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ABSTRACT

In this paper, we consider the fully implicit 3-point Block Extended Backward Differentiation Formula for solving
stiff initial value problems. The iterative block method is proven to be convergent by establishing zero stability and
consistency conditions. Numerical results are given to show the effect of zero stability and consistency. The accuracy is
seen to improve as the step length tends to zero. The order of the method is also shown to be 6.
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INTRODUCTION
Consider the first order stiff initial value problem
(IVP)

y'=f(xy) y@=y, xe[ab] 1)

Such differential equations occur in many fields
of engineering science and in particular, they appear in
electrical circuit, vibrations, chemical reactions, kinetics
etc.

Developing methods for solving (1) still remains
a challenge in modern numerical analysis. Sequential
methods among them include (Curtiss et al., 1952; Hall et
al., 1985; Dahlquist, 1963; Cash, 1980; Suleiman et al.,
1989). Block methods for solving (1) can be found in
(Fatunla, 1991; Ibrahim et al., 2007; Musa et al., 2011,
Nasir et al., 2011; Musa et al., 2012). The convergence of
block methods for solving (1) using block backward
differentiation formula (BBDF) has been studied in
(Ilbrahim et al., 2011). The block extended backward
differentiation formula (BEBDF) that approximates the
solution of (1) is proposed in (Musa et al., 2012) and has
the general form:

5
zaj,iyn+j—2 = hlBKvl ' fn+k + hﬂk+1’ fn+k+l' k = I :1’2'3' (2)
j=0

It was developed in quest for higher order A-
stable block methods for stiff IVPs. The method improves
the accuracy and order of the BBDF method. An extra

future point Y, .,Iis involved, which is predicted using
conventional backward differentiation formula. The
method also approximates the solution at 3-point

simultaneously and it is A-stable. For i=1, 2 and 3, it is
given by:

1 1 3 25 3 3 3
You = —gg Vet gV T n t e Vet g Yo fghfm *th
Vi, = —23—5 Yoo+ Yo, -4y, +12y, . - % Y., +120f .+ %hf"+
394 2925 9600 18700 26550
"7 14919 °"7 14919 °"' 14919 °" 14919 °"' 14919
8820 600
14919 "7 14919 ™
3)

respectively. More details on the method can be found in
(Musa et al., 2012).

An acceptable linear multistep method (LMM)
must be convergent. Consistency and zero stability are the
necessary and sufficient conditions for convergence of a
LMM. According to (Lambert, 1973), consistency controls
the magnitude of the local truncation error while zero
stability controls the manner in which the error is
propagated at each step of the calculation. A method
which is not both consistent and zero stable is rejected
outright and has no practical interest. This paper proves
the convergence of the method (3) by establishing zero
stability and consistency conditions. The order of the
method will also be determined.

ORDER OF THE METHOD
The following definitions given in (Lambert,
1973) will be used to establish the order of the method (3).

Definition

The general linear multistep method (LMM) is
defined by:

k k
Zajyn+j :hzﬂj fn+j (4)
j=0 j=0

where «, and S, are constants, a, #0, o and B,
cannot be zero at the same time.
Definition

The order of the LMM (4) and its associated
linear operator given by:
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k
LLy(x);h] = > [a; y(x+ jh)=hg,y (x+ jh)] (®)
j=0
is defined as a
C,=0,g=0(@)p,
constants defined by:

unique integer p such that

and C_ =0, where the C are

Co=ayta +a,+..+a,
Ci=a,+2a,+..+ka, —(By+ B+ B, +...+ B,)
Cq :$(al+2qa2+...+ k9, )

A2 B e KR,
9g=2,3,...,k

(6)

We extend the above definitions to the method
(3) as follows:

Definition

The method (3) can be defined in general matrix
form as:

1 2
2 AV, =hY BlLF %)

where A, A, B, B,and B are square matrices
defined by:
) EERE
16 40 8?? 8 4
197 | | 2 _
A= 12 e S 1 4
18700 26550 1 394 2925 9600
14919 14919 14919 14919 14919
3 3
000 = 5 0
B,=[0 0 0 2 ¢ 00
i "B=fo 12 2 |E- 0o 0o
00O 5 600
8820 " 14919
14919
and Y , Y , F ., F, F  arecolumn vectors defined
by:
yn+1 ynfz fnfz fn+1
Yo = Yoz |+ Yo = You |» R =] T | R =) foz |
yn+3 yn fn fn+3
fn+4
Fm+1: fn+5
f

Equation (7) can be re-written as:

394 2925 9600 " 18700 26550

14919 14919 14919 14919 14919

14919

(8)

Let A, A, B, B,,and B be block matrices defined
by

P{;z(As A AS)'A::(A) A Az)'lez(Bo B, Bz)'
B;:(B3 B, Bs),and Bf:(B6 B, BB).
where

1 1 3
80 ) 4
A=l = | A= 1 A4 ]
25 2925 9600
_ 394 14919 14919
14919
25 3
1 _16 40
A=l 12 |, A= 1 A= %
18700 _26550 1
14919 14919
0 0 0 . _%
= = = 2
B=|0| B=|0 B=|0f | 2| g |12
0 0 0 6 0
0 0 0 0
B = 12 ’Bsz 0 , B,=10], Bg=|0|.
15 600 0 0
8820 14919
14919
Definition

The order of the block method (7) and its
associated linear operator given by:

L[y00in]= 3 [ Ao in] -3 [By e ] @
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is a unique integer p such that C =0,q=0()p and
C,,#0; where the C_ are constant column) matrices
defined by:

Co=A+A+A +..+A

C,=A+2A,+..+kA - (5, +B,+B,+...+B,;)
g:éﬁa+?g+m+wA) (10)

1
-——— (B, +2'"'B, +..+ (k+1)"'B,,)

(q-1!
For g =0(1)6, we have

Co=A+A+A+A+A+A =0
=(A+2.A,+3.A,+4.A +5.A)
—(By+B,+B,+B,+B, +B, +B;)=0

TGN %A, +3°.A + 47A, +50A)

B,+2'B,+3.B,+4'B, +5.B, +6.B,) =0

\ =

[N
/‘\A/—\

A1+2 A, +3LA + 4 A, +5A)

w

—~

Bl+ZZB +3°B,+4°B, +5° B, +6°B,) =0

(@)
N
Il

A +2'.A, +3"A +4%A +5A)

—

B,+2°B,+3%B,+4°B, +5°B, +6°B, ) =0

Q\Hﬁ\HE\H

O
Il

A +2°A, +3%A + 45 A, +5°A)

\H."_‘\H
— —_

B,+2°B,+3B,+4%B, +5'B, +6"B; ) =0

0
[
s

A +2°A, +3°.A +4°A, +5°A)

B, +2°.B, +3°.B,+4°B, +5°B, +6°B; ) =0

\'\Hfﬂ\HE\H

—_ ~

(A +27A, +3TA +4TA, +5 A)

- é(B1 +2°B, + 3B, +4°B, +5°.B, + 6°.B, )
-1
280
-2
35
690
34811
Therefore the formula (3) is of order 6, with error constant

(11)

-1
280
-2
35
690
34811

CONVERGENCE OF THE METHOD

Convergence is an essential property that every
acceptable linear multistep method must possess. This
section proves the convergence of the method (3).
According to (Lambert, 1973), consistency and zero
stability are the necessary conditions for the convergence
of any numerical method. We shall therefore begin with
the following theorem and definitions (as given in
Lambert, 1973) which relate to the general LMM:

Kk k
PICATNELD WA (12)
-0 -0

and then establish new definitions that relate to the fully
implicit 3-point BEBDF method. A proof of consistency
and zero stability of the method will then follow.

Theorem

The necessary and sufficient conditions for the
linear multistep method (12) to be convergent are that it is
consistent and zero stable.

Details of the prove can be found in (Henrici,
1962).

Definition

A LMM is said to be consistent if its order p >1.
Therefore from (6), it follows that the LMM (12) is
consistent if and only if the following conditions are
satisfied:

(13)

See (Lambert 1973)

Definition

The LMM (12) is said to be zero stable if no root
of the first characteristic polynomial has modulus greater
than one; and if every root with modulus one is simple.
See (Lambert, 1973).

Building on this, we now extend the above
theorem and definitions to the BEBDF method as follows:
Theorem

The necessary and sufficient conditions for the
BEBDF method (7) to be convergent are that it is
consistent and zero stable.

1541



VOL. 7, NO. 12, DECEMBER 2012

ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

o
©2006-2012 Asian Research Publishing Network (ARPN). All rights reserved. @

www.arpnjournals.com

Proof
It suffices to show that (7) is consistent and zero
stable. These are shown in subsections 3.1 and 3.2.

Definition

The BEBDF is said to be consistent if its
order p>1. Therefore from (10), it follows that the
BEBDF method (3) is consistent if and only if the
following conditions are satisfied:

J (14)

where A, and B, are as previously defined.

Definition

The BEBDF method (3) is said to be zero stable
if no root of the first characteristic polynomial has
modulus greater than one, and that with modulus one is
simple.

Consistency of the BEBDF method

In this subsection, it is shown that the BEBDF
satisfies the consistency conditions given in definition 3.5.
From what followed in section 2, it can be concluded that
the order of the BEBDF method is >1.

Let A, A .., A beas previously defined. Then

ZS:A].:AO+A1+A2+A3+A4+A5

S (2

3 8 4

=l — |+ -1 |+ 4
25 2925 9600
_ 394 — -—
14919 14919 14919

RN

' 16 197

+| 12 |+ 1 +| —

25

18700 26550 1

14919 14919

0
=0
0

Hence the first condition in (14) is satisfied.

i JA =0.A +1A +2.A, +3.A +4.A +5.A

i 1 3
o0 5 | |
=0| — +1.| -1 [+2. 4
25
j04 | | 2925| | 9600
14919 14919 14919
25 3
: ® | |
+3.| -12 |+4. 1 +5. 2—5
18700 _ 26550 1
14919 14919
-9
4
| 72
| 5
2740
4973 (16)
3 3
SHHEE
ZBJ.:0+0+0+ 0 |+] 12 |+ T | 0
=0 o) o) (o 0 0 600
22 ) Uiams) (17)
9
4
72
| s
2740
4973

6
Hence ZS: JA :Z B; .
-0 =0

Thus, the second condition in (14) is also
satisfied.

The consistency conditions are therefore met.
Hence, the method is consistent.

Zero stability of the BEBDF method

The stability polynomial of the method (3) is
given by:
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R(t.h)= 1L 6289t 3651ht 211849 t* 240933 t* 68922h° t* 616669 t°
29838 9946 9946 9946 9946 4973 29838
180249 ht* 126432h° t* 52560 h° t°
4973 4973 4973

For details, see (Musa et al., 2012).
The first characteristics polynomial of the method

(3) is given by (C;t —C,) where

. %5 3 o3
16 @ 80 8 4
Vo 3
Cr=| -12 1 % = % 1 -4
18700 26550 394 2925 9600

il e |
14919

14919 14919 14919 14919
Solving ‘Cg - Cl*‘ =0, the polynomial obtained is:

616669 t° 211849t° 6289t 11 _
29838 9946 9946 29838

0 (19)

Solving for t gives
t=1, t=-0.000572001, t=0.031184858

Thus, by definition of zero stability, the BEBDF
method is zero stable.

Since consistency and zero stability conditions
are both satisfied, the fully implicit 3-point BEBDF
method converges. This completes the proof of conditions
set in the theorem.

NUMERICAL RESULTS

To illustrate the effect of zero stability and
consistency on the method, the following non linear
problems are solved at some fixed station values of x. The
theoretical and numerical results as well as the absolute
error for different step length h are given in Tables 1-4.

Problems
1.
1- 5
yi= y( y)’ yO =2, 0<x<1
2y -1 6
Exact solution
1 5
y(X)=—+,|———¢e
2 4 36
Source: (Alvarez et al., 2002).
2.
y3
y':—?, y(0) =1, 0<x<4

Exact solution

y(x) =

Source:

1
V1+Xx

(Voss et al., 1997).

ISSN 1819-6608

i@

(18)

Table-1. Effect of zero stability and consistency on the
3-point BEBDF method when problem 1 is solved

with h=0.01.
X Theore_tical Nume_rical Absolute
solution solution error

0.0 0.8333333 0.8333333 0.0000000
0.1 0.8526020 0.8527450 0.0001430
0.2 0.8691712 0.8690573 0.0001139
0.3 0.8835474 0.8829767 0.0005707
0.4 0.8961060 0.8960859 0.0000201
0.5 0.9071359 0.9065019 0.0006340
0.6 0.9168647 0.9155497 0.0013150
0.7 0.9254760 0.9253058 0.0001702
0.8 0.9331203 0.9321562 0.0009641
0.9 0.9399227 0.9381680 0.0017547
1.0 0.9459884 0.9439650 0.0020234

Table-2. Effect of zero stability and consistency on the
3-point BEBDF method when problem 1 is solved

with h=0.001.
X Theore_tical Numel_’ical Absolute
solution solution error

0.0 0.8333333 0.8333333 0.0000000
0.1 0.8526020 0.8526051 0.0000031
0.2 0.8691712 0.8691327 0.0000385
0.3 0.8835474 0.8834451 0.0001023
0.4 0.8961060 0.8960943 0.0000117
0.5 0.9071359 0.9070486 0.0000873
0.6 0.9168647 0.9166918 0.0001729
0.7 0.9254760 0.9254502 0.0000258
0.8 0.9331203 0.9330021 0.0001182
0.9 0.9399227 0.9397089 0.0002138
1.0 0.9459884 0.9457798 0.0002086
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Table-4. Effect of zero stability and consistency on the
3-point BEBDF method when problem 2 is solved

with h=0.01. with h=0.001.
X Theorgtical Numel_rical Absolute X Theore_tical Numel_rical Absolute
solution solution error solution solution error

0 1.0000000 1.0000000 0.0000000 0 1.00000 1.00000 0.0000000
0.1 0.9534626 0.9531365 0.0003261 0.1 0.9534626 0.9534550 0.0000076
0.2 0.9128709 0.9131317 0.0002608 0.2 0.9128709 0.9129578 0.0000869
0.3 0.8770580 0.8783667 0.0013087 0.3 0.8770580 0.8772912 0.0002332
0.4 0.8451543 0.8452111 0.0000568 0.4 0.8451543 0.8451819 0.0000276
0.5 0.8164966 0.8180010 0.0015044 0.5 0.8164966 0.8167020 0.0002054
1.0 0.7071068 0.7078439 0.0007371 1.0 0.7072001 0.7071068 0.0000933
11 0.6900656 0.6930848 0.0030192 11 0.6900656 0.6904173 0.0003517
1.2 0.6741999 0.6794762 0.0052763 1.2 0.6741999 0.6748168 0.0006169
2.0 0.5773503 0.5814200 0.0040697 2.0 0.5773503 0.5778026 0.0004523
2.1 0.5679618 0.5746525 0.0066907 2.1 0.5679618 0.5687133 0.0007515
2.2 0.5590170 0.5604601 0.0014431 2.2 0.5590170 0.5591786 0.0001616
3.0 0.5000000 0.5072343 0.0072343 3.0 0.5000000 0.5008002 0.0008002
3.1 0.4938648 0.4955359 0.0016711 3.1 0.4938648 0.4940479 0.0001831
3.2 0.4879500 0.4925243 0.0045743 3.2 0.4879500 0.4884486 0.0004986
3.8 0.4564355 0.4611000 0.0046645 3.8 0.4564355 0.4569413 0.0005058
3.9 0.4517540 0.4591699 0.0074159 3.9 0.4517540 0.4525675 0.0008135
4.0 0.4472136 0.4489977 0.0017841 4.0 0.4472136 0.4474070 0.0001934

From the above tables, the zero stability of the
method is indicated by the decrease in error as the step
length h tends to zero. The accuracy also improves as the
step length is reduced. Thus, the error is not propagated in

any explosive manner.

Similarly, the solution at any fixed point X
improves as the step length is reduced. This can be seen
when we compare Tables 1 and 2 for problem 1 and

Tables 3 and 4 for problem 2.

The absolute error also indicates that the numerical
solution becomes close to the exact solution. Thus, the
computed solution tends to the theoretical solution as the
step length tends to zero. This shows the consistency of

the method.

CONCLUSIONS

The paper studied the fully implicit 3-point block
extended backward differentiation formula and proved that
the method is consistent and zero stable. This indicates
that the method is convergent. The numerical results

1544




VOL. 7, NO. 12, DECEMBER 2012

ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

=
©2006-2012 Asian Research Publishing Network (ARPN). All rights reserved. @

www.arpnjournals.com

presented illustrated the effect of zero stability and
consistency of the method when a stiff IVP is solved.
There is no evidence of explosive error propagation in the
method. The method was also proven to be of order 6.
These added advantages make the BEBDF method to be
numerically acceptable method for solving stiff initial
value problems.
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