
                                         VOL. 7, NO. 12, DECEMBER 2012                                                                                                              ISSN 1819-6608            

ARPN Journal of Engineering and Applied Sciences 
 

©2006-2012 Asian Research Publishing Network (ARPN). All rights reserved. 

 
www.arpnjournals.com 

 

 
1539

THE CONVERGENCE AND ORDER OF THE 3-POINT BLOCK 
EXTENDED BACKWARD DIFFERENTIATION FORMULA 

 
H. Musa1, M. B. Suleiman2, F. Ismail1, N. Senu1 and Z. B. Ibrahim1 

1Department of Mathematics, Faculty of Science, Universiti Putra Malaysia, Serdang, Selangor, Malaysia 
2Institute for Mathematical Research, Universiti Putra Malaysia, Serdang, Selangor, Malaysia 

E-Mail: hamisuhm1@yahoo.com 
 
ABSTRACT 

In this paper, we consider the fully implicit 3-point Block Extended Backward Differentiation Formula for solving 
stiff initial value problems. The iterative block method is proven to be convergent by establishing zero stability and 
consistency conditions. Numerical results are given to show the effect of zero stability and consistency. The accuracy is 
seen to improve as the step length tends to zero. The order of the method is also shown to be 6. 
 
Keywords: convergence, order of block method, blocks extended backward differentiation formula. 
 
INTRODUCTION 

Consider the first order stiff initial value problem 
(IVP)  
 

' ( , )y f x y=  0( )y a y=  [ , ]x a b∈                    (1) 
 

Such differential equations occur in many fields 
of engineering science and in particular, they appear in 
electrical circuit, vibrations, chemical reactions, kinetics 
etc. 

Developing methods for solving (1) still remains 
a challenge in modern numerical analysis. Sequential 
methods among them include (Curtiss et al., 1952; Hall et 
al., 1985; Dahlquist, 1963; Cash, 1980; Suleiman et al., 
1989). Block methods for solving (1) can be found in 
(Fatunla, 1991; Ibrahim et al., 2007; Musa et al., 2011; 
Nasir et al., 2011; Musa et al., 2012). The convergence of 
block methods for solving (1) using block backward 
differentiation formula (BBDF) has been studied in 
(Ibrahim et al., 2011). The block extended backward 
differentiation formula (BEBDF) that approximates the 
solution of (1) is proposed in (Musa et al., 2012) and has 
the general form: 
 

,

5

, 2 1 1
0

, , ,
k ij i n j n k k n k

j

y h f h fα β β+ − + + + +
=

= +∑
 

1, 2,3.k i= =   (2) 

 
It was developed in quest for higher order A-

stable block methods for stiff IVPs. The method improves 
the accuracy and order of the BBDF method. An extra 
future point 4ny + is involved, which is predicted using 
conventional backward differentiation formula. The 
method also approximates the solution at 3-point 
simultaneously and it is A-stable. For i=1, 2 and 3, it is 
given by: 
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0 600
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                                    (3) 
 
respectively. More details on the method can be found in 
(Musa et al., 2012).  

An acceptable linear multistep method (LMM) 
must be convergent. Consistency and zero stability are the 
necessary and sufficient conditions for convergence of a 
LMM. According to (Lambert, 1973), consistency controls 
the magnitude of the local truncation error while zero 
stability controls the manner in which the error is 
propagated at each step of the calculation. A method 
which is not both consistent and zero stable is rejected 
outright and has no practical interest. This paper proves 
the convergence of the method (3) by establishing zero 
stability and consistency conditions. The order of the 
method will also be determined. 
 
ORDER OF THE METHOD 

The following definitions given in (Lambert, 
1973) will be used to establish the order of the method (3). 
 
Definition 

The general linear multistep method (LMM) is 
defined by: 
 

0 0

k k

j n j j n j
j j

y h fα β+ +
= =

=∑ ∑                                   (4) 

where jα  and jβ  are constants, 0kα ≠ , 0α and 0β  
cannot be zero at the same time. 
 
Definition 

The order of the LMM (4) and its associated 
linear operator given by: 
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0
[ ( ); ] [ ( ) '( )]

k

j j
j

L y x h y x jh h y x jhα β
=

= + − +∑     (5) 

 
is defined as a unique integer p  such that 

0, 0(1) ,qC q p= =  and 1 0pC
+
≠ , where the qC are 

constants defined by: 
 

0 0 1 2

1 1 2 0 1 2

1 2

1 1
1 2

...
2 ... ( ... )

1 ( 2 ... )!
1      ( 2 ... ),( 1)!

         2,3,...,

k

k k

q q
q k

q q
k

C
C k

C kq

kq
q k

α α α α
α α α β β β β

α α α

β β β− −

= + + + +
= + + + − + + + +

= + + +

− + + +
−
=

                                    (6) 
 

We extend the above definitions to the method 
(3) as follows: 
 
Definition 

The method (3) can be defined in general matrix 
form as: 
 

1 2
* *

1 1
0 0

j m j j m j
j j

A Y h B F− − + −
= =

=∑ ∑       (7) 

 
where *

0A , *

1A , 1B
−

 *

0B and *

1B  are square matrices 
defined by: 
 

*
0

25 31
16 40

19712 1 ,
25

18700 26550 1
14919 14919
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⎛ ⎞− −⎜ ⎟
⎜ ⎟
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⎝ ⎠
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0 0 0
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and mY , 1mY

−
, 1mF

−
, mF , 1mF

+
 are column vectors defined 

by: 
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Equation (7) can be re-written as: 
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                                   (8) 
 
Let *

0A , *

1A , *

1B
−

, *

0B , and *

1B  be block matrices defined 
by 
 

( )*
0 3 4 5 ,A A A A= ( )*

1 0 1 2 ,A A A A= ( )*
1 0 1 2 ,B B B B− =  

( )*
0 3 4 5 ,B B B B= and ( )*

1 6 7 8 .B B B B=  
where 
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⎝ ⎠

 

 
Definition 

The order of the block method (7) and its 
associated linear operator given by: 
 

[ ]
5 1

0 0

( ); ( ) '( )
k k

j j
j j

L y x h A y x jh h B y x jh
= +

= =

⎡ ⎤ ⎡ ⎤= + − +⎣ ⎦ ⎣ ⎦∑ ∑     (9) 
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is a unique integer p  such that 0, 0(1)qC q p= =  and 

1 0pC
+
≠ ; where the qC  are constant  column) matrices 

defined by: 
 

0 0 1 2

1 1 2 0 1 2 1

1 2

1 1
1 2 1

...
2 ... ( ... )

1 ( 2 ... )
!

1     ( 2 ... ( 1) )
( 1)!

k

k k

q q
q k

q q
k

C A A A A
C A A kA B B B

C A A k A
q

B B k B
q

β +

− −
+

= + + + +

= + + + − + + + +

= + + +

− + + + +
−

  (10) 

 
For 0(1)6q = , we have 
 

( )
( )

( )

( )

( )

0 0 1 2 3 4 5

1 1 2 3 4 5

0 1 2 3 4 5 6

2 2 2 2
2 1 2 3 4 5

1 1 1 1 1
1 2 3 4 5 6

3 3 3 3
3 1 2 3 4 5

2
1 2

0
2. 3. 4. 5.

     0
1 2 . 3 . 4 . 5 .
2!
1     2 . 3 . 4 . 5 . 6 . 0
1!
1 2 . 3 . 4 . 5 .
3!
1     2 .
2!

C A A A A A A
C A A A A A

B B B B B B B

C A A A A A

B B B B B B

C A A A A A

B B

= + + + + + =

= + + + +

− + + + + + + =

= + + + +

− + + + + + =

= + + + +

− + +( )
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2 2 2 2
3 4 5 6

4 4 4 4
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3 3 3 3 3
1 2 3 4 5 6

3 . 4 . 5 . 6 . 0

1 2 . 3 . 4 . 5 .
4!
1     2 . 3 . 4 . 5 . 6 . 0
3!

B B B B

C A A A A A

B B B B B B

+ + + =

= + + + +

− + + + + + =

  

( )

( )

( )
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5 5 5 5
5 1 2 3 4 5

4 4 4 4 4
1 2 3 4 5 6

6 6 6 6
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5 5 5 5 5
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1 2 . 3 . 4 . 5 .
5!
1    2 . 3 . 4 . 5 . 6 . 0
4!
1 2 . 3 . 4 . 5 .
6!
1     2 . 3 . 4 . 5 . 6 . 0
5!

C A A A A A

B B B B B B

C A A A A A

B B B B B B

= + + + +

− + + + + + =

= + + + +

− + + + + + =

  

( )

( )

7 7 7 7
7 1 2 3 4 5

6 6 6 6 6
1 2 3 4 5 6

1 2 . 3 . 4 . 5 .
7 !

1      2 . 3 . 4 . 5 . 6 .
6 !

1
280 0

2   0
35

0690
34811

C A A A A A

B B B B B B

= + + + +

− + + + + +

−⎛ ⎞
⎜ ⎟

⎛ ⎞⎜ ⎟
− ⎜ ⎟⎜ ⎟= ≠ ⎜ ⎟⎜ ⎟

⎜ ⎟⎜ ⎟ −⎝ ⎠
⎜ ⎟−⎜ ⎟
⎝ ⎠

 (11)

 

Therefore the formula (3) is of order 6, with error constant 

1
280

2
35
690

34811

−⎛ ⎞
⎜ ⎟
⎜ ⎟

−⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟−⎜ ⎟
⎝ ⎠

. 

 
CONVERGENCE OF THE METHOD 

Convergence is an essential property that every 
acceptable linear multistep method must possess. This 
section proves the convergence of the method (3). 
According to (Lambert, 1973), consistency and zero 
stability are the necessary conditions for the convergence 
of any numerical method. We shall therefore begin with 
the following theorem and definitions (as given in 
Lambert, 1973) which relate to the general LMM: 
 

0 0

k k

j n j j n j
j j

y h fα β+ +
= =

=∑ ∑      (12) 

 
and then establish new definitions that relate to the fully 
implicit 3-point BEBDF method. A proof of consistency 
and zero stability of the method will then follow. 
 
Theorem 

The necessary and sufficient conditions for the 
linear multistep method (12) to be convergent are that it is 
consistent and zero stable. 

Details of the prove can be found in (Henrici, 
1962). 
 
Definition 

A LMM is said to be consistent if its order 1p ≥ . 
Therefore from (6), it follows that the LMM (12) is 
consistent if and only if the following conditions are 
satisfied: 
 

0

0 0

0

0

k

j
j

k k

j j
j j

j

α

α β

=

= =

=

= =

∑

∑ ∑
     (13) 

 
See (Lambert 1973) 
 
Definition 

The LMM (12) is said to be zero stable if no root 
of the first characteristic polynomial has modulus greater 
than one; and if every root with modulus one is simple. 
See (Lambert, 1973). 

Building on this, we now extend the above 
theorem and definitions to the BEBDF method as follows: 
Theorem 

The necessary and sufficient conditions for the 
BEBDF method (7) to be convergent are that it is 
consistent and zero stable. 
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Proof 
It suffices to show that (7) is consistent and zero 

stable. These are shown in subsections 3.1 and 3.2. 
 
Definition 

The BEBDF is said to be consistent if its 
order 1p ≥ . Therefore from (10), it follows that the 
BEBDF method (3) is consistent if and only if the 
following conditions are satisfied: 
 

5

0

5 6

0 0

0

0

j
j

j j
j j

A

jA B

=

= =

=

= =

∑

∑ ∑
     (14) 

 
where jA  and jB  are as previously defined. 
 
Definition 

The BEBDF method (3) is said to be zero stable 
if no root of the first characteristic polynomial has 
modulus greater than one, and that with modulus one is 
simple. 
 
Consistency of the BEBDF method 

In this subsection, it is shown that the BEBDF 
satisfies the consistency conditions given in definition 3.5. 
From what followed in section 2, it can be concluded that 
the order of the BEBDF method is >1. 
Let 

10 5, , ...,A A A  be as previously defined.  Then 
 

5

0 1 2 3 4 5
0

1 1 3
80 8 43        1 4
25

2925 9600394
14919 1491914919

325
401 16 19        12 1

18700 26550
14919 14919

j
j

A A A A A A A
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= + + + + +
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−⎛ ⎞⎛ ⎞ −⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟
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⎜ ⎟⎜ ⎟ −
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∑

7
25
1
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       0
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⎜ ⎟
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⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

             (15) 

 

Hence the first condition in (14) is satisfied. 
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⎜ ⎟ ⎜ ⎟−⎜ ⎟− ⎝ ⎠⎝ ⎠⎜ ⎟

⎝ ⎠

⎛ ⎞ −⎜ ⎟
⎜ ⎟
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14919

9
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5
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9
4
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5
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j
j

B
=

⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎜ ⎟− −⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟= + + + + + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟−⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠
⎛ ⎞−⎜ ⎟
⎜ ⎟
⎜ ⎟= ⎜ ⎟
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⎜ ⎟⎜ ⎟
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∑

  (17) 

Hence 
5 6

0 0
j j

j j
jA B

= =

=∑ ∑ . 

 
Thus, the second condition in (14) is also 

satisfied. 
The consistency conditions are therefore met.  

Hence, the method is consistent. 
 
Zero stability of the BEBDF method 

The stability polynomial of the method (3) is 
given by: 
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2 2 2 2 3

3 2 3 3 3

11 6289 t 3651 h t 211849 t 240933h t 68922 h t 616669 t( , )
29838 9946 9946 9946 9946 4973 29838
180249 h t 126432 h  t 52560 h  t              

4973 4973 4973

R t h = − − − + + + −

+ − +
                    (18) 

 
For details, see (Musa et al., 2012). 

The first characteristics polynomial of the method 
(3) is given by * *

0 1( )C t C−  where 
 

*
0

25 31
16 40

19712 1
25

18700 26550 1
14919 14919

C

⎛ ⎞− −⎜ ⎟
⎜ ⎟
⎜ ⎟= −⎜ ⎟
⎜ ⎟
⎜ ⎟−⎜ ⎟
⎝ ⎠

, *
1

1 1 3
80 8 4
3 1 4
25

394 2925 9600
14919 14919 14919

C

⎛ ⎞− −⎜ ⎟
⎜ ⎟
⎜ ⎟= − −⎜ ⎟
⎜ ⎟
⎜ ⎟−⎜ ⎟
⎝ ⎠

 

 
Solving * *

0 1 0,C C− =  the polynomial obtained is: 

 
3 2616669 t 211849 t 6289 t 11 0

29838 9946 9946 29838
− + + =   (19) 

 
Solving for t gives 
t=1, t= –0.000572001, t=0.031184858 

Thus, by definition of zero stability, the BEBDF 
method is zero stable. 

Since consistency and zero stability conditions 
are both satisfied, the fully implicit 3-point BEBDF 
method converges. This completes the proof of conditions 
set in the theorem. 
 
NUMERICAL RESULTS 

To illustrate the effect of zero stability and 
consistency on the method, the following non linear 
problems are solved at some fixed station values of x . The 
theoretical and numerical results as well as the absolute 
error for different step length h are given in Tables 1-4. 
 
Problems 
1. 

(1 )
'

2 1
,y y

y
y

−
=

−        

5
(0)

6
,y =
      

0 1x≤ ≤  

 
Exact solution 
 

1 1 5
( )

2 4 36
xy x e−= + −  

Source:  (Alvarez et al., 2002). 
2. 

3

'
2

,y
y = −

             
(0) 1,y =            0 4x≤ ≤  

 
 
 
 

Exact solution 
 

1
( )

1
y x

x
=

+
 

 
Source:  (Voss et al., 1997). 
 

Table-1. Effect of zero stability and consistency on the 
3-point BEBDF method when problem 1 is solved 

with h=0.01. 
 

x  Theoretical 
solution 

Numerical 
solution 

Absolute 
error 

0.0 0.8333333 0.8333333 0.0000000 
0.1 0.8526020 0.8527450 0.0001430 
0.2 0.8691712 0.8690573 0.0001139 
0.3 0.8835474 0.8829767 0.0005707 
0.4 0.8961060 0.8960859 0.0000201 
0.5 0.9071359 0.9065019 0.0006340 
0.6 0.9168647 0.9155497 0.0013150 
0.7 0.9254760 0.9253058 0.0001702 
0.8 0.9331203 0.9321562 0.0009641 
0.9 0.9399227 0.9381680 0.0017547 
1.0 0.9459884 0.9439650 0.0020234 

 
Table-2. Effect of zero stability and consistency on the 

3-point BEBDF method when problem 1 is solved 
with h=0.001. 

 

x  Theoretical 
solution 

Numerical 
solution 

Absolute 
error 

0.0 0.8333333 0.8333333 0.0000000 
0.1 0.8526020 0.8526051 0.0000031 
0.2 0.8691712 0.8691327 0.0000385 
0.3 0.8835474 0.8834451 0.0001023 
0.4 0.8961060 0.8960943 0.0000117 
0.5 0.9071359 0.9070486 0.0000873 
0.6 0.9168647 0.9166918 0.0001729 
0.7 0.9254760 0.9254502 0.0000258 
0.8 0.9331203 0.9330021 0.0001182 
0.9 0.9399227 0.9397089 0.0002138 
1.0 0.9459884 0.9457798 0.0002086 
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Table-3. Effect of zero stability and consistency on the 

3-point BEBDF method when problem 2 is solved 
with h=0.01. 

 

x  Theoretical 
solution 

Numerical 
solution 

Absolute 
error 

0 1.0000000 1.0000000 0.0000000 
0.1 0.9534626 0.9531365 0.0003261 
0.2 0.9128709 0.9131317 0.0002608 
0.3 0.8770580 0.8783667 0.0013087 
0.4 0.8451543 0.8452111 0.0000568 
0.5 0.8164966 0.8180010 0.0015044 

M  M  M  M  
1.0 0.7071068 0.7078439 0.0007371 
1.1 0.6900656 0.6930848 0.0030192 
1.2 0.6741999 0.6794762 0.0052763 

M  M  M  M  
2.0 0.5773503 0.5814200 0.0040697 
2.1 0.5679618 0.5746525 0.0066907 
2.2 0.5590170 0.5604601 0.0014431 

M  M  M  M  
3.0 0.5000000 0.5072343 0.0072343 
3.1 0.4938648 0.4955359 0.0016711 
3.2 0.4879500 0.4925243 0.0045743 

M  M  M  M  
3.8 0.4564355 0.4611000 0.0046645 
3.9 0.4517540 0.4591699 0.0074159 
4.0 0.4472136 0.4489977 0.0017841 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Table-4. Effect of zero stability and consistency on the 

3-point BEBDF method when problem 2 is solved 
with h=0.001. 

 

x  Theoretical 
solution 

Numerical 
solution 

Absolute 
error 

0 1.00000 1.00000 0.0000000 
0.1 0.9534626 0.9534550 0.0000076 
0.2 0.9128709 0.9129578 0.0000869 
0.3 0.8770580 0.8772912 0.0002332 
0.4 0.8451543 0.8451819 0.0000276 
0.5 0.8164966 0.8167020 0.0002054 

M  M  M  M  
1.0 0.7072001 0.7071068 0.0000933 
1.1 0.6900656 0.6904173 0.0003517 
1.2 0.6741999 0.6748168 0.0006169 

M  M  M  M  
2.0 0.5773503 0.5778026 0.0004523 
2.1 0.5679618 0.5687133 0.0007515 
2.2 0.5590170 0.5591786 0.0001616 

M  M  M  M  
3.0 0.5000000 0.5008002 0.0008002 
3.1 0.4938648 0.4940479 0.0001831 
3.2 0.4879500 0.4884486 0.0004986 

M  M  M  M  
3.8 0.4564355 0.4569413 0.0005058 
3.9 0.4517540 0.4525675 0.0008135 
4.0 0.4472136 0.4474070 0.0001934 

 
From the above tables, the zero stability of the 

method is indicated by the decrease in error as the step 
length h tends to zero. The accuracy also improves as the 
step length is reduced. Thus, the error is not propagated in 
any explosive manner. 

Similarly, the solution at any fixed point x  
improves as the step length is reduced. This can be seen 
when we compare Tables 1 and 2 for problem 1 and 
Tables 3 and 4 for problem 2. 
The absolute error also indicates that the numerical 
solution becomes close to the exact solution. Thus, the 
computed solution tends to the theoretical solution as the 
step length tends to zero. This shows the consistency of 
the method. 
 
CONCLUSIONS 

The paper studied the fully implicit 3-point block 
extended backward differentiation formula and proved that 
the method is consistent and zero stable. This indicates 
that the method is convergent. The numerical results 
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presented illustrated the effect of zero stability and 
consistency of the method when a stiff IVP is solved. 
There is no evidence of explosive error propagation in the 
method. The method was also proven to be of order 6. 
These added advantages make the BEBDF method to be 
numerically acceptable method for solving stiff initial 
value problems. 
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