
 VOL. 7, NO. 12, DECEMBER 2012 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2012 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

1637

AUTONOMOUS MAPPING AND NAVIGATION THROUGH UTILIZATION
OF EDGE-BASED OPTICAL FLOW AND TIME-TO-COLLISION

Madhu Krishnan1, Mike Wu2, Young H. Kang3 and Sarah Lee3

1University of California, San Diego, CA
2Yale University, New Haven, CT

3Torrey Pines High School, San Diego, CA
E-Mail: mvkrishnan@ucsd.edu

ABSTRACT

This paper proposes a cost-effective approach to map and navigate an area with only the means of a single, low-
resolution camera on a “smart robot,” avoiding the cost and unreliability of radar/sonar systems. Implementation is divided
into three main parts: object detection, autonomous movement, and mapping by spiraling inwards and using A*
Pathfinding algorithm. Object detection is obtained by editing Horn-Schunck’s optical flow algorithm to track pixel
brightness factors to subsequent frames, producing outward vectors. These vectors are then focused on the objects using
Sobel edge detection. Autonomous movement is achieved by finding the focus of expansion from those vectors and
calculating time to collision which are then used to maneuver. Algorithms are programmed in MATLAB and implemented
with LEGO Mindstorm NXT 2.0 robot for real-time testing with a low-resolution video camera. Through numerous trials
and diversity of the situations, validity of results is ensured to autonomously navigate and map a room using solely optical
inputs.

Index terms: autonomous mapping and navigation, smart robot, horn-schunck’s optical flow algorithm, sobel edge detection, A* path
finding algorithm.

1. INTRODUCTION

Unmanned robotics optimizes human time and
effort tremendously and effectively has become the
epitome of efficient robotics systems. One of the
numerous problems autonomous robotics focus on solving
is mapping and navigation. People have been trying to
utilize the accuracy of robotics to complete such tasks
mainly with radar transmission. Efforts with this type of
detection have led to successful results advanced as
unmanned vehicles that can drive without collision
(Guizzo 1). However, many of these methods are
unreliable or expensive - unappealing to the general public
as well as less developed areas in the world. Specifically,
radar - based applications rely solely on emitting waves
rendering them susceptible to interference. Radar also
cannot take advantage of other multiple data inputs such as
color and texture.

Other solutions for the mapping problem such as
using the Sharp IR Range finder or Roomba also prove
ineffective. The Rangefinder cannot be used by itself with
the objective of mapping a room especially due to its thin
beam width. The Roomba’s method for touching objects to
maneuver and store data is even slower and more
inefficient for the mapping problem. As the field of
automated robotics endeavors to create advanced solutions
to more complicated issues, equipment that can obtain
more information from the external environment becomes
more desired.

Thus, this paper proposes an alternative approach
to the mapping problem, one that is cost-effective and
available to those in less developed countries if needed.
Instead of shouldering the heavy cost of radar/sonar
systems and equipment, it uses a robot attached to a single,
low-resolution camera to obtain more accurate data from
the environment and autonomously navigate and map the

terrain. Processing vector images, it carries out
calculations for object detection through Horn-Schunck
optical flow algorithm and responds to those detected
objects through time-to-collision induced reactions. The
paper endeavors to create a “smart robot” that will respond
to any given situation and decide by itself accordingly,
creating a much simpler solution to the problem at hand.
Through algorithms and video processing (ideally in real-
time), the robot travels given the initial direction of the
object solely from optical input while avoiding all objects
until the arrived goal is reached and a complete map is
obtained. The implementation can be split into two main
steps: navigation and mapping. We first explain the
navigation algorithms for object detection and autonomous
movement in Section II and then, a map-building method
in Section III. Experimental results are given in Section
IV. Finally, concluding remarks are given in Section V.

2. NAVIGATION ALGORITHMS

A. Object detection

A cheap video camera is used to provide optical
input, keeping the end product convenient and more
importantly, cost-effective. Then taking black and white
converted image frames from the camera, Horn-Schunck
optical flow is modified and applied to subsequent frames.
The following optical flow equation is used:

() ()2 2 2|| || || ||x y tE I u I I a u dxdyυ υ⎡ ⎤= + + + ∇ + ∇⎢ ⎥⎣ ⎦∫∫ (1)

where α is the constant that controls the smoothness of
the pixel movement, zI is image derivative with respect to
z, u and υ stand for the flow vectors. The modified
version traces each pixel’s specific luminance factor onto

 VOL. 7, NO. 12, DECEMBER 2012 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2012 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

1638

the next image frame at time (T+1) based on image
intensity derivatives. The 2D optical flow vectors, u and
υ , are then used to calculate pixel motion and generate a
gradient of motion vectors between subsequent frames -
the vector length representing the distance traveled by the
pixel. Figure-1 illustrates the edited Horn-Schunck optical
flow. As the object is approached and “grows” bigger, the
product of optical flow is a picture with groups of pixels
that represent the outward movement of vectors. The high
density of flow vectors compensates for missing vectors in
homogenous objects since they are made up for by their
surrounding pixels. Though Horn-Schunck optical flow
does optimize accuracy, however, it becomes difficult to
distinguish anything in the field due to the dense optical
field in which all the vectors surround both actual objects
and the background. Thus edge detection is needed to
separate the noise from the objects by distinctly tracing the
edges of the objects and ignoring the unimportant details.

Figure-1. The edited Horn-Schunck optical flow.

Given the plot of optical flow vectors, edge
detection altered with the Sobel operator is then applied to
the image frame, which outlines objects and simplifies the
images. Sobel focuses specifically on the center of the
image frame effectively focusing more on immediate
objects present in the image frame rather than the
background. This function caters to the needs of the robot
to quickly and accurately identify objects to avoid. The
actual edges are then widened by 10 pixels, functioning as
a “bolding” action (Figure-2). The purpose of these
procedures is not only to make the objects more noticeable
with wider edges, but also to lay down the foundations for
the next progression of noise minimization: vector
clusters.

Figure-2. Sobel edge detection and enhancement
for the visibility.

After bolding object edges, a vector-edge tracing

algorithm overlaid the optical flow vectors onto the edge-
detected frames. As a result, only the vectors lying inside
the 10 pixel width outlines were shown (Figure-3(a)). The

fusion creates distinct blobs of vectors most likely to be
associated with objects as the Sobel and tracing algorithm
ignores the background. Because the clumps of flow are
certain pixels away from each other, it becomes possible
to define distinct blobs in comparison to one conjoined
cluster. A blob-boxing algorithm is then used to separate
the vector clusters with boxes based on an 80% overlap
threshold (Figure-3(b)). With this algorithm, the number
and relative column locations of the objects in the image
frame can then be extracted. Thus, this code effectively
minimizes the processing of distracting details while the
general image of the object stays intact. Overall this
method increases productivity of optical flow since the
motion vectors now focus only on the objects in an
organized fashion.

(a) The vector-tracing algorithm (b) The box-blobbing algorithm

Figure-3. Edge detection algorithms: Illustration.

B. Autonomous movement

The blob-boxing algorithm essentially provides
information to calculate Focus of Expansion (FOE), a
crucial input needed to ultimately find time-to-collision.
FOE is the source of vector expansion as the video camera
moves closer to an object (Figure-3). As mentioned
previously during optical flow, as the object grows, the
optical flow motion vectors expand outwards. FOE is the
origin of those vectors. However, because of the
possibility of multiple objects in one image frame, the
boxes created in the blob-boxing algorithm become
separate images frames from which FOE can be calculated
individually. So with multiple objects, the vectors specific
to each individual object in its own respective “box frame”
are averaged to calculate numerous focuses of expansion
(Figure-4). These values are crucial as variable y and dy
in time-to-collision calculations as dy is the change in
distance from FOE per frame change and y is the vertical
distance from FOE.

Figure-4. Box frames to calculate the multiple FOE’s.

 VOL. 7, NO. 12, DECEMBER 2012 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2012 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

1639

Figure-5. Time-to-collision’s use of comparing equilateral triangles.

The time-to-collision (TTC) code is the core
algorithm that allows the robot to move autonomously
using only optical inputs. It calculates the distance in
frames until collision with a stationary/moving object at a
specific time without knowing the robot’s speed; it does
not calculate real measurements but enough for relative
comparison. Referring to Figure-5, the equation for time-
to-collision is a comparison of equilateral
triangles: / /y z Y Z= . Though z actually depends on
camera specifications, it is assumed as 1. The origin lies
on the z -axis, and x and y are based on pixel “p”.

(, ,)P X Y Z is the coordinate of Focus of Expansion
(FOE), the origin of the vectors, but it remains unknown
since it is the coordinates of the actual image.

Since 1z = , the equation turns into /y Y Z= .
Taking a derivative with respect to time yields the
following equation:

2
1dy dY Y dZ

d t Z d t d tZ
= ⋅ − ⋅ (2)

Assuming that (, ,)P X Y Z is stationary, /dY dt

in (2) can equal 0, allowing for Y to be substituted by yZ .
Then, the result is as follows:

dy y dZ
dt Z dt

= − ⋅ (3)

The last step involves dividing both sides in (3)

by y and taking the reciprocal, which finally leads to the
following equation for time-to-collision:

1 1y Z
d y d Z
d t d t

⋅ = − ⋅
 (4)

Since dy (change in distance from FOE per

frame change) is known, /dy dt in (4) can be found by
comparing the pixel vertical movement of 2 frames,
resulting in a ratio that should equal the negative of the

actual movement on the Z-axis. So finally accumulating all
the information from the previous codes, the focus of
expansion (FOE) can find the time-to-collision - more
importantly, without any distance or speed information.
Rather, for the whole process, only two points are needed,
making this algorithm remarkably efficient especially
when installed in a reaction system. All these calculations
are verified and simulated with MATLAB.

Cumulating all the above source codes, specific
hardware for robot real-time testing was created. The robot
was made from LEGO Mindstorm NXT 2.0 robot with a
low-resolution video camera. Because the robot was
programmed with Lejos in Java, a portal was needed to
pass MATLAB time-to-collision calculations to Java.
Thus, the time-to-collision information was transformed
into a bar graph; essentially the image frame was split into
5 bars (vertical regions), each containing object(s). Then
the height of the bars represents the time-to-collision
(lowest) of objects in that bar space (Figure-11). Each
column would have time-to-collision calculated which
then influences the heading angle to react to the certain
time-to-collision.

First, a threshold was made: time-to-collision
values greater than 300 frames were taken away because
there was no need to sacrifice TTC running time on non-
immediate situations. Next different types of reaction
situations were analyzed. For example, there could be 5
bars meaning is an object with a valid time-to-collision in
each of the bars. However, there also could be different
combinations of 4, 3, 2, and 1 bar(s) that could be passed
to the Java compiler. Thus three types were generalized.

The first type, given 5 or any combination of 4 or
3 bars, moved the robot from that object at relatively large
header angle fluctuations. The header angle changes 10
degrees every time for 5 bars, 8 degrees for 4 bars and 6-7
degrees for 3 bars. The direction of change was set to
clockwise unless otherwise specified. This given statement
is overridden by the actual place of the bars. For example,
if there were 3 bars located at the left 3 bars of the 5, then
it is more logical to move to the right. Such adjustments
were made. The second type, given 1 or 2 bars that are
close to each other, moved the robot away from those bars

 VOL. 7, NO. 12, DECEMBER 2012 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2012 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

1640

(again clockwise or counterclockwise based on location of
the bar) at 5 degrees of header angle change per analysis.
The third situation was when the bars are split. If 4 bars
were split into 2 and 2 it was not enough room for the
robot to go in between, so it defaulted to the first situation.
However, if there existed 2 bars split into1 and 1, then the
robot was allowed to try and maneuver around it first.

In each trial, the bounding box and time-to-
collision algorithms were checked if they were operating
in real life. The robot was first set to stand still as time-to-
collision calculations were made, allowing for the
bounding box to separate objects from the background
while the TTC number remained around 400. This served
as a control. From there, the algorithm was testing in three
different ways. In the first situation, the robot was allowed
to roam randomly with stationary boxes/objects. The
second situation had the robot turn away from objects in
order to follow a path towards a set destination. The third
way ensured that the program was not case-specific or
“pre-programmed” and consisted of placing boxes in front
of the robot and observing its reactions.

3. MAP-BUILDING METHOD

At this point, only a random and vague reaction
system is developed. So after establishing autonomous
movement from the time-to-collision algorithm, a
systematic method of movement is needed to achieve the
ultimate goal of mapping a blueprint. The mapping
algorithms first creates a pseudo-infinite grid, a 999×999
matrix of zeros since the room size would be unknown
(each unit length representing the robot’s length). Then it
positions the robot virtually in the center of the grid at
(500, 500), so that it can proceed to any direction of the
grid regardless of which corner the robot began from
physically in the room. From there, the robot is
programmed to turn 90 degrees counterclockwise, moving
a set value x to be used for time-to-collision. If the time-
to-collision becomes less than alpha 100 frames, then an
object are assumed to be on the next point, triggering the
robot to move back by the set value x to the center of the
original point. This process run in a loop until the robot
finally saw an empty spot allowing it to proceed to the
next grid square. However, note that this procedure to
move is only observed in the first part of mapping:
detecting walls (as described next). To keep track of the
robot’s position virtually in a grid-representing matrix,
numbers are used to represent the status of each
coordinate: 0 is an unknown spot, 1 is a visited spot, 2 is
an object, 3 is part of a wall, and 5 is an inaccessible
coordinate.

With this, first the robot is programmed to go
around the room once using the moving procedure
described above. It will stay on the periphery to detect the
positions of the walls. The number 4 is used virtually to
mark the initial position of the round, to notify the robot
when it made a complete round in the actual room. After
all the walls are detected, a resize Grid function then fits
the grid into a more appropriate matrix by finding the
smallest and greatest row and column values in which 3’s

are present. This cut down inefficiencies since it is
unnecessary for the robot to consider the entire pseudo-
infinite matrix for every situation as most of the indices
will be 0.

After the grid is resized and the initial 4 reached,
the robot is then prompted to find a virtual ideal path
around the room using the knowledge it has of the room so
far: the walls. The purpose of the ideal path is only to
guide the robot in a much more efficient manner as it
would then be able to reference the ideal path as an
original path while compensating for objects in the real
environment. This is done in a separate virtual grid to not
affect the grid the robot would actually map; the real grid
is kept the same as before the ideal path process begins.
The ideal path is made in a spiraling fashion as there will
be almost no overlaps of 1’s (visited spots) in an ideal
setting. To do this, the virtual robot is programmed to
continuously “hug the wall” using a virtual wall as
reference. So, much like the code that finds walls, the ideal
path algorithm also marks the beginning position of the
round as a 4. It then marks the visited spots as 1’s as the
virtual robot makes its first round in the grid. Once the
initial 4 is reached again, the ideal path algorithm then
changes all the 1’s and 4’s recorded to 3’s, thus creating a
virtual wall within the separate virtual grid. With the
virtual wall established, the virtual robot can then repeat
the process using it as reference again to make another
round until the whole room is covered. These points are
stored in order in a list to be used when the physical robot
begins to make rounds.

To avoid the virtual robot trapping itself in the
starting corner when it comes back to the initial 4 position,
a calculation is set to move the virtual robot to the nearest
zero. It calculates the Euclidean distances to the closest
zeros (unvisited spots), moves the virtual robot to the
smallest distance, and continues to find ideal path. Though
moved, the virtual robot’s direction is kept same since it
defaults to the original one to continue the process. The
ideal path is finished when the virtual robot is fully
trapped in the middle and the closest zero is at a distance
significantly far away, indicating that the zero is
inaccessible and outside of the room. It also shows that the
virtual robot has been on every single possible position in
the separate virtual grid.

Once the ideal path is found, the physical robot
could now make its rounds following the original ideal
path. In this portion, the robot does not move as described
when it finds the walls originally. Instead, it adheres to the
ideal path, only to deviate when an object is detected
through time-to-collision. Only positions that have value 0
are visited to make the mapping efficient as possible. As
obstacles are detected along the way, the robot uses A*
Pathfinding algorithm to give the shortest path between
two points avoiding objects. However, because not all
objects are known, the algorithm is used continuously as
the robot moves and continues to encounter objects much
like the functions of a GPS.

 VOL. 7, NO. 12, DECEMBER 2012 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2012 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

1641

4. EXPERIMENTAL RESULTS
The current experiments itself are the building

and design of an autonomous robot, so the results naturally
are measured through the accuracy of the robot’s codes
and instructions. Thus, the analysis of the algorithms is
observed by the robot’s ability to avoid objects; if it is
successful in this endeavor, then this related that the time-
to-collision calculations are working and in cascade, the
object detection codes as well. TTC values are also printed
for a more precise understanding of what happened in the
trials.

The nature of the results were recorded and
observed in 9 trials, 3 trials for each of the 3 situations
described in the Methods section. First, the control was
established to make sure that the time-to-collision was
accurate and consistent. While the robot was held by the
wheels (so no movement) the time-to-collision kept at a
consistent range from 380 to 490. The values were mainly
about 440, 443, 450, 451, 446 etc. This proved that the
little fluctuations were due to light and that the relative
time-to-collision seems to be working properly. When the
robot was let go after the control results, the time-to-
collision dropped considerably to 70 as there was a
washing machine in front of it. Testing the following trials
was done in a garage.

In the first type of situation, the robot was left to
roam the room for itself with a random pathway. The time-
to-collision values printed were all over the place since
there were multiple objects in the image frame that the
robot had to detect and turn away from. Refer to the
measurement results in Figure-6 in which the elapsed time
is the time taken to calculate/process the time-to-collision
value, the TTC value is the number of frames before the
robot will hit the object, the column number refers to the
location of that object, and the heading angle change
relates to its specific TTC value. Since the elapsed time is
below 1 second, it indicates that the TTC calculations are
pretty much in real time. They jumped from low to high
values unexpectedly, as the robot would turn into empty
spaces, these fluctuations occurring in a random cycle.
Consequently, the time-to-collision values reflected the
random nature of these trials. However, though “random”,
the trials proved the algorithms to be quite robust in its
ability to avoid objects. Surprisingly, there were no
crashes until the very end of trial 3. In the first two trials,
the robot successfully started, stopped, and turned with
respective header angles. In the trial 3 crash, however, the
robot turned and hit an object that was not in its image
frame, but rather in the swing of its header angle. Though
it indicated partial failure in these trials, in the context of
mapping, these random movements would not exist but
rather be replaced with systematic movement across the
grid. Thus, this crash is not deemed significant given the
overall context.

Figure-6. Illustrative measurement.

In the second type of situation, the TTC values
were in a more consistent pattern since the robot was
bounded by boxes to direct the robot towards a specific
destination on a path. The robot successfully passed all
trials without hitting any of the boxes and was able to
“bounce off” of all the obstacles to finally make it to the
end of the garage. The process, however, was painfully
slow and inefficient, because at that stage the robot had
only a random/vague reaction system (not systematic like
in mapping). But it is important to note that these trials
were mainly to test the TTC accuracy and if application
was even possible. The third situation was probably the
most exciting since it involved sporadically placing
objects in front of the robot and observing its reactions. In
all three trials under this condition, the robot successfully
avoided all obstacles even if objects were immediately
placed in front of it again after turning. This proved that
the program was not preprogrammed, but rather could
respond to various situations. The significance of this
flexibility is immense since the whole point was to build a
code and robot that could “think” for it as a smart robot.
Noting that in all situations, time-to-collision was accurate
enough for the robot to avoid objects, it proves the TTC
and all the object detection algorithms to be robust and
able to be used in a broad spectrum of applications.

The mapping portion was also found to be
successful in finding a systematic way to map a room with
most efficiency. A virtual space was used to test our
algorithms with many trials. Results were printed out on a
grid using different colored circles to mark walls or
objects and lines to show ideal and robot paths (Figure-7).
For Figures 7-9, in part (a), the wall finding algorithm is
finished and in part (b), the grid is resized to the size of
that room. The ideal path is drawn as shown and then in
part (c), the virtual robot successfully detected objects and
avoided them, ending in the middle of the room.

 VOL. 7, NO. 12, DECEMBER 2012 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2012 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

1642

 (a) (b) (c)

Figure-7. Virtual progression of the mapping procedures in a relatively large grid.

(a) (b) (c)

Figure-8. Virtual progression of the mapping procedures at a more realistic size of 15x15
(units are in the robot’s length).

 \
 (a) (b) (c)

Figure-9. Virtual progression of the mapping procedures with a rectangular room of 11x10 deeming
more realistic to real life situations.

First, the wall-mapping algorithm that finds walls

and boundaries of the room ran smoothly with no kinks
after debugging. The moving method used to initially find
walls worked well in the virtual setting (though in real life,
that is still to be tested for certainty). The advantage to
virtual testing was that many trials could be run in
relatively short time. With this, complete accuracy and full
execution of the wall finding code was confirmed with 20-
25 successful trials of this individual code (Figure-8(a)).
The cutting grid algorithm worked flawlessly as well for
its numerous trials. Regardless of size, big (50×50) or
small (11×15), or random shape the room was made into,
the algorithm was able to successfully cut the excess units

in the grid and fill in gaps on the outside with extra
number threes to indicate those units are part of a wall and
not inaccessible zeros (Figure-8(b)). The product of the
resizeGrid algorithm can be seen with the ideal path
pictures in Figures (7(b), 8(b), 9(b)).

The ideal path algorithm also proved to be robust
to all different types of grids: square, rectangle, big, small,
some with irregular walls. Though, at first, the code broke
when the robot was trapped at the end of each spiral
around the room, this was later fixed as stated in Methods
by calculating the closest zero and moving to it. After this
alteration, the entire code ran smoothly for all time.
However, though these algorithms ran flawlessly, once the

 VOL. 7, NO. 12, DECEMBER 2012 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2012 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

1643

virtual robot began to actually map, complications rose up.
First, sometimes the A* Pathfinder gave longer paths,
reducing the optimal efficiency of the mapping process
expected. It was also found that for some odd reason, the
entire code just broke and produced unreadable grids with
awry paths. However, with careful analysis, it was found
that it was not our codes specifically that caused this, but
the addition of the A* Pathfinding code. Our analysis
stopped here as we did not understand the A* code,
preventing fixes, but for many cases the virtual mapping
did in fact work (Figure-9(c)).

Overall, the virtual trials for mapping confirmed
that the codes were robust and working well enough to be
implemented in real life in combination with object
detection and TTC codes.

5. CONCLUSIONS

The current work has shown that it is indeed
possible to autonomously navigate and map a room using
solely optical inputs. The various elements for
implementation, including object detection, time-to-
collision, and the mapping codes, have been proved to be
robust in their flexibility and accuracy passing numerous
trials and various situations. This opens the door to the
idea that our codes and methods can be used for a broad
number of other applications beyond mapping such as
autonomous vehicles or exploration robots while staying
cost-effective and completely reliable.

The validity of the conclusions come from the
sheer number of trials ran and the diversity of the
situations that were tested, proving the continuity and thus,
validity of the results. The continuous success of the TTC
trials reflect that all codes leading up to object detection
worked and the time-to-collision calculations were
accurate in avoiding crashes. Likewise, the near total
success of the many mapping trials also show validity of
the results produced.

To improve, future work towards the possibility
of developing a unique path finding algorithm that
optimizes for this work’s blueprint robot. Furthermore,
another type of robot can be designed to systematically
map and maneuver using time-to-collision. However,
because the time-to-collision measurements are only
estimates, it is predicted that the actual robot movements
will lack precision and not be consistent since they are
reliant on the TTC values. This would lead to faulty
communication between the positioning in the grid and the
real room. Differentiation between walls and objects is
also another future experiment that must be looked into. In
a standard indoor setting, objects will most likely be
placed on the walls and to increase the usefulness and
accuracy of mapping a blueprint, a robot would need to
detect the differences. This can be achieved with the use of
RGB gradients and comparing sharp changes between
color values combined with the use of Sobel edge
detection to perhaps detect texture as well. Thresholds
would be found during experimentation to fine tune the
color detection especially when both the wall and object
are similar colors. In the far future, object identification

can be added on to object recognition. This could be
achieved through perhaps a database of classifications
made experimentally that narrow down objects to their
identification. This would be the ultimate goal of the
blueprint problem.

REFERENCES

M. Goppelt, H.-L. Blocher and W. Menzel. 2010.
Automotive radar - investigation of mutual interference
mechanisms. Adv. Radio Sci. 8: 55-60.

Guido Zunino. 2002. Simultaneous Localization and
Mapping for Navigation in Realistic Environments.
Licentiate Thesis, Royal Institute of Technology
Numerical Analysis and Computer Science.

Erico Guizzo. How Google's Self-Driving Car Works.
IEEE Spectrum.

Pawan Kumar. 2004. Len Bottaci, Quasim Mehdi, Norman
Gough, and Stephane Natkin. Efficient Path Finding For
2d Games. Proceedings of CGAIDE 2004.

Horn Berthold K.P. and Brian G. Schunck. 2011.
Determining Optical Flow. Artificial Intelligence, MIT:
185-203. Web. 20 January 2011.

Amaury Negre, Christophe Braillon, James L. Crowley
and Christian Laugier. Real time Time to Collision from
variation of Intrinsic Scale. INRIA, Grenoble, France.

