.e., lambda iteration method [2], gradient 
method [3], linear programming [4], Lagrangian relaxation 
algorithm [5], quadratic programming [6] and dynamic 
programming [7]. However, these methods may not be 
able to provide an optimal solution in large power systems 
because they usually get stuck at a local optimum. In these 
classical methods, the cost function of each generator is 
approximately represented by a simple quadratic function. 
Linear programming methods are fast and reliable; 
however, they have the disadvantage of being associated 
with the piecewise linear cost approximation. Non-linear 
programming methods have the known problems of 
convergence and algorithmic complexity. Newton-based 
algorithms have difficulty in handling a large number of 
inequality constraints [8]. 

In order to make the numerical methods more 
convenient for solving the ED problems, heuristics 
stochastic search algorithms such as the genetic algorithms 
(GA) [9-11]. Tabu Search (TS) [12], evolutionary 
programming (EP) [13-14], simulated annealing (SA) 
[15], particle swam optimization (PSO) [1], differential 
evolution algorithm (DE) [16-19]; harmony search [20] 
and Bacterial Foraging (BF) [21] have been successfully 
applied. However, none of the mentioned methods have 
guaranteed obtaining a global optimal solution in finite 
computational time which could be attributed to their 
drawbacks. SA algorithm has difficulty in tuning the 

related control parameters of the annealing schedule and 
may be too slow when applied for solving the ED 
problem. GA suffers from the premature convergence and, 
at the same time, the encoding and decoding schemes 
essential in the GA approach take longer time for 
convergence. In PSO and DE, the premature convergence 
may trap the algorithm into a local optimum, which may 
reduce their optimization ability when applied for solving 
the ED problem. 

Recently, a new, easy-to-implement, robust 
evolutionary algorithm has been introduced known as 
Artificial Bee colony (ABC) algorithm. The Artificial bee 
colony (ABC) algorithm introduced in [24-27], is one 
approach that has been used to find an optimal solution in 
numerical optimization problems. This algorithm is 
inspired by the behavior of honey bees when seeking a 
quality food source. The performance of ABC algorithm 
has been compared with other optimization methods such 
as GA, differential evolution algorithm (DE), Evolution 
strategies (ES); Particle swarm inspired Evolutionary 
Algorithm (PS-EA). The comparisons were made based on 
various numerical benchmark functions, which consist of 
uni-modal and multimodal distributions. The comparison 
results showed that ABC can produce a more optimal 
solution and thus it is more effective than the other 
methods in several optimization techniques [28-33]. 
Reference [33] suggested that ABC is not only a high 
performance optimizer which is very easy to understand 
and implement, but also requires little computational 
bookkeeping. A problem common to all stochastic 
optimization methods is that a poor balance between 
exploration and exploitation results in a weak optimization 
method which will suffer either from premature 
convergence to local minima if excessively exploitative or 
will converge very slowly if the algorithm is excessively 
explorative. ABC is good at exploration but poor at 
exploitation. The exploration and exploitation are 
extremely important mechanisms in ABC. In ABC 
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algorithm the exploration process refers to the ability of 
seeking for global optimum in the solution space of 
various unknown optimization problems, while the 
exploitation process refers to the ability of applying the 
knowledge of previous solutions to look for better 
solutions. This paper proposes a compounding a high-
efficiency ABC algorithm to balance and accelerate the 
two process of ABC algorithm with the abilities of 
prediction and selection, which is called Modified 
Artificial Bee Colony algorithm (MABC).  
 
2. PROBLEM FORMULATION 

The objective of Economic Dispatch problem [1] 
is to allocate the most optimum real power generation 
level for all the available generating units in the power 
station that satisfies the load demand at the same time 
meeting all the operating constraints. The main objective 
function of the thermal ED problem is the fuel cost 
function of the thermal units expressed as: 
 

∑
=
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2                                      (1) 

 
Where ai, bi, ci are the cost coefficients for the ith 
generator, N is the number of units, PGi is the real power 
output of the ith generator. 
 
Subject to: 
 
(i) Inequality constraints  

The maximum active power generation of a 
source is limited by thermal consideration and also 
minimum power generation is limited by the flame 
instability of boiler. If the power output of a generator for 
optimum scheduling of the system is less than a pre-
specified value Pmin, the unit is not synchronized with the 
bus bar because it is not possible to generate that low 
value of power from that unit. Hence the generator power 
cannot be outside the range stated by the inequality 
 

,max,min GiGiGi PPP ≤≤
                     (2)

 

 
Where PGi,min = lower real power generation limit of unit 
'i'(MW), PGi,max = upper real power generation limit of unit 
'i' (MW). 
 
(ii) Generating constraints 

In order to satisfy the load demand, the sum of all 
the generating units on line must equal the system load 
plus the transmission losses. The system power balance 
constraint is, 
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Where PD = load demand, PGi = real power output 
produced by unit 'i'(MW), PL = total loss in the 
transmission network in terms of loss coefficients. 
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L PPP 000 ++=                               (4) 

 
Where, Pt = the vector generator loading, B = loss 
coefficient matrix, B0 = losscoefficient vector, B00 = loss 
constant. 
 
3. ARTIFICIAL BEE COLONY ALGORITHM (ABC) 

In a real bee colony, some tasks are performed by 
specialized individuals. These specialized bees try to 
maximize the nectar amount stored in the hive using 
efficient division of labor and self-organization. The 
artificial bee colony (ABC) algorithm, proposed by 
Karaboga [24] in 2005 for real parameter optimization is 
an optimized algorithm which simulates the forging 
behavior of a bee colony. The minimal model of swarm-
intelligent forage selection in a honey bee colony which 
the ABC algorithm simulates consists of three kinds of 
bees: employed bees, onlooker bees and scout bees. Half 
of the colony consists of employed bees, and the other half 
includes onlooker bees.  

Employed bees are responsible for exploiting the 
nectar sources explored before and giving information to 
the waiting bees (onlooker bees) in the hive about the 
quality of the food sources sites which they are exploiting. 
Onlooker bees wait in the hive and decide on a food 
source to exploit based on the information shared by the 
employed bees. Scout either randomly searches the 
environment in order to find a new food source depending 
on an internal motivation or based on possible external 
clues. 
 This emergent intelligent behavior in foraging 
bees can be summarized as follows: 
 
a) At the initial phase of the foraging process, the bees 

start to explore the environment randomly in order to 
find a food source.  

b) After finding a food source, the bee becomes an 
employed forager and starts to exploit the discovered 
source. The employed bee returns to the hive with the 
nectar and unloads the nectar. After unloading the 
nectar, she can go back to her discovered source site 
directly or she can share information about her source 
site by performing a dance on the area. If her source is 
exhausted, she becomes a scout and starts to randomly 
search for a new source.  

c) Onlooker bees waiting in the hive watch the dances 
advertising the profitable sources and choose a 
sources site depending on the frequency of the dance 
proportional to the quality of the source. 

 
 In the ABC algorithm the position of food source 
represents a possible solution to the optimization problem, 
and the nectar amount of a food source corresponds to the 
profitability (fitness) of associated solution. Each food 
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source is exploited by only one employed bee. In other 
words, the number of employed bee is equal to the number 
of food sources existing around the hive (number of 
solutions in the population). The employed bee whose 
food source has been abandoned becomes a scout. Using 
the analogy between emergent intelligence in foraging of 
bees and the ABC algorithm, the main components of the 
basic ABC algorithm can be designed as detailed below. 
 
3.1. Initialization of the parameters 

The parameters of the basic ABC algorithm are 
the number of food sources (SN) which is equal to the 
number of the employed bees or onlooker bees, The 
colony size is 2*SN = (NP), The number of trials after 
which a food source is assumed to be abandoned (limit), 
and a termination criterion (MCN). In the basic ABC 
algorithm, the number of employed bees or the onlookers 
is set equal to the number of food sources in the 
population. In other words for every food source, there is 
only one employed bee.  
 
3.2. Producing initial food source sites 

If the search spaces considered being the 
environment of the hive that contains the food source sites, 
the algorithm starts with randomly producing food sources 
sites that correspond to the solutions in the search space. 
Initial food sources are produced randomly within the 
range of the parameters defined by equation (5). 
 
Xij = Xj

min + rand (0, 1) (Xj
max -Xj

min)                              (5) 
 
Where i = 1…SN, j=1…D, SN is the number of food 
sources and D is the number of optimization parameters. 
In addition, counters which store the number of trials of 
solutions are reset to zero in this phase.  

After initialization, the population of the food 
sources (solutions) is subjected to repeat cycles of the 
search process of the employed bees, the onlooker bees 
and the scout bees. 
 
3.3. Sending employed bees to the food sources sites 

As mentioned earlier, each employed bee is 
associated with only one food source site. Hence the 
number of food source site is equal to the number of 
employed bees.  

An employed bee produces a modification on the 
position of the food source (solution) in her memory 
depending upon local information (visual information) and 
finds neighboring food source, and then evaluates its 
quality. In ABC, finding a neighboring food source is 
defined by equation (6). 
 
Vij = Xij + Φij (Xij –Xkj)                                                  (6) 
 
With in the neighboring of every food source site 
represented by Xi, a food source Vi is determined by 
changing one parameter of Xi. In equation (6), j is a 
random in the range [1, D] and k  {1, 2…SN} is a 
randomly chosen index that has to be different from i. Φij 

is a uniformly distributed real random number in the range 
[-1, 1]. 

As can be seen from Equation (6) as the 
difference between the parameters of the Xij and Xkj 
decreases, the perturbation on the position Xij decreases. 
Thus, as the search approaches to the optimal solution in 
the search space, the step length is adaptively reduced. If a 
parameter value produced by this operation exceeds its 
predetermined boundaries the parameter can be set to an 
acceptable value. If the value of the parameter exceed its 
boundary is set to its corresponding boundaries. If Xi > 
Xi

max then Xi = Xmax; If Xi < Xi
min then Xi = Xi

min. After 
producing Vi within the boundaries a fitness value for a 
minimization problem can be calculated to the solution Vi 
by (7). 
 

 
 
Where fi is cost value of the solution Vi. For maximization 
problems, the cost function can be directly used as a 
fitness function. A greedy selection is applied between Xi 
and Vi, the better one is selected depending on fitness 
values representing the nectar amount of the food sources 
at Xi and Vi. If the source at Vi is superior to that of Xi in 
terms of fitness values, the employed bees memorize the 
new position and forget the old one. Otherwise the 
previous position is kept in memory. If Xi cannot be 
improved its counter holding the number of trials is 
incremented by one, otherwise the counter is reset to zero. 
 
3.4. Calculating probability values involved in  
       probabilistic selection 

After all employed bees complete their searches, 
they share their information related to the nectar amount 
and the positions of their sources within the onlooker bees 
on the dance area. This is the multiple interaction features 
of the artificial bees of ABC. Onlooker bees evaluate the 
nectar information taken from all employed bees and 
choose a food source site with a probability related to its 
nectar amount. This probabilistic selection depends on the 
fitness value of the solutions in the population. A fitness-
base selection might be roulette wheel, ranking base, 
stochastic universal sampling, tournament selection etc. In 
basic ABC, roulette wheel selection scheme in which each 
slice proportional to size to the fitness value is employed 
in Equation (8). 
 

∑
=
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3.5. Food source site selection by onlookers based on  
       the information provided by employed bees 

In the basic ABC algorithm, a random real 
number within the range [0, 1] is generated for each 
source. If the probability value (Pi in Equation (8)) 
associated with that source is greater than this random 
number then the onlooker bee produces a modification on 
the position of this food source site by using Equation (6) 
as in the case of the employed bee. After the source is 
evaluated, greedy selection is applied and the onlooker bee 
either memorizes the new position by forgetting the old 
one or keeps the old one. If solution Xi cannot be 
improved, its counter holding trial is increased by one; 
otherwise, the counter is reset to zero. This process is 
repeated until all onlookers are distributed onto food 
source sites.  
 
3.6. Abandonment criteria: limit and scout production 

In a cycle, after all employed bees and onlooker 
bees complete their searches the algorithm checks to see if 
there is any exhausted source to be abandoned. In order to 
decide if a source is to be abandoned, the counters which 
have been updated during search are used. If the value of 
the counter is greater than the control parameter of the 
ABC algorithm, known as the “limit”, then the source 
associated with this counter is assumed to be exhausted 
and is abandoned.  

The food source abandoned by its bee is replaced 
with a new food source is discovered by the scout, which 
represents the negative feedback mechanism and 
fluctuation property in the self-organisation of ABC. This 
is simulated by producing a site position randomly and 
replacing it with the abandoned one. Assume that the 
abandoned source is Xi, and then the scout randomly 
discovered a new food source to be replaced with Xi. This 
operation can be defined as Equation (5).  

In the basic ABC, it is assumed that only one 
source can be exhausted in each cycle, and only one 
employed bee can be a scout. If more than one counter 
exceeds the “limit” values, one of the maximum ones 
might be chosen programmatically. 
 
4. THE ABC ALGORITHM FOR THE ED  
    PROBLEM  

The detailed implementation of ABC algorithm 
to find a solution for the ED problem is given below: 
 

Step-1: Initialization of the control parameters 
The parameters of the basic ABC algorithm are 

the colony size (NP), the number of food sources 
(SN=NP/2), the limit for scout, L = SN*D, D is the 
dimension of the problem and a Maximum Cycle Number 
(MCN). 
 

Step-2: Producing initial food source sites 
The initialize the power loadings Xi=[P1, 

P2,…PD]T, i=1,2,….NP such that each element in the 
vector is determined by Pij = Pj

min+ rand (0, 1) (Pj
max-Pj

min), 
j=1, 2...D with one generator as a dependent generator and 
evaluate the fitness value using Eq.(9) then select SN the 

best food source on the basis of highest fitness value as 
initial food sources and set the cycle=1, the trail number of 
each solution Xi, triali, is equal to zero. 
 

  Fitness 

⎥
⎦

⎤
⎢
⎣
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=
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1
PiF

F

ti

NP

i

                          (9)  

 
Fti is fuel cost of each food source.        
 

Step-3: Sending employed bees to the food sources [SN] 
and assigning the nectar amount 

In this step each employed bee produces a new 
solution Vi by using Equation (6) and computes the fitness 
value of the new solution using Equation (9) satisfying 
with all constraints. If the fitness of the new one is higher 
than that of the previous one, the employed bee memorizes 
the new position and forgets the old one; otherwise the 
employed bee keeps the old solution. 
 

Step-4: Sending the onlooker bees to the food sources 
depending on their amount of nectar 

This step required to calculate the probability 
value Pi of the solution Xi by means of their fitness value 
using Eq. (8). An onlooker bee selects a solution to update 
its solution depending on the probabilities and determines 
a neighbour solution around the chosen one. In the 
selection procedure for the first onlooker, a random 
number is generated between [0, 1] and if this number is 
less than P1, the solution is updated using Equation (6). 
Otherwise, the random number is compared with P2 and if 
less than that, the second solution is chosen. Otherwise, 
third probability of third solution is checked. This process 
is repeated until all onlookers have been distributed to 
solutions. The distributed onlooker bee updated its own 
solution just as the employed bees do. 
 

Step-5: Send the scouts to the search area to discover 
new food sources 

If the solution Xi is not improved through step 3 
and 4, the traili value of solution Xi will be increased by 1. 
If the traili of the solution is more than the predetermined 
“limit” the solution Xi is considered to be an abandoned 
solution, meanwhile the employed bee will be changed 
into a scout. The scout randomly produces the new 
solution and then compares the fitness of new solution 
with that its old one. If the new solution is better than the 
old solution, it is replaced with the old one and set its own 
traili into zero. This scout will be changed into employed 
bee. Otherwise, the old one is retained in the memory. 
 

Step-6: Record the best solution 
 

In this step, the best solution so far is recorded 
and increase the cycle by 1. 
 

Step-7: Check the termination criterion 
If the cycle is equal to the maximum cycle 

number (MCN) then the algorithm is finished; otherwise 
go to step-3. 
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The complete flowchart for ABC algorithm is 
shown in Figure-1. 
 

 
 

Figure-1. 
 
5. MODIFIED ARTIFICIAL BEE COLONY  
    ALGORITHM  
 
5.1. Drawbacks in ABC   

In ABC algorithm, the processes of the 
exploration and exploitation contradict with each other, so 
the two abilities should be well balanced for achieving 
good optimization performance. According to the search 
form of ABC algorithm which is described as Equation 
(6), a candidate solution would be generated by moving 
the previous one towards another solution selected 
randomly from the population. The ABC algorithm has 
already proved to be a very effective technique for solving 
global optimization. ABC is not only a high performance 
optimizer which is very easy to understand and implement. 
However, ABC could be slow to converge and sometimes 
trap in a local optimal solution. 
 
5.2. Modification in ABC 

In order to further improve the performances of 
ABC,  three major changes are made by introducing the 
best-so-far solution, inertia weight and acceleration 
coefficients to modify the search process .In addition, the 
search form of ABC described as Equation (6) is good at 
exploration but poor at exploitation. Therefore, to improve 
the exploitation, the modification forms of the employed 

bees and the onlooker ones are different in the second 
acceleration coefficient. The improved ABC algorithm is 
called as I-ABC. 

The operation process can be modified in the 
following form: 
 

( )( ) ( ) 215.02 Φ−+Φ−−+= kjjijkjijijijijij XXXXWXV ϕφ  
(10) 

 
Where ijV is the new feasible solution that is a modified 
feasible solution depending on its previous solution 

ijij WX . is the inertia weight which controls impacts of the 

previous solution jij XX . is the jth parameter of the best-

so-far solution, ijΦ  and ijϕ are random numbers between 

[0, 1], 1Φ and 2Φ are positive parameters that could 
control the maximum step size. However, if the global 
fitness is very large, bees are far away from the optimum 
values. So a big correction is needed to search the global 
optimum solution and then 1,Φw and 2Φ  should be 
bigger values. Conversely, only a small modification 
needed, then 1,ΦW and 2Φ must be smaller values. So in 
order to further improve the search efficiency of the bees, 
it is investigated to modify the parameter that is used to 
calculate new candidate food sources as [25]. In this 
investigation, inertia weight and acceleration coefficients 
are defined as functions of the fitness in the search process 
of ABC. They are proposed as follows: 
 

( ))/)(exp(1
1

1 apiFitnessWij −+=Φ=         (11) 

 
12 =Φ , if a bee is employed one                         (12) 

 

))/)(exp(1(
1

2 apiFitness−+=Φ , if a bee is onlooker one (13) 

 
Where ap is the )1(Fitness  in the first iteration. In order 
to further balance the process of the exploration and the 
exploitation, the modification forms of the employed bees 
and the onlooker ones are different in the acceleration 
coefficient 2Φ . In Reference [25] it is suggested that the 
main advantages of I-ABC are to achieve a fast 
convergence speed and to find a good solution. One more 
algorithm is called the Gbest-guided ABC (GABC) which 
is having advantage in field of diversity. The solution 
search equation of GABC is given by the following form 
[34]: 
 

)())(5.0(2 kjjijkjijijijij XXXXXV −+−−+= ϕφ     (14)  
 
Where ijV   is the new feasible solution that is a modified 
feasible solution depending on its previous solution 

jij XX . is the jth parameter of the best - so-far 
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solution, ijφ is a random number between [0, 1], ijϕ [0, c], 
c is a nonnegative constant, which is set 1.  

In order to combine the bright sides of I-ABC, 
ABC and GABC, the paper proposes a high-efficiency 
hybrid ABC algorithm which has the abilities of prediction 
and selection. This hybrid optimization method is called as 
Modified Artificial Bee Colony algorithm (MABC). In 
MABC algorithm; there are three different solution search 
equations. The first one is Equation (6), which is solution 
modification form of the original ABC algorithm. The 
second one is solution search equation of I-ABC as given 
in Equation (10). The third one is solution search equation 
of GABC as given in Equation (14). 

In initialization, MABC like ABC starts by 
associating all employed bees with randomly generated 
food sources. After initialization, the population of the 
food sources is subject to repeated cycles of the search 
processes of the employed bees, the onlooker bees and the 
scout bees. The main difference between MABC and 
anyone of ABC, I-ABC and GABC is how bees get the 
candidate solutions. In MABC, an employed bee firstly 
works out three new solutions by three different solution 
search equations, and then chooses and determines the best 
one as the candidate solution. Here, due to calculating  the 
candidate solution before the employed bee decide where 
they should go to explore, the process of calculating new 
food position is called ‘predict’. After the bees ‘predict’ 
new candidate solution by three different solution search 
equations, they select the best one from the three solutions 
as the candidate solution. 

If the fitness values of the candidate solution is 
better than the best fitness value achieved so far, then the 
employed bee’s moves to this new food source and 
synchronously abandons the old one, otherwise it remains 
the previous food source in its mind. When all employed 

bees have finished this process, they share the fitness 
information with the onlookers, each of which selects a 
food source according to probability given in Equation (8). 
As in the case of the employed bee, an onlooker ‘predicts’ 
three modification on the position in her memory, and then 
selects the best one as the candidate source and checks the 
fitness value of the candidate source. Providing that the 
fitness value of the candidate source is better than that of 
the previous one, the bee would memorize the new 
position and forget the old one.  

In MABC, the three solution search equations are 
independently calculated, but influence each other by the 
chosen best solution. On the whole, the MABC has 
inherited the bright sides of the other three algorithms. The 
diagrammatic representation of solving ED problem using 
MABC algorithm is shown in flowchart Figure-2.  
 
6. TEST RESULTS AND ANALYSIS 
 The MABC algorithm is combination of the 
ABC, GABC and I-ABC algorithms for ED problem is 
tested on two test systems. 
 
a) First system has the 6- units [22] have a total load of 

900MW and constraints are given by Eqs. (2) and (3).  
b) In the second case, the thirteen units [23], a total load 

of 1925MW and constraints given by Equations (2) 
and (3). Power losses have also been considered for 
these two systems using the B-matrix. 

 The performance of both the systems using 
MABC is compared with lambda iteration and ABC 
algorithm and is observed that MABC produces superior 
results and out performance lambda iteration and ABC 
algorithm in terms of convergence behavior, solution 
quality, consistency and computational efficiency.   
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Figure-2. 
 
6.1. Comparison of MABC with ABC algorithm 
 
6.1.1. Influence of colony size and cycle 

The colony size and cycle are another important 
issue in stochastic search methods. Too large a colony size 
and cycles makes an algorithm slow and computationally 
inefficient, while a very small colony size and cycle may 
not capable of searching a minimum, particularly in 
complex multimodal problems. The optimal colony size 
and cycle depends on problem dimension. Larger the 
dimension, larger is the colony size and cycle required to 
achieve good results. Tests were carried out for colony 
size of 20, 40 and 60 with variation of cycles from 100, 
200 and 300 for the above mentioned two generation 
systems. Tables 1 and 2 are lists the performance the two 

methods for different colony size and cycle sets for the 6 
unit and 13 unit systems respectively. With increase in 
colony size and cycle; a steady improvement in minimum 
and average costs was noticed. Moreover, out of 30 trails 
the number of solution hits towards global optimal 
solution also noticed. A colony size of 40 and cycle 300 
were found to be optimum for ABC and for MABC colony 
size 20 with cycle 300 were found to give best results for 6 
unit system. The colony size of 60 and cycle 300 were 
found to be optimum for ABC and for MABC colony size 
40 with cycle 200 or 300 were found to give best results 
for 13 unit systems. Here MABC requires fewer numbers 
of control parameters since at these stages MABC more 
dominating in the view of more number of global solution 
hits, minimum average cost and computational time. 
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Table-1. Influence of colony size for 6 unit system. 
 

S. No. Colony 
size cycle ABC 

varient 
Minmum 

cost (Rs/hr) Fmean Maximum 
cost (Rs/hr) 

Average cost 
( Rs/hr) 

1 20 100 ABC 47047 0 47071 47053.3300 
   MABC 47045 2 47059 47047.4880 
  200 ABC 47045 2 47048 47049.2000 
   MABC 47045 19 47046 47045.3660 
  300 ABC 47045 21 47048 47047.2333 
   MABC 47045 29 47046 47045.3300 

2 40 100 ABC 47046 0 47061 47049.532 0 
   MABC 47045 23 47046 47045.2660 
  200 ABC 47045 5 47047 47047.5000 
   MABC 47045 30 47045 47045.0000 
  300 ABC 47045 24 47046 47046.2000 
   MABC 47045 30 47045 47045.0000 

3 60 100 ABC 47046 0 47058 47051.3300 
   MABC 47045 30 47045 47045.0000 
  200 ABC 47045 9 47046 47046.7330 
   MABC 47045 30 47045 47045.0000 
  300 ABC 47045 30 47045 47045.0000 
   MABC 47045 30 47045 47045.0000 

 

Fmin - Number of hits towards global optimum. 
 

Table-2. Influence of colony size for 13 unit system. 
 

S. No. Colony 
size cycle ABC 

varient 
Minmum 

cost (Rs/hr) Fmean Maximum 
cost (Rs/hr) 

Average 
cost (Rs/hr) 

        
1 20 100 ABC 19351 0 19368 19355.066 
   MABC 19349 2 19352 19350.2667 
  200 ABC 19349 1 19353 19351.2330 
   MABC 19349 11 19350 19349.6660 
  300 ABC 19349 5 19351 19350.8000 
   MABC 19349 26 19350 19349.2000 

2 40 100 ABC 19351 0 19361 19352.9330 
   MABC 19349 2 19352 19350.5330 
  200 ABC 19350 0 19350 19350.0333 
   MABC 19349 24 19350 19349.2000 
  300 ABC 19349 10 19350 19349.0200 
   MABC 19349 30 19349 19349.0000 

3 60 100 ABC 19350 0 19355 19352.6600 
   MABC 19349 21 19350 19349.3300 
  200 ABC 19349 3 19352 19351.2000 
   MABC 19349 30 19349 19349.000 
  300 ABC 19349 8 19357 19353.0000 
   MABC 19349 30 19349 19349.0000 

 

Fmin - Number of hits towards global optimum. 
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6.1.2. Convergence characteristics 
The control parameters such as colony size, food 

sources, limit, and cycle are having very much influence 
on the convergences behaviour of the ABC and MABC 
algorithms. The convergence behaviour of the two 
methods was tested for 30 trails employing the same 
evaluation function with above mentioned optimum 
control parameters of ABC and MABC respectively. The 
results for ABC and MABC algorithms for one trail are 
shown in the Figures 3 and 4 for 6, 13 unit systems 
convergence characteristics with different colony size and 
same cycles and Figures 5 and 6 shows the convergence 
characteristics of 6, 13 unit systems with different cycles 
and same colony size. These Figures shows that the 
MABC takes less number of cycles for all kind of low 
control parameters but ABC takes more number of cycles 
and most of the trails it takes 250 to 300 cycles to obtain 
the optimum cost. Note the ABC requires large amount 
control parameters to obtain convergence point. These 
convergences cycles of ABC are 4 to 5 times more than 
our proposed MABC algorithm; hence the proposed 
algorithm reduces the convergence time drastically. Table-
3 shows the comparison of Convergence characteristics of 
two algorithms for 6 unit system, from Table-3 we can 
conclude that MABC requires less time to obtain the 
optimum cost.  
 

 
 

Figure-3. 
 

 
 

Figure-4. 
 

 
 

Figure-5. 
 

 
 

Figure-6. 
 

Table-3. Convergence characteristics for 6 unit system. 
 

S. No. Colony 
size cycle ABC 

varient Time 

1 20 100 ABC 3.3890 
   MABC 1.5124 
  200 ABC 9.5197 
   MABC 3.2424 
  300 ABC 6.4706 
   MABC 5.5560 
2 40 100 ABC 1.5988 
   MABC 2.1778 
  200 ABC 8.6362 
   MABC 4.7436 
  300 ABC 5.8031 
   MABC 7.5684 
3 60 100 ABC 2.047 0 
   MABC 2.8750 
  200 ABC 3.853 0 
   MABC 6.2406 
  300 ABC 8.4722 
   MABC 9.8672 

 
6.1.3. Solution quality 

The minimum, maximum and average costs 
obtained out of 30 trails for ABC and MABC algorithms 



                                         VOL. 7, NO. 10, OCTOBER 2012                                                                                                                 ISSN 1819-6608            

ARPN Journal of Engineering and Applied Sciences 
 

©2006-2012 Asian Research Publishing Network (ARPN). All rights reserved. 

 
www.arpnjournals.com 

 

 
1362

are given in Tables 1 and 2 for various control parameters. 
It can be see that the minimum cost of ABC is more than 
the MABC and no hits towards the global optimum 
solution for the control parameters  such as food source 
20, 40, 60 with cycle 100 and less number of global 
minimum hits for food source 20 and 300 and high 
average cost. Therefore the MABC achieve minimum cost 
even with less control parameters as well as average cost 
produced by MABC algorithm is least compared with 
ABC algorithm for all colony size and all variations of 
cycle, emphasizing the better solution quality of the 
method. To analyze the solutions more closely, the 
dynamic convergence behaviour of the two methods was 
also studied by calculating the mean value, standard 
deviation and number of hits towards global optimal 
solution of each of food source in the colony after each 
run. The mean value µ and standard deviation σ are 
defined as: 
 

SN
xfSN

i i∑ == 1
)(

µ                                       (25) 

 

∑
=

−=
SN

i
ixf

SN 1

2))((1 µσ                                    (26) 

 
SN is number of food source here and f (xi) is the 

objective function value at end of each cycle. Figures 7 
and 8 shows the plot of standard deviation for 6 and 13 
unit systems of ABC, MABC algorithms with above 
mentioned optimum control parameters. The plot of mean 
value is shown in Figures 9 and 10 for 6, 13 unit systems 
with above mentioned control parameters for ABC and 
MABC algorithms respectively. The MABC algorithm 
records a clear superiority over the ABC algorithm and 
produces better dynamic convergence as the mean cost 
and the standard deviation of the colony reduces 
continuously even for low value of control parameters. 
The ABC algorithm show premature convergence at low 
value control parameters and do not achieve minima.  
 

 
 

Figure-7. 

 
 

Figure-8. 
 

 
 

Figure-9. 
 

 
 

Figure-10. 
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6.1.4. Computational efficiency 
Tables 4 and 5 present the best cost achieved by 

the ABC, MABC algorithms and lambda iteration method 
for the two test cases, while satisfying the constraints. It 
can be seen that MABC is computationally quite efficient 
as the CPU time required is less compared with all three 
methods and producing same cost as ABC with less 
control parameters. Hence, the proposed method improves 
the convergence speed.   
 
6.1.5. Robustness 

Due to the inherent randomness involved, the 
performance of heuristic search based optimization 
algorithms cannot be judged by the result of a single trial. 
Therefore, many trials with different initial colony size 
were carried out to test the robustness/consistency of 
MABC algorithm with ABC algorithm. The lowest cost 
for each of 30 trails has been plotted in Figures 11 and 12 
for the above mentioned optimum control parameters such 
for 6, 13 unit systems. Figures 13-16 shows combined cost 
convergence plot of 6, 13 unit systems for all 30 trails of 
ABC and MABC from which it can be seen that MABC 
algorithm produces lowest production cost most 
consistently as compared with ABC in all runs. From the 
above discussions it is clear that our proposed MABC 
algorithm towards the global convergences making it more 
efficient, robust and consistent. 
 

 
 

Figure-11. 
 

 
 

Figure-12. 

 
 

Figure-13. 
 

 
 

Figure-14. 
 

 
 

Figure-15. 
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Figure-16. 
 

Table-4. Generator output for least cost for 6 unit system. 
 

Unit power output Lambda ABC MABC 
P1(MW) 36.89 36.95 36.76 
P2(MW) 21.07 21.08 21.10 
P3(MW) 163.90 163.29 164.36 
P4(MW) 153.20 153.78 153.53 
P5(MW) 284.13 283.67 284.13 
P6(MW) 272.69 273.22 272.08 

Total power demand 
(MW) 900 900 900 

Total loss 31.98 31.99 31.97 
Total cost(Rs/hr) 47130.48 47045.29 47045.25 

CPU time(s) 15.5170 6.9000 5.3120 
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Table-5. Generator output for least cost for 13 unit system. 
 

Unit power output Lambda ABC MABC 
P1(MW) 119.71 118.92 120.16 
P2(MW) 101.35 114.74 117.17 
P3(MW) 142.03 141.90 142.01 
P4(MW) 135.81 134.56 135.78 
P5(MW) 130.40 129.08 130.18 
P6(MW) 143.29 143.34 143.36 
P7(MW) 40.0000 40.0000 40.0000 
P8(MW) 40.0000 40.0000 40.0000 
P9(MW) 55.0000 55.0000 55.0000 
P10(MW) 55.0000 55.0000 55.0000 
P11(MW) 426.68 468.16 462.69 
P12(MW) 282.14 288.19 284.36 
P13(MW) 260.36 237.49 240.55 

Total power demand 
(MW) 1925 1925 1925 

Total loss 41.60 41.37 41.25 
Total cost(Rs/hr) 20524.94 19349.52 19349.44 

CPU time(s) 19.95 7.0000 6.0000 
 
6. CONCLUSIONS 

This paper has presented an MABC algorithm for 
solving economic dispatch problem. In MABC, the three 
search equations are independently calculated, but 
influence each other by the chosen best solution. The 
results indicate that the global search ability of MABC has 
been improved. In addition; the proposed MABC 
algorithm shows the very fast convergence. On the whole, 
the MABC could be thought as the combination of the 
bright sides of the ABC, GABC and I-ABC algorithms.   
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