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ABSTRACT 

This paper proposes a cost-effective approach to map and navigate an area with only the means of a single, low-
resolution camera on a “smart robot,” avoiding the cost and unreliability of radar/sonar systems. Implementation is divided 
into three main parts: object detection, autonomous movement, and mapping by spiraling inwards and using A* 
Pathfinding algorithm. Object detection is obtained by editing Horn-Schunck’s optical flow algorithm to track pixel 
brightness factors to subsequent frames, producing outward vectors. These vectors are then focused on the objects using 
Sobel edge detection. Autonomous movement is achieved by finding the focus of expansion from those vectors and 
calculating time to collision which are then used to maneuver. Algorithms are programmed in MATLAB and implemented 
with LEGO Mindstorm NXT 2.0 robot for real-time testing with a low-resolution video camera. Through numerous trials 
and diversity of the situations, validity of results is ensured to autonomously navigate and map a room using solely optical 
inputs. 
 
Index terms: autonomous mapping and navigation, smart robot, horn-schunck’s optical flow algorithm, sobel edge detection, A* path 
finding algorithm. 
 
1. INTRODUCTION  

Unmanned robotics optimizes human time and 
effort tremendously and effectively has become the 
epitome of efficient robotics systems. One of the 
numerous problems autonomous robotics focus on solving 
is mapping and navigation. People have been trying to 
utilize the accuracy of robotics to complete such tasks 
mainly with radar transmission. Efforts with this type of 
detection have led to successful results advanced as 
unmanned vehicles that can drive without collision 
(Guizzo 1). However, many of these methods are 
unreliable or expensive - unappealing to the general public 
as well as less developed areas in the world. Specifically, 
radar - based applications rely solely on emitting waves 
rendering them susceptible to interference. Radar also 
cannot take advantage of other multiple data inputs such as 
color and texture.  

Other solutions for the mapping problem such as 
using the Sharp IR Range finder or Roomba also prove 
ineffective. The Rangefinder cannot be used by itself with 
the objective of mapping a room especially due to its thin 
beam width. The Roomba’s method for touching objects to 
maneuver and store data is even slower and more 
inefficient for the mapping problem. As the field of 
automated robotics endeavors to create advanced solutions 
to more complicated issues, equipment that can obtain 
more information from the external environment becomes 
more desired. 

Thus, this paper proposes an alternative approach 
to the mapping problem, one that is cost-effective and 
available to those in less developed countries if needed. 
Instead of shouldering the heavy cost of radar/sonar 
systems and equipment, it uses a robot attached to a single, 
low-resolution camera to obtain more accurate data from 
the environment and autonomously navigate and map the 

terrain. Processing vector images, it carries out 
calculations for object detection through Horn-Schunck 
optical flow algorithm and responds to those detected 
objects through time-to-collision induced reactions. The 
paper endeavors to create a “smart robot” that will respond 
to any given situation and decide by itself accordingly, 
creating a much simpler solution to the problem at hand. 
Through algorithms and video processing (ideally in real-
time), the robot travels given the initial direction of the 
object solely from optical input while avoiding all objects 
until the arrived goal is reached and a complete map is 
obtained. The implementation can be split into two main 
steps: navigation and mapping. We first explain the 
navigation algorithms for object detection and autonomous 
movement in Section II and then, a map-building method 
in Section III. Experimental results are given in Section 
IV. Finally, concluding remarks are given in Section V.  
 
2. NAVIGATION ALGORITHMS 
 
A. Object detection 

A cheap video camera is used to provide optical 
input, keeping the end product convenient and more 
importantly, cost-effective. Then taking black and white 
converted image frames from the camera, Horn-Schunck 
optical flow is modified and applied to subsequent frames. 
The following optical flow equation is used: 
 

( ) ( )2 2 2|| || || ||x y tE I u I I a u dxdyυ υ⎡ ⎤= + + + ∇ + ∇⎢ ⎥⎣ ⎦∫∫    (1) 
 

where α  is the constant that controls the smoothness of 
the pixel movement, zI  is image derivative with respect to 
z, u  and υ  stand for the flow vectors. The modified 
version traces each pixel’s specific luminance factor onto 
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the next image frame at time (T+1) based on image 
intensity derivatives. The 2D optical flow vectors, u  and 
υ , are then used to calculate pixel motion and generate a 
gradient of motion vectors between subsequent frames - 
the vector length representing the distance traveled by the 
pixel. Figure-1 illustrates the edited Horn-Schunck optical 
flow. As the object is approached and “grows” bigger, the 
product of optical flow is a picture with groups of pixels 
that represent the outward movement of vectors. The high 
density of flow vectors compensates for missing vectors in 
homogenous objects since they are made up for by their 
surrounding pixels. Though Horn-Schunck optical flow 
does optimize accuracy, however, it becomes difficult to 
distinguish anything in the field due to the dense optical 
field in which all the vectors surround both actual objects 
and the background. Thus edge detection is needed to 
separate the noise from the objects by distinctly tracing the 
edges of the objects and ignoring the unimportant details. 
 

 
 

Figure-1. The edited Horn-Schunck optical flow. 
 

Given the plot of optical flow vectors, edge 
detection altered with the Sobel operator is then applied to 
the image frame, which outlines objects and simplifies the 
images. Sobel focuses specifically on the center of the 
image frame effectively focusing more on immediate 
objects present in the image frame rather than the 
background. This function caters to the needs of the robot 
to quickly and accurately identify objects to avoid. The 
actual edges are then widened by 10 pixels, functioning as 
a “bolding” action (Figure-2). The purpose of these 
procedures is not only to make the objects more noticeable 
with wider edges, but also to lay down the foundations for 
the next progression of noise minimization: vector 
clusters. 
 

 
 

Figure-2. Sobel edge detection and enhancement 
for the visibility. 

 
After bolding object edges, a vector-edge tracing 

algorithm overlaid the optical flow vectors onto the edge-
detected frames. As a result, only the vectors lying inside 
the 10 pixel width outlines were shown (Figure-3(a)). The 

fusion creates distinct blobs of vectors most likely to be 
associated with objects as the Sobel and tracing algorithm 
ignores the background. Because the clumps of flow are 
certain pixels away from each other, it becomes possible 
to define distinct blobs in comparison to one conjoined 
cluster. A blob-boxing algorithm is then used to separate 
the vector clusters with boxes based on an 80% overlap 
threshold (Figure-3(b)). With this algorithm, the number 
and relative column locations of the objects in the image 
frame can then be extracted. Thus, this code effectively 
minimizes the processing of distracting details while the 
general image of the object stays intact. Overall this 
method increases productivity of optical flow since the 
motion vectors now focus only on the objects in an 
organized fashion. 
 

 
(a) The vector-tracing algorithm (b) The box-blobbing algorithm 

 

Figure-3. Edge detection algorithms: Illustration. 
 
B. Autonomous movement 

The blob-boxing algorithm essentially provides 
information to calculate Focus of Expansion (FOE), a 
crucial input needed to ultimately find time-to-collision. 
FOE is the source of vector expansion as the video camera 
moves closer to an object (Figure-3). As mentioned 
previously during optical flow, as the object grows, the 
optical flow motion vectors expand outwards. FOE is the 
origin of those vectors. However, because of the 
possibility of multiple objects in one image frame, the 
boxes created in the blob-boxing algorithm become 
separate images frames from which FOE can be calculated 
individually. So with multiple objects, the vectors specific 
to each individual object in its own respective “box frame” 
are averaged to calculate numerous focuses of expansion 
(Figure-4). These values are crucial as variable y  and dy  
in time-to-collision calculations as dy  is the change in 
distance from FOE per frame change and y is the vertical 
distance from FOE.  
 

 
 

Figure-4. Box frames to calculate the multiple FOE’s. 
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Figure-5. Time-to-collision’s use of comparing equilateral triangles. 
 

The time-to-collision (TTC) code is the core 
algorithm that allows the robot to move autonomously 
using only optical inputs. It calculates the distance in 
frames until collision with a stationary/moving object at a 
specific time without knowing the robot’s speed; it does 
not calculate real measurements but enough for relative 
comparison. Referring to Figure-5, the equation for time-
to-collision is a comparison of equilateral 
triangles: / /y z Y Z= . Though z  actually depends on 
camera specifications, it is assumed as 1. The origin lies 
on the z -axis, and x and y are based on pixel “p”. 

( , , )P X Y Z  is the coordinate of Focus of Expansion 
(FOE), the origin of the vectors, but it remains unknown 
since it is the coordinates of the actual image.  

Since 1z = , the equation turns into /y Y Z= . 
Taking a derivative with respect to time yields the 
following equation: 
 

2
1dy dY Y dZ

d t Z d t d tZ
= ⋅ − ⋅                                                     (2) 

 
Assuming that ( , , )P X Y Z  is stationary, /dY dt  

in (2) can equal 0, allowing for Y to be substituted by yZ . 
Then, the result is as follows: 
 
dy y dZ
dt Z dt

= − ⋅                                                                   (3) 

 
The last step involves dividing both sides in (3) 

by y and taking the reciprocal, which finally leads to the 
following equation for time-to-collision: 
 

1 1y Z
d y d Z
d t d t

⋅ = − ⋅
                                                             (4) 

 
Since dy  (change in distance from FOE per 

frame change) is known, /dy dt  in (4) can be found by 
comparing the pixel vertical movement of 2 frames, 
resulting in a ratio that should equal the negative of the 

actual movement on the Z-axis. So finally accumulating all 
the information from the previous codes, the focus of 
expansion (FOE) can find the time-to-collision - more 
importantly, without any distance or speed information. 
Rather, for the whole process, only two points are needed, 
making this algorithm remarkably efficient especially 
when installed in a reaction system. All these calculations 
are verified and simulated with MATLAB. 

Cumulating all the above source codes, specific 
hardware for robot real-time testing was created. The robot 
was made from LEGO Mindstorm NXT 2.0 robot with a 
low-resolution video camera. Because the robot was 
programmed with Lejos in Java, a portal was needed to 
pass MATLAB time-to-collision calculations to Java. 
Thus, the time-to-collision information was transformed 
into a bar graph; essentially the image frame was split into 
5 bars (vertical regions), each containing object(s). Then 
the height of the bars represents the time-to-collision 
(lowest) of objects in that bar space (Figure-11). Each 
column would have time-to-collision calculated which 
then influences the heading angle to react to the certain 
time-to-collision. 

First, a threshold was made: time-to-collision 
values greater than 300 frames were taken away because 
there was no need to sacrifice TTC running time on non-
immediate situations. Next different types of reaction 
situations were analyzed. For example, there could be 5 
bars meaning is an object with a valid time-to-collision in 
each of the bars. However, there also could be different 
combinations of 4, 3, 2, and 1 bar(s) that could be passed 
to the Java compiler. Thus three types were generalized.  

The first type, given 5 or any combination of 4 or 
3 bars, moved the robot from that object at relatively large 
header angle fluctuations. The header angle changes 10 
degrees every time for 5 bars, 8 degrees for 4 bars and 6-7 
degrees for 3 bars. The direction of change was set to 
clockwise unless otherwise specified. This given statement 
is overridden by the actual place of the bars. For example, 
if there were 3 bars located at the left 3 bars of the 5, then 
it is more logical to move to the right. Such adjustments 
were made. The second type, given 1 or 2 bars that are 
close to each other, moved the robot away from those bars 
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(again clockwise or counterclockwise based on location of 
the bar) at 5 degrees of header angle change per analysis. 
The third situation was when the bars are split. If 4 bars 
were split into 2 and 2 it was not enough room for the 
robot to go in between, so it defaulted to the first situation. 
However, if there existed 2 bars split into1 and 1, then the 
robot was allowed to try and maneuver around it first.  

In each trial, the bounding box and time-to-
collision algorithms were checked if they were operating 
in real life. The robot was first set to stand still as time-to-
collision calculations were made, allowing for the 
bounding box to separate objects from the background 
while the TTC number remained around 400. This served 
as a control. From there, the algorithm was testing in three 
different ways. In the first situation, the robot was allowed 
to roam randomly with stationary boxes/objects. The 
second situation had the robot turn away from objects in 
order to follow a path towards a set destination. The third 
way ensured that the program was not case-specific or 
“pre-programmed” and consisted of placing boxes in front 
of the robot and observing its reactions. 
 
3. MAP-BUILDING METHOD 

At this point, only a random and vague reaction 
system is developed. So after establishing autonomous 
movement from the time-to-collision algorithm, a 
systematic method of movement is needed to achieve the 
ultimate goal of mapping a blueprint. The mapping 
algorithms first creates a pseudo-infinite grid, a 999×999 
matrix of zeros since the room size would be unknown 
(each unit length representing the robot’s length). Then it 
positions the robot virtually in the center of the grid at 
(500, 500), so that it can proceed to any direction of the 
grid regardless of which corner the robot began from 
physically in the room. From there, the robot is 
programmed to turn 90 degrees counterclockwise, moving 
a set value x to be used for time-to-collision. If the time-
to-collision becomes less than alpha 100 frames, then an 
object are assumed to be on the next point, triggering the 
robot to move back by the set value x to the center of the 
original point. This process run in a loop until the robot 
finally saw an empty spot allowing it to proceed to the 
next grid square. However, note that this procedure to 
move is only observed in the first part of mapping: 
detecting walls (as described next). To keep track of the 
robot’s position virtually in a grid-representing matrix, 
numbers are used to represent the status of each 
coordinate: 0 is an unknown spot, 1 is a visited spot, 2 is 
an object, 3 is part of a wall, and 5 is an inaccessible 
coordinate.  

With this, first the robot is programmed to go 
around the room once using the moving procedure 
described above. It will stay on the periphery to detect the 
positions of the walls. The number 4 is used virtually to 
mark the initial position of the round, to notify the robot 
when it made a complete round in the actual room. After 
all the walls are detected, a resize Grid function then fits 
the grid into a more appropriate matrix by finding the 
smallest and greatest row and column values in which 3’s 

are present. This cut down inefficiencies since it is 
unnecessary for the robot to consider the entire pseudo-
infinite matrix for every situation as most of the indices 
will be 0.  

After the grid is resized and the initial 4 reached, 
the robot is then prompted to find a virtual ideal path 
around the room using the knowledge it has of the room so 
far: the walls. The purpose of the ideal path is only to 
guide the robot in a much more efficient manner as it 
would then be able to reference the ideal path as an 
original path while compensating for objects in the real 
environment. This is done in a separate virtual grid to not 
affect the grid the robot would actually map; the real grid 
is kept the same as before the ideal path process begins. 
The ideal path is made in a spiraling fashion as there will 
be almost no overlaps of 1’s (visited spots) in an ideal 
setting. To do this, the virtual robot is programmed to 
continuously “hug the wall” using a virtual wall as 
reference. So, much like the code that finds walls, the ideal 
path algorithm also marks the beginning position of the 
round as a 4. It then marks the visited spots as 1’s as the 
virtual robot makes its first round in the grid. Once the 
initial 4 is reached again, the ideal path algorithm then 
changes all the 1’s and 4’s recorded to 3’s, thus creating a 
virtual wall within the separate virtual grid. With the 
virtual wall established, the virtual robot can then repeat 
the process using it as reference again to make another 
round until the whole room is covered. These points are 
stored in order in a list to be used when the physical robot 
begins to make rounds.  

To avoid the virtual robot trapping itself in the 
starting corner when it comes back to the initial 4 position, 
a calculation is set to move the virtual robot to the nearest 
zero. It calculates the Euclidean distances to the closest 
zeros (unvisited spots), moves the virtual robot to the 
smallest distance, and continues to find ideal path. Though 
moved, the virtual robot’s direction is kept same since it 
defaults to the original one to continue the process. The 
ideal path is finished when the virtual robot is fully 
trapped in the middle and the closest zero is at a distance 
significantly far away, indicating that the zero is 
inaccessible and outside of the room. It also shows that the 
virtual robot has been on every single possible position in 
the separate virtual grid. 

Once the ideal path is found, the physical robot 
could now make its rounds following the original ideal 
path. In this portion, the robot does not move as described 
when it finds the walls originally. Instead, it adheres to the 
ideal path, only to deviate when an object is detected 
through time-to-collision. Only positions that have value 0 
are visited to make the mapping efficient as possible. As 
obstacles are detected along the way, the robot uses A* 
Pathfinding algorithm to give the shortest path between 
two points avoiding objects. However, because not all 
objects are known, the algorithm is used continuously as 
the robot moves and continues to encounter objects much 
like the functions of a GPS. 
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4. EXPERIMENTAL RESULTS  
The current experiments itself are the building 

and design of an autonomous robot, so the results naturally 
are measured through the accuracy of the robot’s codes 
and instructions. Thus, the analysis of the algorithms is 
observed by the robot’s ability to avoid objects; if it is 
successful in this endeavor, then this related that the time-
to-collision calculations are working and in cascade, the 
object detection codes as well. TTC values are also printed 
for a more precise understanding of what happened in the 
trials.  

The nature of the results were recorded and 
observed in 9 trials, 3 trials for each of the 3 situations 
described in the Methods section. First, the control was 
established to make sure that the time-to-collision was 
accurate and consistent. While the robot was held by the 
wheels (so no movement) the time-to-collision kept at a 
consistent range from 380 to 490. The values were mainly 
about 440, 443, 450, 451, 446 etc. This proved that the 
little fluctuations were due to light and that the relative 
time-to-collision seems to be working properly. When the 
robot was let go after the control results, the time-to-
collision dropped considerably to 70 as there was a 
washing machine in front of it. Testing the following trials 
was done in a garage. 

In the first type of situation, the robot was left to 
roam the room for itself with a random pathway. The time-
to-collision values printed were all over the place since 
there were multiple objects in the image frame that the 
robot had to detect and turn away from. Refer to the 
measurement results in Figure-6 in which the elapsed time 
is the time taken to calculate/process the time-to-collision 
value, the TTC value is the number of frames before the 
robot will hit the object, the column number refers to the 
location of that object, and the heading angle change 
relates to its specific TTC value. Since the elapsed time is 
below 1 second, it indicates that the TTC calculations are 
pretty much in real time. They jumped from low to high 
values unexpectedly, as the robot would turn into empty 
spaces, these fluctuations occurring in a random cycle. 
Consequently, the time-to-collision values reflected the 
random nature of these trials. However, though “random”, 
the trials proved the algorithms to be quite robust in its 
ability to avoid objects. Surprisingly, there were no 
crashes until the very end of trial 3. In the first two trials, 
the robot successfully started, stopped, and turned with 
respective header angles. In the trial 3 crash, however, the 
robot turned and hit an object that was not in its image 
frame, but rather in the swing of its header angle. Though 
it indicated partial failure in these trials, in the context of 
mapping, these random movements would not exist but 
rather be replaced with systematic movement across the 
grid. Thus, this crash is not deemed significant given the 
overall context. 
 

 
 

Figure-6. Illustrative measurement. 
 

In the second type of situation, the TTC values 
were in a more consistent pattern since the robot was 
bounded by boxes to direct the robot towards a specific 
destination on a path. The robot successfully passed all 
trials without hitting any of the boxes and was able to 
“bounce off” of all the obstacles to finally make it to the 
end of the garage. The process, however, was painfully 
slow and inefficient, because at that stage the robot had 
only a random/vague reaction system (not systematic like 
in mapping). But it is important to note that these trials 
were mainly to test the TTC accuracy and if application 
was even possible. The third situation was probably the 
most exciting since it involved sporadically placing 
objects in front of the robot and observing its reactions. In 
all three trials under this condition, the robot successfully 
avoided all obstacles even if objects were immediately 
placed in front of it again after turning. This proved that 
the program was not preprogrammed, but rather could 
respond to various situations. The significance of this 
flexibility is immense since the whole point was to build a 
code and robot that could “think” for it as a smart robot. 
Noting that in all situations, time-to-collision was accurate 
enough for the robot to avoid objects, it proves the TTC 
and all the object detection algorithms to be robust and 
able to be used in a broad spectrum of applications.  

The mapping portion was also found to be 
successful in finding a systematic way to map a room with 
most efficiency. A virtual space was used to test our 
algorithms with many trials.  Results were printed out on a 
grid using different colored circles to mark walls or 
objects and lines to show ideal and robot paths (Figure-7). 
For Figures 7-9, in part (a), the wall finding algorithm is 
finished and in part (b), the grid is resized to the size of 
that room. The ideal path is drawn as shown and then in 
part (c), the virtual robot successfully detected objects and 
avoided them, ending in the middle of the room. 
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                                      (a)                                                      (b)                                                       (c)          

Figure-7. Virtual progression of the mapping procedures in a relatively large grid. 
 

      
(a)                                                      (b)                                                       (c)          

Figure-8. Virtual progression of the mapping procedures at a more realistic size of 15x15 
(units are in the robot’s length). 

 

  \ 
                                     (a)                                                       (b)                                                      (c) 
 

Figure-9. Virtual progression of the mapping procedures with a rectangular room of 11x10 deeming 
more realistic to real life situations. 

 
First, the wall-mapping algorithm that finds walls 

and boundaries of the room ran smoothly with no kinks 
after debugging. The moving method used to initially find 
walls worked well in the virtual setting (though in real life, 
that is still to be tested for certainty). The advantage to 
virtual testing was that many trials could be run in 
relatively short time. With this, complete accuracy and full 
execution of the wall finding code was confirmed with 20-
25 successful trials of this individual code (Figure-8(a)). 
The cutting grid algorithm worked flawlessly as well for 
its numerous trials. Regardless of size, big (50×50) or 
small (11×15), or random shape the room was made into, 
the algorithm was able to successfully cut the excess units 

in the grid and fill in gaps on the outside with extra 
number threes to indicate those units are part of a wall and 
not inaccessible zeros (Figure-8(b)). The product of the 
resizeGrid algorithm can be seen with the ideal path 
pictures in Figures (7(b), 8(b), 9(b)).  

The ideal path algorithm also proved to be robust 
to all different types of grids: square, rectangle, big, small, 
some with irregular walls. Though, at first, the code broke 
when the robot was trapped at the end of each spiral 
around the room, this was later fixed as stated in Methods 
by calculating the closest zero and moving to it. After this 
alteration, the entire code ran smoothly for all time. 
However, though these algorithms ran flawlessly, once the 
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virtual robot began to actually map, complications rose up. 
First, sometimes the A* Pathfinder gave longer paths, 
reducing the optimal efficiency of the mapping process 
expected. It was also found that for some odd reason, the 
entire code just broke and produced unreadable grids with 
awry paths. However, with careful analysis, it was found 
that it was not our codes specifically that caused this, but 
the addition of the A* Pathfinding code. Our analysis 
stopped here as we did not understand the A* code, 
preventing fixes, but for many cases the virtual mapping 
did in fact work (Figure-9(c)).  

Overall, the virtual trials for mapping confirmed 
that the codes were robust and working well enough to be 
implemented in real life in combination with object 
detection and TTC codes. 
 
5. CONCLUSIONS 

The current work has shown that it is indeed 
possible to autonomously navigate and map a room using 
solely optical inputs. The various elements for 
implementation, including object detection, time-to-
collision, and the mapping codes, have been proved to be 
robust in their flexibility and accuracy passing numerous 
trials and various situations. This opens the door to the 
idea that our codes and methods can be used for a broad 
number of other applications beyond mapping such as 
autonomous vehicles or exploration robots while staying 
cost-effective and completely reliable.  

The validity of the conclusions come from the 
sheer number of trials ran and the diversity of the 
situations that were tested, proving the continuity and thus, 
validity of the results. The continuous success of the TTC 
trials reflect that all codes leading up to object detection 
worked and the time-to-collision calculations were 
accurate in avoiding crashes. Likewise, the near total 
success of the many mapping trials also show validity of 
the results produced.  

To improve, future work towards the possibility 
of developing a unique path finding algorithm that 
optimizes for this work’s blueprint robot. Furthermore, 
another type of robot can be designed to systematically 
map and maneuver using time-to-collision. However, 
because the time-to-collision measurements are only 
estimates, it is predicted that the actual robot movements 
will lack precision and not be consistent since they are 
reliant on the TTC values. This would lead to faulty 
communication between the positioning in the grid and the 
real room. Differentiation between walls and objects is 
also another future experiment that must be looked into. In 
a standard indoor setting, objects will most likely be 
placed on the walls and to increase the usefulness and 
accuracy of mapping a blueprint, a robot would need to 
detect the differences. This can be achieved with the use of 
RGB gradients and comparing sharp changes between 
color values combined with the use of Sobel edge 
detection to perhaps detect texture as well. Thresholds 
would be found during experimentation to fine tune the 
color detection especially when both the wall and object 
are similar colors. In the far future, object identification 

can be added on to object recognition. This could be 
achieved through perhaps a database of classifications 
made experimentally that narrow down objects to their 
identification. This would be the ultimate goal of the 
blueprint problem.  
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