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ABSTRACT 

Fast Fourier Transform (FFT) is one of the important signal processing algorithms because of its applications in 
digital filtering, communication, image processing, spectral analysis and estimation etc. Butterfly computation is the basic 
operation in the FFT algorithm. In this work, a novel approach is thought of and used in implementing the butterfly 
element. Distributed Arithmetic Algorithm (DAA) is used to do the butterfly computation instead of using conventional 
multipliers and adders. This has resulted in a more efficient butterfly element both in terms of area and power. This paper 
describes the design of such an area efficient butterfly module. Single precision floating point representation is used for the 
data. This design leads to a lot of area saving and power saving. This butterfly can be used as the basic building block of a 
low power reconfigurable FFT processor. This finds its application in OFDM based systems and also in software defined 
radios.   
 
Keywords: Fast Fourier Transform (FFT), butterfly element (BF), Discrete Fourier Transform (DFT), Distributed Arithmetic Algorithm 
(DAA), twiddle factor. 
 
INTRODUCTION 
 
A Fast Fourier Transform 

Fast Fourier Transform (FFT) is one of the most 
commonly used signal processing algorithms in 
communication and multimedia systems. It is called as the 
algorithm for the whole family as it helps in spectral 
analysis, spectral estimation, interpolation, decimation, 
convolution, correlation, filtering, etc. FFT is also used in 
many applications like noise detection and cancellation, 
speech encryption, sampling rate conversions, applications 
utilizing the FFT filters, audio signal processing and image 
processing. So it is the major part of the base band 
processing. More over FFT and IFFT are also used as 
demodulation and modulation kernels in the OFDM 
systems.  

OFDM is a special case of Frequency Division 
Multiplexing, which is also used in the Software Radio 
(SDR). OFDM is a combination of modulation and 
multiplexing. OFDM can be easily generated using an 
IFFT module and demodulated using a FFT module. FFT 
is an efficient method of computing the discrete Fourier 
transform (DFT) for a set of data. The Discrete Fourier 
Transform (DFT) operates on samples of a time domain 
signal and is defined by the following equation. 
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where X(k) represents the DFT frequency output at the     
k-th spectral point, k ranging from 0 to N-1. The quantity 
N represents the number of sample points in the DFT data 
frame. The quantity x(n) represents the n-th time sample, 
where n also ranges from 0 to N-1. In general, x(n) can be 
real or complex. 

 The corresponding Inverse Discrete Fourier 
Transform (IDFT) of the sequence X(k) gives a sequence  
x(n) defined only on the interval from 0 to N-1 as follows:  
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The DFT equation can be re-written as:  
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The quantity WN

nk is defined as: 
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This quantity is called twiddle factor. It is the 

sine and cosine basis functions written in polar form. 
Examination of equation (1) reveals that the computation 
of N point DFT requires N (N-1) complex multiplications 
and N (N-1) complex additions.  

 The FFT algorithm was developed by Cooley 
and Turkey in the year 1965,by taking advantage of the 
symmetry and periodicity properties of the twiddle factors. 
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Out of the two FFT algorithms, DIT (decimation 

in time) and DIF (decimation in frequency), DIF is mostly 
used in the implementations of FFT. In the DIF algorithm, 
the inputs are given in the natural order and the output 
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frequency points are obtained in the bit reversed manner 
i.e the output frequency points are found to be regrouped 
or subdivided. This radix-2 DIF FFT algorithm starts by 
dividing the samples into two groups, the first half and the 
last half. The division goes till the DFT computation is 
done between only two samples. This 2-point DFT block 
is called as the butterfly operation. The signal flow graph 
of FFT is constructed with N/2 number of butterflies in 
each stage and there are log2 N number of stages. 

 
 

 
 

Figure-1: Signal flow graph of an 8 point DIF FFT. 
 

The signal flow graph of an 8 point DIF FFT 
algorithm is shown in Figure-1. The Basic butterfly 
operation of the DIF algorithm is shown in Figure-2. 

 

 
 

Figure-2: Basic butterfly operation of DIF algorithm 
 

 
For any DIF butterfly, there are two inputs x and 

y (two input samples). The outputs X and Y are given by:  
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The inputs x, y, k
NW  and as well as the outputs X 

and Y are complex values.  
As the butterfly operation is the basic 

computation in FFT algorithm, designing a highly efficient 
butterfly element would lead to a lot of saving in silicon 
area and/or in power.  

The objective of this work is to design and 
implement an area and power efficient butterfly element, 
which could be used in building a reconfigurable 
FFT/IFFT. Here we have presented a new design for the 
butterfly element, based on the distributed arithmetic 
algorithm (DAA). DA can be used for the computation of 
sum of products. The DFT equation given in equation (1) 
is in the sum of products form to which DA algorithm can 
be applied. It can be noted that, in this work, the DAA is 
not applied for the computation of the N point DFT as a 
whole, but used for a single Butterfly which is a 2 point 
DFT. This design shows saving in the silicon area.  

Applying DAA to a N point DFT as sum of 
product restricts the expansion of the design to any value 
of N. This makes the design rigid and the modularity is 
lost. Using the DAA approach to a single butterfly makes 
the design modular and it becomes easy to expand the 
design to any value of N. By using this butterfly element, 
we can build an efficient reconfigurable FFT processor. 

More over, in this project, IEEE single precision 
32 bit floating point notation is used for representing the 
samples. This enhances the suitability of the design for 
industrial applications. 

This paper presents this novel DAA based 
butterfly design. Section 2 explains the general DA 
algorithm. Section 3 presents the DA algorithm applied for 
the floating point butterfly element. Section 4 presents the 
hardware design. Section 5 presents the synthesis results 
obtained from Synopsys Design compiler.  
 
DISTRIBUTED ARITHMETIC ALGORITHM - AN 
OVERVIEW 

There are numerous signal processing 
applications in which DA algorithm is used. They are 
listed out in journals as early as 1989, where as DAA is as 
old as 1974. DAA is easily used for implementing DSP 
algorithms, because most of the signal processing 
algorithms are in the form of sum of products or inner 
product of two vectors.  

DA is basically, a bit-serial computation that 
forms an inner product of a pair of vectors in a single 
direct step. In computations of sum of products, if one of 
the vector operands is known, distributed arithmetic can be 
used. It uses look up tables and adders instead of 
multipliers. So there is a considerable reduction in the 
power consumption also, whenever we employ this DAA. 
A frequently argued disadvantage is its apparent slowness 
because of its bit serial nature. This disadvantage is not 
real if the number of samples in each vector  
commensurate with the number of bits in each vector 
element. i.e., the time required to input eight, 8-bit words 
one at a time in a parallel fashion is exactly the same as 
the time required to input all eight words serially.  
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As an example, take the computation of the 
following sum of products.  
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Let kA   be the known vector and kX  be the input data 
represented in 2’s complement binary number, scaled such 
that │ kX │< 1 then kX  may be expressed as: 
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 where kbX  is a binary variable 0 or 1 and- 0kX  indicates 
the sign bit   
 
Substituting equation (5) in equation (4)   
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And now this can be expanded as  
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the above equation is rearranged as  follows:  
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Each term within the brackets denotes a binary 

AND operation involving a bit of an input variable and all 
bits of the coefficient (Stanley A. White, 1989). The plus 
signs denote arithmetic sum operations. The exponential 
factors denote the scaled contributions of the bracketed 
partial sum, to the total sum. A look-up-table which stores 
all the possible ‘sums’ of the coefficients is constructed. 
The look up table will be addressed by the nth bit from all 
input samples. Thus the arithmetic operations have now 
been reduced to addition, subtraction, binary scaling and 
accumulation.  
 
 
 

DAA APPLIED TO A FLOATING POINT 
BUTTERFLY MODULE 
 

In this work, DAA is applied to do the butterfly 
computation (Stanley A. White) and not for computing the 
whole DFT. The signal flow graph of the DIF butterfly 
that has been implemented is shown in Figure-3.  

 

 
 

Figure-3: Signal flow graph of a DIF butterfly. 
 

Here the inputs x, y and k
NW  are complex and the 

outputs X and Y are also complex. i.e. 
 

imgjxrealxx __ +=  
 

imgjyrealyy __ +=  
 

imgjXrealXX __ +=  
 

imgjYrealYY __ +=  
 

imgjWrealWW k
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And each and every, real and imaginary part of 

the data is represented by a 32 bit IEEE single precision, 
floating point number. 

 
The outputs X and Y are as given below. 
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)__(_ 21 imgWGrealWGrealY −=                 (10) 
 

)__(_ 21 realWGimgWGimgY +=                  (11) 
 

From the above equations, it is obvious that, six 
floating point adders and four floating point multipliers are 
required to implement a butterfly element in the 
conventional way. But in this work, we have suggested a 
technique using distributed arithmetic, to obtain the real 
part and imaginary part of the output Y. Thus equations 
(10) and (11) are realized using DAA, instead of using 
floating point multipliers and adders. Here the W vector 
(twiddle factor) is a known value. The numbers are 
represented in single precision floating point notation.  

A 32 bit number X in single precision floating 
point is represented as MX ES .12)1( ×−=  
 
Where  
 
S = Sign bit (1 bit) 
E = Biased exponent (8 bits) 
M = Mantissa (23 bits) 
And its value V is given by the expression  
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In the equations (9), (10) and (11), the values of 

the W_real and W_img are taken as a 32 bit word and the 
values of G1 and G2 are going to be treated bit wise as 
required in the distributed arithmetic algorithm technique.  

 
Therefore  
 

)__(_ 21 imgWGrealWGrealY −=    
 

imgWM

realWM

n

n
n

ES

n

n
n

ES

_222)1(

_212)1(

23

0

23

0

22

111

⎟
⎠

⎞
⎜
⎝

⎛
−

−⎟
⎠

⎞
⎜
⎝

⎛
−=

∑

∑

=

−

=

−

                     (13) 

 
where M1 and M2 are the 24 bit mantissa of G1 and G2  
including the first hidden msb bit ‘1’. If E1 = E2 then the 
same value can be taken as the common exponent value. If 
E1 ≠ E2  then, the exponent is made equal to the higher 
exponent value of the two and thereby shifting its mantissa 
to the left by the required number of positions.  
 
Then 
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Assuming that both the sign bits are zero i.e. G1 

and G2 are positive values, and then equation (14) can be 
expanded as:  
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Here M10 is the most significant bit and M123 is 

the least significant bit of the mantissa part of G1. Now the 
equation can be rearranged as per the distributed 
arithmetic technique as follows. 
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Now in equation (16), each term in the braces is a 
binary AND operation involving a bit of the mantissa of 
G1 and the real or imaginary part of the twiddle factor. So 
its value can be one of the four combinational values of 
the real and imaginary parts of the twiddle factor as shown 
below. The exponential factors denote shifting or scaling 
of the value inside the braces. The “+” sign indicates 
arithmetic addition and here it’s a floating point addition.  

The value inside the braces can be calculated 
from the following look up table as the value of twiddle 
factor is already known.  
 

Table-2. LUT for S1 = S2 = 0. 
 

M1n M2n LUT Value 
0 0 0 
0 1 - W_img 
1 0 W_real 
1 1 W_real - W_img 

 
The LUT for while the sign bits of both G1 and G2  

are ‘0’ is given in table 2. If the sign bits change then the 
value of the LUT gets a sign change accordingly. So 
together with the sign bits of G1 and G2, a 16 value LUT is  
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used. The real part of output Y is calculated by using a 
scaled accumulator which accumulates the values from the 
LUT for each bit of the mantissa.   

The same algorithm can be followed to compute 
the imaginary part of output Y. Another LUT of size 16 is 
used and the similar DAA module is used.               
 
HARDWARE IMPLEMENTATION OF THE DAA 
BUTTERFLY 
 
 

 
 

Figure-4. Architecture of a DAA butterfly. 
 

Equations (16) and (17) are implemented using 
the block diagram shown in Figure-4. This is the general 
architecture of a bit serial DA. The inputs x and y are 
added and subtracted in the floating point adders. The real 
and imaginary parts of output X are obtained immediately, 
whereas for calculating the output Y the address generator 
blocks, LUTs and scaled accumulators are used. These 
blocks eliminate the need for multipliers. Thus it reduces 
the area requirement and also consumes less power. 

The top level block diagram of our design is 
viewed as in Figure-5. Here X1 and X2 are the inputs, and 
O1 and O2 are the outputs. There are more control inputs 
for loading, reading LUT, shifting, resetting etc. 
 

 
 

Figure-5. Top view of DAA BF. 
 
 
 

EXPERIMENTAL RESULTS 
 

The RTL modeling of the above design is done 
with Verilog HDL and the formal verification is done. The 
area reports of the butterfly module implemented in the 
conventional method using 6 floating point adders and 4 
floating point multipliers is compared with butterfly 
implemented using DAA technique which requires only 4 
floating point adders and two DAA units.  

The design is synthesized using Synopsys Design 
Complier with 45 nm technology node and the net list is 
generated. Also the area report is obtained and this design 
is found to be area efficient. Table-3 shows the 
comparison between the conventional Butterfly and DAA 
Butterfly. 

Table-3. Area report in 45nm technology. 
 

Parameter Conventional BF DAA BF 
No. of standard 

cells 7 5 

Combinational 
area 34362 sq. micron 29446 sq. 

micron 

Total area 37633 sq. micron 36446  
sq. micron 

 
 
CONCLUSIONS 
 

In this paper we have presented a novel design 
for the butterfly element. The efforts are to make the basic 
butterfly module more efficient in terms of area, power 
and also speed, as ‘butterfly’ is the basic building block of 
FFT and IFFT cores. The design can be used for 
reconfigurable FFT processor also. This butterfly element 
is designed for floating point numbers. Usually the DAA 
algorithm and also the butterfly/FFT processors are 
designed for data represented in the 2’s complement form. 
This floating point DAA BF is found to be area efficient as 
expected and also shows reduction in the critical path. So 
it can be used for designing high speed, reconfigurable 
FFT processors. 

In the near future a reconfigurable FFT/IFFT 
floating point processor will be designed using this novel 
area efficient ‘butterfly’ element. 
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