©2006-2012 Asian Research Publishing Network (ARPN). All rights reserved.

ESTIMATION OF GLOBAL SOLAR RADIATION IN MAIDUGURI, NIGERIA USING ANGSTROM MODEL

B. Musa¹, U. Zangina² and M. Aminu³

¹Department of Electrical Engineering, University of Maiduguri, Borno State, Nigeria

²Sokoto Energy Research Centre, Usman Danfodio University, Sokoto State, Nigeria

³Department of Electrical and Electronics Engineering, Modibbo Adama University of Technology, Yola, Adamawa State, Nigeria

E-Mail: musa_bu@yahoo.com

ABSTRACT

In this study, the daily sunshine duration is used to estimate average global solar radiation for Maiduguri, Nigeria. The daily sunshine hour were measured for five years (2004 to 2007) from which the monthly mean values were determined. Angstrom model was then used to estimate the global solar radiation based on the monthly mean sunshine hour. The values of solar radiation for Maiduguri town vary from the range of $16.80403MJm^{-2}day^{-1}$ to $25.03763 MJm^{-2}day^{-1}$ under the period of study with the mean value of $23.20437MJm^{-2}day^{-1}$. This value can be utilized in the design and performance estimation of solar energy systems, which is gaining significant attention in Nigeria in particular and the world at large.

Keywords: solar radiation, angstrom model, sunshine hours.

1. INTRODUCTION

Solar energy occupies one of the most important places among the various possible alternative energy sources. An accurate knowledge of solar radiation distribution at a particular geographical location is of vital importance for the development of many solar energy devices. Unfortunately, for many developing countries solar radiation measurements are not easily available due to the shortage of measurement equipments. It is therefore important to consider methods of estimating the solar radiation based on the readily available meteorological parameters.

Over the years, many models have been proposed to predict the amount of solar radiation in some cities in Nigeria using various metrological data [1-6].

In this work, the Angstroms model is used to estimate the global solar radiation at Maiduguri, Borno state, Nigeria based on the available climatic parameters of sunshine hour.

2. METHOD OF COMPUTATION

The most convenient and widely used correlation for predicting solar radiation was developed by Angstrom and later modified by Prescott. The Angstrom formula is given by [3]:

$$\frac{R}{R_0} = a + b\frac{s}{s_0} \tag{1}$$

where \overline{H} ($Mfm^{-2}day^{-1}$) is the monthly mean daily global solar radiation on a horizontal surface, $\overline{S}(Hours)$ is the monthly mean daily bright sunshine hours, $\overline{S}_0(Hours)$ is the maximum possible monthly mean daily sunshine hours, $\overline{H}_0(Mfm^{-2}day^{-1})$ is the monthly mean extraterrestrial solar radiation on horizontal surface and *a* and *b* are regression constants given by the equations [3]

$$a = -0.110 + 0.235 cosL + 0.323 \left(\frac{s}{s_o}\right)$$
(2)

$$b = 1.449 - 0.553cosL - 0.694 \left(\frac{s}{s_0}\right)$$
(3)

The monthly mean daily extraterrestrial irradiation \overline{H}_{0} and monthly mean day length \overline{S}_{0} can be derived from the following formulae:

$$\begin{array}{l} H_{0} = \\ \frac{24 \times 3600}{\pi} I_{SC} \left[1 + 0.033 cos \left(360 \frac{n}{365} \right) \right] \left[sinLsin\delta \left(\frac{2\pi\omega_{s}}{360} \right) + cosLcos\deltasin \omega_{s} \right] \end{array}$$

$$(4)$$

$$\bar{S}_{o} = \frac{2}{15} \cos^{-1}(-\tan L \tan \delta) \tag{5}$$

Where δ is the solar angle of declination and is approximately given as: $\delta = 23.45 \sin \left(360 \frac{284 + n}{765}\right)(6)$

Where *n* is the day of the year from January 1 to December 31. The value $1367Wm^{-2}$ has been recommended for the solar constant I_{5c} [7].

3. RESULTS AND ANALYSIS

The monthly mean daily data for sunshine hours were obtained from the Nigerian Meteorological Services, Maiduguri, Borno state, Nigeria. The data obtained covered a period of five years (2006 - 2010) for Maiduguri, Nigeria located on latitude **11.8464**°N and longitude**13.1603**°*E*. The relevant meteorological and solar radiation data calculated using equations (1) to (6) presented for the whole period are shown in Tables 1 to 6.

ARPN Journal of Engineering and Applied Sciences

©2006-2012 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

Year 2006								
Month	5	s _o	$\overline{S}/\overline{S}_0$	а	b	H ₀	Ħ	
JAN	9.0	12.01623	0.748987	0.361923	0.387969	37.61314	24.54282	
FEB	9.0	11.95803	0.752632	0.3631	0.385439	37.6165	24.57088	
MAR	9.0	12.02109	0.748684	0.361825	0.388179	37.61136	24.53948	
APR	9.0	12.03572	0.747774	0.361531	0.388811	37.61686	24.53649	
MAY	7.4	11.99821	0.616759	0.319213	0.479736	37.61538	23.1370	
JUN	7.0	11.9686	0.584864	0.308911	0.501871	37.61352	22.65977	
JUL	7.0	12.00553	0.583065	0.30833	0.503119	37.61504	22.63225	
AUG	7.0	12.01968	0.582378	0.308108	0.503596	37.61287	22.62005	
SEP	7.0	12.03817	0.581484	0.307819	0.504216	37.61773	22.60874	
OCT	7.0	12.00006	0.58333	0.308416	0.502935	37.61211	22.6347	
NOV	7.0	11.96796	0.584895	0.308921	0.501849	37.61786	22.66288	
DEC	7.0	12.00358	0.583159	0.30836	0.503054	37.61042	22.63097	

Table-1. Monthly mean values of daily solar radiation and the required meteorological parameters for Maiduguri in the year 2006.

 Table-2. Monthly mean values of daily solar radiation and the required meteorological parameters for Maiduguri in the year 2007.

Year 2007								
Month	5	\overline{S}_0	$\overline{S}/\overline{S}_0$	A	b	H ₀	Ħ	
JAN	9.0	12.01623	0.748987	0.361923	0.387969	37.61314	24.54282	
FEB	9.0	11.95803	0.752632	0.3631	0.385439	37.6165	24.57088	
MAR	9.0	12.02109	0.748684	0.361825	0.388179	37.61136	24.53948	
APR	9.0	12.03572	0.747774	0.361531	0.388811	37.61686	24.53649	
MAY	7.4	11.99821	0.616759	0.319213	0.479736	37.61538	23.137	
JUN	7.0	11.9686	0.584864	0.308911	0.501871	37.61352	22.65977	
JUL	7.0	12.00553	0.583065	0.30833	0.503119	37.61504	22.63225	
AUG	7.0	12.01968	0.582378	0.308108	0.503596	37.61287	22.62005	
SEP	7.0	12.03817	0.581484	0.307819	0.504216	37.61773	22.60874	
OCT	7.0	12.00006	0.58333	0.308416	0.502935	37.61211	22.6347	
NOV	7.0	11.96796	0.584895	0.308921	0.501849	37.61786	22.66288	
DEC	8.5	12.00358	0.708122	0.348723	0.416329	37.61042	24.20364	

© 2006-2012 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

Year 2008							
Month	5	₹ ₀	$\overline{S}/\overline{S}_0$	а	b	H ₀	Ħ
JAN	9.7	12.01623	0.807242	0.380739	0.347541	37.61314	24.87312
FEB	9.2	11.95959	0.769257	0.36847	0.373902	37.61545	24.67937
MAR	9.4	12.00484	0.783018	0.372915	0.364352	37.61217	24.75665
APR	7.8	12.04259	0.647701	0.329207	0.458262	37.61677	23.549
MAY	7.4	12.01561	0.615866	0.318924	0.480356	37.61526	23.12431
JUN	7.8	11.97901	0.651139	0.330318	0.455876	37.61277	23.58908
JUL	7.6	11.98992	0.633866	0.324739	0.467863	37.61669	23.37129
AUG	5.6	12.0029	0.466554	0.270697	0.583978	37.61259	20.42943
SEP	6.8	12.04111	0.564732	0.302408	0.515842	37.61839	22.33483
OCT	8.9	12.01733	0.740597	0.359213	0.393792	37.61189	24.47984
NOV	10.5	11.98208	0.876309	0.403048	0.299608	37.61682	25.03763
DEC	9.5	11.5971	0.81917	0.384592	0.339262	36.39732	24.11342

Table-3. Monthly mean Values of daily solar radiation and the required meteorological parameters for Maiduguri in the year 2008.

 Table-4. Monthly mean values of daily solar radiation and the required meteorological parameters for Maiduguri in the year 2009.

Year 2009							
Month	5	S _o	<u>\$/\$</u> 0	а	b	H ₀	Ħ
JAN	9.3	12.01623	0.773953	0.369987	0.370643	37.61314	24.70607
FEB	8.7	11.95803	0.727545	0.354997	0.40285	37.6165	24.37881
MAR	8.5	12.02109	0.707091	0.34839	0.417045	37.61136	24.1946
APR	7.8	12.03572	0.648071	0.329327	0.458005	37.61686	23.55367
MAY	6.8	11.99821	0.566751	0.303061	0.514441	37.61538	22.36688
JUN	6.5	11.9686	0.543088	0.295417	0.530863	37.61352	21.95586
JUL	7.4	12.00553	0.616383	0.319091	0.479997	37.61504	23.13148
AUG	6.8	12.01968	0.565739	0.302734	0.515143	37.61287	22.34845
SEP	8.3	12.03817	0.689474	0.3427	0.429272	37.61773	24.02536
OCT	8.3	12.00006	0.691663	0.343407	0.427752	37.61211	24.0442
NOV	8.3	11.96796	0.693518	0.344006	0.426464	37.61786	24.06667
DEC	4.9	12.00358	0.408212	0.251852	0.624467	37.61042	19.05972

©2006-2012 Asian Research Publishing Network (ARPN). All rights reserved.

Ø,

www.arpnjournals.com

	Year 2010							
Month	5	5 ₀	<u></u>	а	b	<i>₽</i> ₀	Ħ	
JAN	9.5	12.01623	0.790597	0.375363	0.359092	37.61314	24.79683	
FEB	8.9	11.95803	0.74427	0.360399	0.391243	37.6165	24.51051	
MAR	8.9	12.02109	0.740365	0.359138	0.393953	37.61136	24.47773	
APR	7.2	12.03572	0.598219	0.313225	0.492602	37.61686	22.86762	
MAY	3.9	11.99821	0.325048	0.224991	0.682183	37.61538	16.80403	
JUN	6.4	11.9686	0.534733	0.292719	0.536662	37.61352	21.80415	
JUL	5.0	12.00553	0.416475	0.254521	0.618733	37.61504	19.26672	
AUG	5.0	12.01968	0.415984	0.254363	0.619073	37.61287	19.25356	
SEP	5.0	12.03817	0.415346	0.254157	0.619516	37.61773	19.24034	
OCT	5.0	12.00006	0.416665	0.254583	0.618601	37.61211	19.26988	
NOV	5.0	11.96796	0.417782	0.254944	0.617825	37.61786	19.30022	
DEC	5.0	12.00358	0.416542	0.254543	0.618686	37.61042	19.26601	

Table-5. Monthly mean values of daily solar radiation and the required meteorological parameters for Maiduguri in the Year 2009.

Fable-6. Annuall	v mean global	solar radiation and	other meteorological	parameters for Maidua	guri from 2006 to 2010.
	J 0				

Annually								
Year	5	₹₀	<u>\$/\$</u> 0	а	b	H ₀	Ħ	
2006	7.700	12.00274	0.64152	0.327211	0.462551	37.6144	23.46939	
2007	7.825	12.00274	0.651935	0.330575	0.455324	37.6144	23.59987	
2008	8.350	11.97069	0.697537	0.345304	0.423676	37.51327	24.03977	
2009	7.633	12.00274	0.635966	0.325417	0.466406	37.6144	23.39748	
2010	6.233	12.00274	0.519326	0.287742	0.547354	37.6144	21.51533	

Graph of the mean monthly global solar radiation \overline{H} (*MJm*⁻²*day*⁻¹)against month, annual mean global solar radiation against year and the monthly mean sunshine hours $\overline{S}(hr)$ against month are displayed in Figures 1, 2 and 3, respectively

Figure-1. Monthly mean global solar radiation for 2006, 2007, 2008, 2009 and 2010.

Figure-2. Annually mean global solar radiation against year for Maiduguri from 2006 to 2010.

©2006-2012 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

From Table-6 as well as Figure-2, it is observed that the monthly global solar radiation is not uniform throughout the period of study. Peak radiation is observed in the months of February, March and April with values of $24.54209 M jm^{-2} day^{-1}$, $24.57340 M jm^{-2} day^{-1}$ and $24.05078 M jm^{-2} day^{-1}$, respectively.

On the other hand, the months of June, July and August recorded least amount of solar radiation average values of $21.80415 M Jm^{-2} day^{-1}$, $19.26672 M Jm^{-2} day^{-1}$ and $19.25356 M Jm^{-2} day^{-1}$, respectively. This is as a result of the peak period of the cloud cover in Maiduguri due to the rainy season. In general, higher value of solar radiation is obtained in dry season than wet season. The value of global solar radiation for Maiduguri town over the period of study is estimated to be $23.20437 M Jm^{-2} day^{-1}$ using the Angstrom model.

4. CONCLUSIONS

The results of this research clearly indicate the main significance of developing empirical models for estimating global radiation on horizontal surfaces reaching the earth for a particular geographical location. The Angstrom model can also be applied to other cities to predict global solar radiation. The global solar radiation intensity predicted in this research can be utilized in design, analysis and performance estimation of solar energy systems, which is gaining significant attention in Nigeria in particular and the world at large.

REFERENCES

- C. Augustine and M. N. Nnabuchi. 2010. Analysis of some meteorological data for some selected Cities in the Eastern and Southern zone of Nigeria. African Journal of Environmental Science and Technology. 4(2): 092-099.
- [2] M.S. Okundamiya and A.N. Nzeako. 2010. Empirical Model for Estimating Global Solar Radiation on Horizontal Surfaces for Selected Cities in the Six Geopolitical Zones in Nigeria. Research Journal of Applied Sciences, Engineering and Technology. 2(8): 805-812.

- [3] D. W. Meduguand D. Yakubu. 2011. Estimation of mean monthly global solar radiation in Yola - Nigeria using angstrom model. Advances in Applied Science Research. 2(2): 414-421.
- [4] AS Sambo. 1986. Empirical models for the correlation of global solar radiation with meteorological data for northern Nigeria. Solar and wind Technology. 3(2): 89-93.
- [5] YA Sanusi and M Aliyu. 2005. Estimation of Global Solar Radiation in Sokoto and its Environs Using Maximum Temperature Data. Nigeria Journal of Solar Energy. 15: 193-198.
- [6] C. Augustine and M.N. Nnabuchi. 2009. Correlation between Sunshine Hours and Global Solar Radiation in Warri, Nigeria. The Pacific Journal of Science and Technology. pp. 574-579.
- [7] M. A. Abdul Azeez. 2011. Artificial Neural Network Estimation of Global Solar Radiation Using Meteorological Parameters in Gusau, Nigeria. Archives of Applied Science Research. 3(2): 586-595.