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ABSTRACT 

An optimal control strategy based on Two-Point-Multirate Controllers (TPMRCs) is used to design a desirable 
excitation controller of a hydro generator system, in order to enhance its dynamic stability characteristics. In the TPMRCs 
based scheme, the control is constrained to a certain piecewise constant signal, while each of the controlled plant outputs is 
detected many times over a fundamental sampling period 0T . On the basis of this strategy, the original problem is reduced 
to an associate discrete-time linear quadratic (LQ) regulation problem for the performance index with cross product terms, 
for which a fictitious static state feedback controller is needed to be computed. Simulation results for the actual 160 MVA 
synchronous generator with conventional exciter supplying line to an infinite grid show the effectiveness of the proposed 
method which has a quite satisfactory performance.  
 
Keywords: multirate controllers, discrete system representation, power systems, turbo generators. 
 
INTRODUCTION 

The typical control problem has always been to 
start with a suitable linear (or linearized) open-loop 
mathematical model of a physical plant (in continuous or 
discrete form) and attempt to design a proper controller for 
it, i.e., to obtain an associated closed-loop system with 
enhanced dynamic stability characteristics. [1, 2, 3, 4, 5-7]. 
The digital controller applied for the discrete linear systems 
may be obtained by using new TPMRCs [8-11]. 

It is pointed out that the used TPMRCs  technique 
reduced the original LQ regulation problem to an 
associated discrete-time LQ regulation problem for the 
performance index with crossed product terms, for which 
is computer a fictitious static state feedback controller [12-
17]. In addition thus technique offers more flexibility in 
choosing the sampling rates and provides a power design 
computed method. 

In the present work the discrete linear open-loop 
system model under consideration systematically derived 
from the associated continuous 8th order MIMO linearized 
open-loop model of a practical power system, hawing on 
160 MVA synchronous generator supplying power to an 
infinite grid through a step-up transformer and a 
transmission line [18]. The sought digital controller for the 
enhancement of the dynamic characteristics of the above 
6th order discrete model is accomplished by the proper 
application of the new TPMRCs to it. 
 
OVERVIEW OF RELEVANT MATHEMATICAL 
CONSIDERATIONS  

The general description of the controllable and 
observable continuous, linear, time-invariant, 
multivariable MIMO dynamical open-loop system 
expressed in state-space form is: 
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where 
 

nt( R)x ∈ , mt)( Ru ∈ , pt R)y( ∈  are state, input and 
output vectors respectively; and A, B and C are real 
constant system matrices with proper dimensions.  

The associated general discrete description of the 
system of equation (1) is as follows:  
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where 
 

pmn )k(,)k(,)k( RyRuRx ∈∈∈  are state, 
input and output vectors respectively; and A, B and C are 
real constant system matrices with proper dimensions. 
 
OVERVIEW OF NEW OMCM FOR LINEAR 
DISCRETE SYSTEMS 

This method with Ηο and HN being zero-order 
holds and with holding times To and TN, respectively (see 
Figure-1) is presented here in a concise manner, whereas 
the details are found [8]. 

Starting with the general linear state space system 
description in continuous form  
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where 
 

pm
n R)t(andR)(t,R)t( ∈∈∈ yux  are the state, 

input and output vectors, respectively. 
The associated discrete system description is 

obtained by letting { },p,...,2,1Ji,n pi =∈  be used of  
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Figure-1. Simplified representation of power system under investigation in discrete form. 
 
the observability indices of the pair 

+∈RTand o(A,C),  be a sampling period. Also, by 
letting  
 

)Texp(Φ 0A=                    (4) 
 
and Nnxp

N R∈B  be the full rank matrix defined by  
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with the generalized reachability Grammian of ord N in 
the interval ]T,0[ 0  being  
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Next follows the application of the OMCM 

technique to the above descriptions. The input of the 
plant are constrauned to the following piecewise constant 
control.  
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The ith plant output )(ty i  is detected at 

every i0i M/TT = , such that  
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where pi Ji,ZM ∈∈ +  are the output multiplicities of 

the sampling. In general .NMi ≠  the sampled values 

of the plant outputs obtained over )T)1k(,kT[ 00 +  are 

stored in the *M -dimentional column vector )kT(ˆ 0γ  of 
the form: 
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* MM . The vector )kT(ˆ 0γ  is used in the 

control law of the form  
 

0 0 0ˆˆ ˆ[( 1) ] ( ) ( )u L u Kuk T kT kTγ+ = −                    (8) 
 

where 
*

,L R K RN N Np xp p xM
u ∈ ∈ . 

 
Finally one searches a controller in the form of 

(5) and (7) which, when applied to system (1), minimizes 
the following performance index 
 

0
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where Q Rpxp mxmR and R∈ ∈  are symmetric 

matrices with 0, 0Q R≥ >  while )( QCACT  is an 
observable pair.  

The above problem is equivalent to the problem 
of designing a control law of the form of equation (9), in 
order to minimize the following index:  
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[ ]0 0 0ˆ( 1) ( ) ( )x x Nk T kT B u kT+ = Φ +  

 
Where QN

% , GN
% , NΓ% are giver explicitly (Al - Rahmani 

and Franklin, 1990).  
 
Theorem: The following basic formula of the multirate 
sampling mechanism holds 
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and where,  
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The ultimate expressions for the control law 
optimal gain matrices uL  and K are as follows: 
 

1 1( ) ( )L R B PB G B PΦ H DT T
u N N N N N

− −= + +%%     (11)  
 

1 1( ) ( )K R B PB G B PΦ HT T
N N N N N

− −= + +%%         (12) 
 
where ,R G HN N and%%  are defined in [2, 3]. The 

resulting discrete closed-loop system matrix ( )/Acl d  
takes the following: 
  

/ /A A B KHcl d ol d N= −                   (13) 
 
where cl = closed-loop, ol = open-loop and d = discrete.  
 
 

TPMRCs DESIGN AND SIMULATIONS OF 
RESULTING DISCRETE CLOSED-LOOP 
POWER SYSTEM MODEL 

The power system under study is taken from 
[18] and is shown here in Figure-2. It consists of a 160 
MVA synchronous generator with conventional exciter 
supplying power through a transformer and a 
transmission line to an infinite grid. System parameters 
are given in Table 1.  
 
Table-1. Numerical values of the system parameters and 

the operating point (p.u. values on generator ratings). 
 

Turbogenerator 
160 MVA, 2-pole, pf = 0.894, xq = 1.7, xq = 1.6, x'd = 
0.245p.u. '

0dτ = 5.9, H = 5.5s; ωR = 377rad/s D=2, 0p.u. 
External system 
Re = 0.02, Xe = 0.40p.u. (on a 160 MVA base). 
Operating point 
P0 = 1.0, Q0 = 0.5, EFDo = 2.5128, Eqo = 0.9986, Vt0 = 1.0, 
Tmo= 1.0p.u; δ0 = 1,1966rad; K1 = 1, 1330, K2 = 1.3295, 
K3 = 0.3072, K4 = 1.8235, K5 = -0, 0433, K6 = 0.4777. 

 

 
 

Figure-2. Simplified representation of investigated 
practical power system. 

 
The continuous open-loop model describing this 

power system (taken from) [18] in the form of equation 
(1) (with p1 = 4 and p2 = 8) is as follows:   
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where 
 

T΄
qx δ ω⎡ ⎤= Ε⎣ ⎦ , [ ]TFDmTu ∆Ε∆= , [ ]Tty vδ=

   
 

The the simulated responses of the output 
variables (δ, vt, ω) and the eigenvalues of the original 
open-loop power system models, are shown in Figure 3 
and Table 2, repectively.  
 

 
 

 
 

 
 

Figure-3. δ, vt, ω, responses of the output variables of the 
original open-loop power system models to step input 

change: ∆Τm = 0.05 and ∆ΕFD = 0.0p.u. 
 

Table-2. Eigenvalues of original open-loop 

power system model. 
 

λ  
-0.2723 + 6.2253i

 

-0.2723 - 6.2253i 
-0.1889

 

 
Based on the transformed continuous open-loop 

power system model, the associated discrete one, in 
relation to equation (2), is given as follow: 
 
The properly selected sampling period, T0 = 1.2sec 
 

/

0.2992 42.3326 −0.6094⎡ ⎤
⎢ ⎥= −0.0111 0.2788 −0.0127⎢ ⎥
⎢ ⎥−0.0332 −1.5581 0.7592⎣ ⎦

ol dA  

 

/

0.9264 0.1913
0.0102 0.0003
0.2623 0.1812

−⎡ ⎤
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⎢ ⎥−⎣ ⎦

ol dB  

 

/

1 0 0
0.0433 0 0.4777

⎡ ⎤
=⎢ ⎥−⎣ ⎦

ol dC  

 
Due to space limitations the numerical 

description of the resulting discrete close loop system 
model is not presented here, but it depends on the 
following derive weight matrices. 
 

10 0
0 10

Q
⎡ ⎤

=⎢ ⎥
⎣ ⎦

 
0.1 0
0 0.1

R
⎡ ⎤

=⎢ ⎥
⎣ ⎦

  

 
and the chosen  output multiplicities of the sampling 
M=[4 5], N= [8]. 

Evaluation relations (11) and (12) we obtain the 
admissible TPMRC gains. 

The computed values of K, Lu and feedback 
gain matrices are:  
 

0.0164 0.1552 0.0674 0.0386
0.0743 0.0701 0.1352 0.0191 ...
0.01048 0.1023 0.2513 0.1513

K=
− −⎡
⎢ − −⎢
⎢− − − −⎣

 

 

0.0219 0.0277 0.0301 0.0233 0.0184
... 0.0058 0.0006 0.0062 0.0123 0.0067

0.0782 0.0701 0.0722 0.0739 0.0667

− − − − − ⎤
⎥− − − − ⎥
⎥⎦
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0.4582 0.5101 0.1141
0.5575 0.3912 0.1122
0.0532 0.0708 0.3103

uL
− − −⎡ ⎤
⎢ ⎥= − −⎢ ⎥
⎢ ⎥− −⎣ ⎦

 

 
The magnitudes of the eigenvalues of the 

discrete original open-loop and of the designed closed-
loop power system model are shown in Table-3.  
 

Table-3. Magnitude of eigenvalues of discrete original 
open-loop and designed closed-loop power system 

models. 
 

Original open-loop 
power system model λ  

0.7213 
0.7213 
0.7972 

Designed closed-loop 
power system model λ̂  

0.1984 
0.1984 
0.4137 

 
The simulated responses of the output variables 

(δ, ω, vt) of the discrete original open-loop and designed 
closed-loop power system models, for zero initial 
conditions and unit step input disturbance, are shown in 
Figure-3 and Figure-4.  

By comparing the computed eigenvalues of the 
simulated responses of the discrete original open-loop 
power system model and the associated designed discrete 
closed-loop models, it is clear that the resulting 
enhancement in the dynamic system stability of the 
closed-loop system model is remarkable.  

It is to be noted that the solution results of the 
discrete system  models (i.e., eigenvalues, eigenvectors, 
responses of system variables etc.) for zero initial 
conditions were obtained using a special software 
program (which is based on the theory of § 3 and runs on 
MATLAB program environment).  
 

 
 

 
 

 
 

Figure-4. Responses of δ,  vt and ω outputs subject to 
unit step input change where: (a) and (b) refer to discrete 

open-loop and closed-loop to step input change ∆Τm= 
0.05 and ∆ΕFD = 0.0p.u., (c) and (d) refer to discrete 

open-loop and closed-loop to step input change ∆Τm = 
0.10 and  

∆ΕFD = 0.0p.u.). 
 
CONCLUSIONS 

An optimal digital control strategy based on 
Two-Point-Multirate Controllers has been used in this 
paper in order to design a desirable excitation controller 
of an unstable hydro generator system, for the purpose of 
enhancing its dynamic stability characteristics. The 
proposed method offers acceptable closed loop response 
as well as more design flexibility (particularly in cases 
where the system states are not measurable), and its 
performance is at least comparable to known LQ optimal 
regulation methods.  
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