
 VOL. 8, NO. 1, JANUARY 2013 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2013 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

20

DISTRIBUTED ARITHMETIC BASED BUTTERFLY ELEMENT
FOR FFT PROCESSOR IN 45NM TECHNOLOGY

P. Augusta Sophy1, R. Srinivasan2 and J. Raja3

1AP/VIT Chennai & Research Scholar, Anna University, Chennai, India
2SSN College of Engineering, Chennai, India

3Anna University of Technology, Trichy, India
E-mail: sophyguna@gmail.com

ABSTRACT

Fast Fourier Transform (FFT) is one of the important signal processing algorithms because of its applications in
digital filtering, communication, image processing, spectral analysis and estimation etc. Butterfly computation is the basic
operation in the FFT algorithm. In this work, a novel approach is thought of and used in implementing the butterfly
element. Distributed Arithmetic Algorithm (DAA) is used to do the butterfly computation instead of using conventional
multipliers and adders. This has resulted in a more efficient butterfly element both in terms of area and power. This paper
describes the design of such an area efficient butterfly module. Single precision floating point representation is used for the
data. This design leads to a lot of area saving and power saving. This butterfly can be used as the basic building block of a
low power reconfigurable FFT processor. This finds its application in OFDM based systems and also in software defined
radios.

Keywords: Fast Fourier Transform (FFT), butterfly element (BF), Discrete Fourier Transform (DFT), Distributed Arithmetic Algorithm
(DAA), twiddle factor.

INTRODUCTION

A Fast Fourier Transform

Fast Fourier Transform (FFT) is one of the most
commonly used signal processing algorithms in
communication and multimedia systems. It is called as the
algorithm for the whole family as it helps in spectral
analysis, spectral estimation, interpolation, decimation,
convolution, correlation, filtering, etc. FFT is also used in
many applications like noise detection and cancellation,
speech encryption, sampling rate conversions, applications
utilizing the FFT filters, audio signal processing and image
processing. So it is the major part of the base band
processing. More over FFT and IFFT are also used as
demodulation and modulation kernels in the OFDM
systems.

OFDM is a special case of Frequency Division
Multiplexing, which is also used in the Software Radio
(SDR). OFDM is a combination of modulation and
multiplexing. OFDM can be easily generated using an
IFFT module and demodulated using a FFT module. FFT
is an efficient method of computing the discrete Fourier
transform (DFT) for a set of data. The Discrete Fourier
Transform (DFT) operates on samples of a time domain
signal and is defined by the following equation.

∑
−

=

−=
1

0

/2)()(
N

n

NknjenxkX π (1)

where X(k) represents the DFT frequency output at the
k-th spectral point, k ranging from 0 to N-1. The quantity
N represents the number of sample points in the DFT data
frame. The quantity x(n) represents the n-th time sample,
where n also ranges from 0 to N-1. In general, x(n) can be
real or complex.

 The corresponding Inverse Discrete Fourier
Transform (IDFT) of the sequence X(k) gives a sequence
x(n) defined only on the interval from 0 to N-1 as follows:

∑
−

=

=
1

0

/2)(/1)(
N

k

NknjekXNnx π (2)

The DFT equation can be re-written as:

∑
−

=

=
1

0

)()(
N

n

nk
NWnxkX

The quantity WN

nk is defined as:

Nnkjnk
N eW /2π−=

This quantity is called twiddle factor. It is the

sine and cosine basis functions written in polar form.
Examination of equation (1) reveals that the computation
of N point DFT requires N (N-1) complex multiplications
and N (N-1) complex additions.

 The FFT algorithm was developed by Cooley
and Turkey in the year 1965,by taking advantage of the
symmetry and periodicity properties of the twiddle factors.

r
N

Nr
N

r
N

Nr
N

WW

WW

=

−=
+

+ 2/

 (3)

Out of the two FFT algorithms, DIT (decimation

in time) and DIF (decimation in frequency), DIF is mostly
used in the implementations of FFT. In the DIF algorithm,
the inputs are given in the natural order and the output

 VOL. 8, NO. 1, JANUARY 2013 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2013 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

21

frequency points are obtained in the bit reversed manner
i.e the output frequency points are found to be regrouped
or subdivided. This radix-2 DIF FFT algorithm starts by
dividing the samples into two groups, the first half and the
last half. The division goes till the DFT computation is
done between only two samples. This 2-point DFT block
is called as the butterfly operation. The signal flow graph
of FFT is constructed with N/2 number of butterflies in
each stage and there are log2 N number of stages.

Figure-1: Signal flow graph of an 8 point DIF FFT.

The signal flow graph of an 8 point DIF FFT
algorithm is shown in Figure-1. The Basic butterfly
operation of the DIF algorithm is shown in Figure-2.

Figure-2: Basic butterfly operation of DIF algorithm

For any DIF butterfly, there are two inputs x and

y (two input samples). The outputs X and Y are given by:

k
NWyxY

yxX
)(−=

+=

The inputs x, y, k
NW and as well as the outputs X

and Y are complex values.
As the butterfly operation is the basic

computation in FFT algorithm, designing a highly efficient
butterfly element would lead to a lot of saving in silicon
area and/or in power.

The objective of this work is to design and
implement an area and power efficient butterfly element,
which could be used in building a reconfigurable
FFT/IFFT. Here we have presented a new design for the
butterfly element, based on the distributed arithmetic
algorithm (DAA). DA can be used for the computation of
sum of products. The DFT equation given in equation (1)
is in the sum of products form to which DA algorithm can
be applied. It can be noted that, in this work, the DAA is
not applied for the computation of the N point DFT as a
whole, but used for a single Butterfly which is a 2 point
DFT. This design shows saving in the silicon area.

Applying DAA to a N point DFT as sum of
product restricts the expansion of the design to any value
of N. This makes the design rigid and the modularity is
lost. Using the DAA approach to a single butterfly makes
the design modular and it becomes easy to expand the
design to any value of N. By using this butterfly element,
we can build an efficient reconfigurable FFT processor.

More over, in this project, IEEE single precision
32 bit floating point notation is used for representing the
samples. This enhances the suitability of the design for
industrial applications.

This paper presents this novel DAA based
butterfly design. Section 2 explains the general DA
algorithm. Section 3 presents the DA algorithm applied for
the floating point butterfly element. Section 4 presents the
hardware design. Section 5 presents the synthesis results
obtained from Synopsys Design compiler.

DISTRIBUTED ARITHMETIC ALGORITHM - AN
OVERVIEW

There are numerous signal processing
applications in which DA algorithm is used. They are
listed out in journals as early as 1989, where as DAA is as
old as 1974. DAA is easily used for implementing DSP
algorithms, because most of the signal processing
algorithms are in the form of sum of products or inner
product of two vectors.

DA is basically, a bit-serial computation that
forms an inner product of a pair of vectors in a single
direct step. In computations of sum of products, if one of
the vector operands is known, distributed arithmetic can be
used. It uses look up tables and adders instead of
multipliers. So there is a considerable reduction in the
power consumption also, whenever we employ this DAA.
A frequently argued disadvantage is its apparent slowness
because of its bit serial nature. This disadvantage is not
real if the number of samples in each vector
commensurate with the number of bits in each vector
element. i.e., the time required to input eight, 8-bit words
one at a time in a parallel fashion is exactly the same as
the time required to input all eight words serially.

 VOL. 8, NO. 1, JANUARY 2013 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2013 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

22

As an example, take the computation of the
following sum of products.

k

N

oK
k XAny ∑

−

=

=
1

)((4)

Let kA be the known vector and kX be the input data
represented in 2’s complement binary number, scaled such
that │ kX │< 1 then kX may be expressed as:

kX b
B

b
kbk XX −

−

=
∑+−= 2

1

1
0 (5)

 where kbX is a binary variable 0 or 1 and- 0kX indicates
the sign bit

Substituting equation (5) in equation (4)

]2[)(
1

1
0

1

0

b
B

b
kbk

N

k
K XXAny −

−

=

−

=
∑∑ +−=

And now this can be expanded as

K
b

B

b
kb

N

k
k

N

k
K AXXAny −

−

=

−

=

−

=
∑∑∑ +−= 2)(

1

1

1

1
0

1

0
 (6)

the above equation is rearranged as follows:

[]
[]
[]

[])1(
)1(3)1(32)1(21)1(1

2
2332222112

1
1331221111

030220110

2

2

2

3)(

−−
−−−−

−

−

++++

++++

+++++

+++++−=

B
NBNBBB

NN

NN

NN

AxAxAxAx

AxAxAxAx

AxAxAxAx

AxAxAxAxny

LLL

M

M

M

LLL

LLL

LLLL

 (7)

Each term within the brackets denotes a binary

AND operation involving a bit of an input variable and all
bits of the coefficient (Stanley A. White, 1989). The plus
signs denote arithmetic sum operations. The exponential
factors denote the scaled contributions of the bracketed
partial sum, to the total sum. A look-up-table which stores
all the possible ‘sums’ of the coefficients is constructed.
The look up table will be addressed by the nth bit from all
input samples. Thus the arithmetic operations have now
been reduced to addition, subtraction, binary scaling and
accumulation.

DAA APPLIED TO A FLOATING POINT
BUTTERFLY MODULE

In this work, DAA is applied to do the butterfly
computation (Stanley A. White) and not for computing the
whole DFT. The signal flow graph of the DIF butterfly
that has been implemented is shown in Figure-3.

Figure-3: Signal flow graph of a DIF butterfly.

Here the inputs x, y and k
NW are complex and the

outputs X and Y are also complex. i.e.

imgjxrealxx __ +=

imgjyrealyy __ +=

imgjXrealXX __ +=

imgjYrealYY __ +=

imgjWrealWW k
N __ +=

And each and every, real and imaginary part of

the data is represented by a 32 bit IEEE single precision,
floating point number.

The outputs X and Y are as given below.

yxX +=
)__()__(imgyimgxjrealyrealx +++= (8)

k

NWyxY)(−=

Let 1)__(Grealyrealx =−

and 2)__(Gimgyimgx =−

Then)__()(21 imgjWrealWjGGY +×+=

)__(
)__(

21

21

realWGimgWGj
imgWGrealWG

+
+−=

 (9)

 VOL. 8, NO. 1, JANUARY 2013 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2013 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

23

)__(_ 21 imgWGrealWGrealY −= (10)

)__(_ 21 realWGimgWGimgY += (11)

From the above equations, it is obvious that, six
floating point adders and four floating point multipliers are
required to implement a butterfly element in the
conventional way. But in this work, we have suggested a
technique using distributed arithmetic, to obtain the real
part and imaginary part of the output Y. Thus equations
(10) and (11) are realized using DAA, instead of using
floating point multipliers and adders. Here the W vector
(twiddle factor) is a known value. The numbers are
represented in single precision floating point notation.

A 32 bit number X in single precision floating
point is represented as MX ES .12)1(×−=

Where

S = Sign bit (1 bit)
E = Biased exponent (8 bits)
M = Mantissa (23 bits)
And its value V is given by the expression

⎥
⎦

⎤
⎢
⎣

⎡
×−= −

=
∑ n

n
n

ES MV 22)1(
23

0
 (12)

In the equations (9), (10) and (11), the values of

the W_real and W_img are taken as a 32 bit word and the
values of G1 and G2 are going to be treated bit wise as
required in the distributed arithmetic algorithm technique.

Therefore

)__(_ 21 imgWGrealWGrealY −=

imgWM

realWM

n

n
n

ES

n

n
n

ES

_222)1(

_212)1(

23

0

23

0

22

111

⎟
⎠

⎞
⎜
⎝

⎛
−

−⎟
⎠

⎞
⎜
⎝

⎛
−=

∑

∑

=

−

=

−

 (13)

where M1 and M2 are the 24 bit mantissa of G1 and G2
including the first hidden msb bit ‘1’. If E1 = E2 then the
same value can be taken as the common exponent value. If
E1 ≠ E2 then, the exponent is made equal to the higher
exponent value of the two and thereby shifting its mantissa
to the left by the required number of positions.

Then

⎪
⎪
⎭

⎪
⎪
⎬

⎫

⎪
⎪
⎩

⎪
⎪
⎨

⎧

×⎟
⎠

⎞
⎜
⎝

⎛
−

−×⎟
⎠

⎞
⎜
⎝

⎛
−

=

∑

∑

=

−

=

−

imgWM

realWM
realY

n

n
n

S

n

n
n

S

E

_22)1(

_21)1(
2_

23

0

23

0

2

1

 (14)

Assuming that both the sign bits are zero i.e. G1

and G2 are positive values, and then equation (14) can be
expanded as:

[]
[] ⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

++++

−++++
=

−−−

−−−

imgWMMMM

realWMMMM
realY E

_22....222222

_21.....212121
2_

23
23

2
2

1
1

0
0

23
23

2
2

1
1

0
0 (15)

Here M10 is the most significant bit and M123 is

the least significant bit of the mantissa part of G1. Now the
equation can be rearranged as per the distributed
arithmetic technique as follows.

()
()
() ⎪

⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

−

++−

+−

=
−

−

23
2323

1
11

0
00

2_2_1
....2_2_1

2_2_1

2_
imgWMrealWM

imgWMrealWM

imgWMrealWM

realY E
 (16)

()
()
() ⎪

⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

+

+++

++

=
−

−

23
2323

1
11

0
00

2_2_1

....2_2_1

2_2_1

2_

realWMimgWM

realWMimgWM

realWMimgWM

imgY E

(17)

Now in equation (16), each term in the braces is a
binary AND operation involving a bit of the mantissa of
G1 and the real or imaginary part of the twiddle factor. So
its value can be one of the four combinational values of
the real and imaginary parts of the twiddle factor as shown
below. The exponential factors denote shifting or scaling
of the value inside the braces. The “+” sign indicates
arithmetic addition and here it’s a floating point addition.

The value inside the braces can be calculated
from the following look up table as the value of twiddle
factor is already known.

Table-2. LUT for S1 = S2 = 0.

M1n M2n LUT Value
0 0 0
0 1 - W_img
1 0 W_real
1 1 W_real - W_img

The LUT for while the sign bits of both G1 and G2

are ‘0’ is given in table 2. If the sign bits change then the
value of the LUT gets a sign change accordingly. So
together with the sign bits of G1 and G2, a 16 value LUT is

 VOL. 8, NO. 1, JANUARY 2013 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2013 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

24

used. The real part of output Y is calculated by using a
scaled accumulator which accumulates the values from the
LUT for each bit of the mantissa.

The same algorithm can be followed to compute
the imaginary part of output Y. Another LUT of size 16 is
used and the similar DAA module is used.

HARDWARE IMPLEMENTATION OF THE DAA
BUTTERFLY

Figure-4. Architecture of a DAA butterfly.

Equations (16) and (17) are implemented using
the block diagram shown in Figure-4. This is the general
architecture of a bit serial DA. The inputs x and y are
added and subtracted in the floating point adders. The real
and imaginary parts of output X are obtained immediately,
whereas for calculating the output Y the address generator
blocks, LUTs and scaled accumulators are used. These
blocks eliminate the need for multipliers. Thus it reduces
the area requirement and also consumes less power.

The top level block diagram of our design is
viewed as in Figure-5. Here X1 and X2 are the inputs, and
O1 and O2 are the outputs. There are more control inputs
for loading, reading LUT, shifting, resetting etc.

Figure-5. Top view of DAA BF.

EXPERIMENTAL RESULTS

The RTL modeling of the above design is done
with Verilog HDL and the formal verification is done. The
area reports of the butterfly module implemented in the
conventional method using 6 floating point adders and 4
floating point multipliers is compared with butterfly
implemented using DAA technique which requires only 4
floating point adders and two DAA units.

The design is synthesized using Synopsys Design
Complier with 45 nm technology node and the net list is
generated. Also the area report is obtained and this design
is found to be area efficient. Table-3 shows the
comparison between the conventional Butterfly and DAA
Butterfly.

Table-3. Area report in 45nm technology.

Parameter Conventional BF DAA BF
No. of standard

cells 7 5

Combinational
area 34362 sq. micron 29446 sq.

micron

Total area 37633 sq. micron 36446
sq. micron

CONCLUSIONS

In this paper we have presented a novel design
for the butterfly element. The efforts are to make the basic
butterfly module more efficient in terms of area, power
and also speed, as ‘butterfly’ is the basic building block of
FFT and IFFT cores. The design can be used for
reconfigurable FFT processor also. This butterfly element
is designed for floating point numbers. Usually the DAA
algorithm and also the butterfly/FFT processors are
designed for data represented in the 2’s complement form.
This floating point DAA BF is found to be area efficient as
expected and also shows reduction in the critical path. So
it can be used for designing high speed, reconfigurable
FFT processors.

In the near future a reconfigurable FFT/IFFT
floating point processor will be designed using this novel
area efficient ‘butterfly’ element.

REFERENCES

L. Wanhammar. 1999. DSP Integrated Circuits. Academic
Press.

K. K. Parhi. 1999. VLSI Digital Signal Processing
Systems: Design and Implementation. John Wiley and
Sons.

A. V. Oppenhein and R. W. Schaffer. 1980. Discrete -
time Signal Processing. Prentice Hall.

Stanley A White. 1989. Applications of Distributed
Arithmetic to Digital Signal Processing: A Tutorial
Overview. IEEE, ASSP Magazine, July.

 VOL. 8, NO. 1, JANUARY 2013 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2013 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

25

Stanley A White. A Simple Butterfly Arithmetic Unit.
IEEE Transactions on Circuits and Systems. Vol. Cas28,
No.4, April 81.

Sansaloni T, Pérez-Pascual A and Valls. J. Digit-serial
Distributed Arithmetic Butterflies for FPGA.

Christophe Bobda, Ali Ahmadinia and J¨urgen Teich.
Generation of Distributed Arithmetic Designs for
Reconfigurable Applications.

Wayne P Burleson and Louis L Scharf. 1991. A VLSI
Design Methodology for Distributed Arithmetic. Journal
of VLSI Signal Processing.

Amit Sinha and Mahesh Mehendale. 1997. Improving
Area Efficiency of FIR filters implemented using
Distributed Arithmetic. IEEE.

