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ABSTRACT 

Multi-core processors offer a significant performance increase over single core processors. Therefore, they have 
the potential to enable computation-intensive real-time applications with stringent timing constraints that cannot be met on 
traditional single-core processors. However, with the number of cores on a single chip continuing to increase, it has been a 
great challenge to effectively manage the energy efficiency of multicore based systems. Power and temperature 
management are also two concerns that can increase exponentially with the addition of multiple cores. Design innovations 
in multicore processor architectures bring new optimization opportunities and challenges in the computing era. System 
performance will be further enhanced by addressing these challenges. In particular, the process (task) scheduler is one of 
the critical challenge is garnering great interest. High performance in a heterogeneous multicore system is essential which 
is achieved by effective scheduling, which remains a challenging problem. Further multi core technology opens research 
opportunities for energy reduction through efficient scheduling. There may be different hardware and software solutions 
for the above issue; hardware solutions are based on adjusting dynamic voltage per core, alternatively software approach 
includes, scheduling task among cores, in heterogeneous environment. Task scheduling in multicore architecture is an 
extremely difficult problem, because it requires a large combinatorial search space and also precedence constraints 
between the processes; for the effective utilization of multi core processor system, efficient assignment and scheduling of 
jobs is more important. Many of the existing algorithms are not focused on task scheduling and core utilization in 
heterogeneous multi core systems. This paper formulates task scheduling as an optimization problem and the results are 
compared with the earlier faster scheduler in use. Findings show that, in addition to its optimum solution for large scale 
problem, the Genetic Algorithm (GA) proposed here fits the heterogeneous multi core parallel scheduling problem of 
minimizing the completion time as well as in effective core utilization. 
 
Keywords: heterogeneous multi core, task scheduling, genetic algorithm. 
 
1. INTRODUCTION 

The board trend in processor development has 
moved from dual-, tri-, quad-, hexa-, octo-core chips to 
ones with tens or even hundreds of cores. Besides, 
promising performance and efficiency gains of multicore 
processors in processing multimedia, recognition and 
networking applications can be achieved with the 
characteristics of multithreading, memory-on-chip, and 
special-purpose heterogeneous cores. There is also a 
challenge of improving energy-efficiency by focusing on 
performance-per-watt with advanced fine-grain or ultra 
fine-grain power management and dynamic voltage and 
frequency scaling (i.e., notebook computers and portable 
media players). However, many issues remain unsolved. 
In order to utilize a multicore processor at the maximum 
extent the applications run on the system must be 
scheduled. 

Scheduling, in general, is concerned with 
allocation of resources to certain tasks to optimize few 
performance criterions, like the completion time, waiting 
time or cost production. In scheduling, task scheduling is 
measured as popular unsolved problem for heterogeneous 
multicore processors. The importance of scheduling has 
increased in recent years due to the extravagant 
development of new process and technologies. 
Scheduling, in multiprocessor architecture, can be defined 
as assigning the tasks of precedence constrained task 

graph onto a set of processors and determine the sequence 
of execution of the tasks at each processor. This multi core 
scheduling problem is known to be Non-deterministic 
Polynomial (NP) complete except in the case of large scale 
problems.  

Because of, the classical algorithms are not 
dynamic, they cannot achieve the optimal scheduling for 
all situations, and therefore these algorithms cannot adapt 
themselves with all situations. This difficulty can be 
widely solved by Genetic algorithm. In the field artificial 
intelligence, Genetic Algorithm (GA) is a search heuristic 
that mimics the process of natural evolution. This heuristic 
is routinely used to generate useful solutions to 
optimization and search problems. Genetic algorithms 
belong to the larger class of Evolutionary Algorithms 
(EA), which generate solutions using procedure stimulated 
by natural evolution, such as inheritance, mutation, 
selection, and crossover to optimization problems. In most 
cases the methods are quite effective but not efficient 
enough, and some important aspects such as the time of 
transferring data between processes are ignored. Even in 
some researches, which almost all aspects are considered, 
only part of the problem is solved by genetic algorithm. 
The paper presents a scheduling problem in multi-core 
systems in a new intelligent method so as to improve the 
present scheduling for minimizing the total completion 
time of all process and maximizing their utilization. 
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2. RELATED WORK 
Several research works has been carried out in the 

past decades, in the heuristic algorithms for job scheduling 
and generally, since scheduling problems is NP-hard i.e., 
as the problem size increases the time required to complete 
the problem also increases exponentially, therefore it is 
extremely significant and necessary to develop algorithms 
to fine solution to these problems. Some heuristic methods 
like branch and bound and prime and search [1], have been 
proposed earlier to solve this kind of problem. Also, the 
major set of heuristics for job scheduling onto 
multiprocessor architectures is based on list scheduling [2-
8] [9]. However the time complexity increases 
exponentially for these conventional methods and 
becomes excessive for large problems. Then, the 
approximation schemes are often utilized to find an 
optimal solution. It has reported in [2, 6] that the critical 
path list scheduling heuristic  is within 5% of the optimal 
solution 90% of the time when the communication cost is 
ignored, whereas in rare cases any list scheduling is within 
50% of the optimum solution. General task scheduling for 
cloud applications with multicore processors are 
implemented in [10].   

It is worth to mention that due to sever 
complexity of scheduling in multi core process; the 
proposed classical algorithms do not have high 
performance. Therefore the intelligent methods have been 
used to find the solution of scheduling problem. In these 
methods the genetic algorithm is widely used repeatedly 
[11-14]. The problem based on scheduling of independent 
jobs on non-identical parallel machines in order to 
minimize makespan is described in [15]. In [16], new 
Improved PSO (ImPSO) algorithm is used for solving job 
scheduling in multiprocessor architecture with the 
objective of minimizing the job finishing time and waiting 
time. Multiprocessor task scheduling problem can be 
stated as finding a schedule for a general task graph to 
execute on a multiprocessor system so that the schedule 
length can be minimized. Hybrid Flow Shop Scheduling 
with Multiprocessor Task (HFSM) problem is known to be 
NP-hard. In this study [17] an effective parallel greedy 
algorithm to solve HFSMT problem is presented.  
 
3. PROBLEM DEFINITION  

The job scheduling problem of multi processor 
architecture is scheduling problem to partition the tasks 
between different cores by accomplishing minimum 
completion time and minimum waiting time 
simultaneously. If M different cores M = {ci, i = 1, 
2….m} and T different tasks T = {tj, j = 1, 2…n} are 
considered in a heterogeneous environment, every core 
works on different speeds and processing capabilities. It is 
assumed that the cores C1 is much faster than C2, C3 and 
so on. If the processing speed is V (i, j) then the execution 
time has calculated on the basis of size of the tasks by 
processing speed on different core. Completion Time (or) 
Processing Time = Task size/Speed of the core. 
 

Maximum Completion Time  
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To evolve good solutions and to implement 

natural selection, we need a measure for distinguishing 
good solutions from bad solutions. This can be 
mathematical model or a computer simulation and the 
measure is said to be objective function.  

Therefore the devised objective function is 
described below. 
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To maintain the concept of load balancing, 

effective core utilization is desired. The average utilization 
is calculated based on the individual performance of the 
core. The individual core utilization is given by  
 
Utilization = Completion time/ Max.span 
 

An initial population is the set consisting of 15 
chromosomes. The chromosomes number, i.e., population 
size, is one of the important parameters of GA. The 
efficiency of the algorithm is highly dependent on their 
“quality” of members of the initial population 
(chromosomes) which are the parents of the next 
generations Genetic Algorithm was involved with the 
number of populations to be 100 and 800 generations. The 
crossover rate was 0.6 and the mutation rate was 0.01. 
Randomly the populations were generated and for various 
trails of the number of cores and task sizes, the completed 
fitness values of execution time is calculated.  
 
4. CACHE FAIR THREAD SCHEDULING WITH  
    WAIT FREE DATA STRUCTURE (CFTS WF) 

At present there are different types of scheduling 
algorithms are available viz shortest job first, round robin, 
etc, each with its own merits and demerits. Scheduling 
algorithms to be of priority based since tasks of some 
category need an immediate attention while others can be 
listened later. All threads accessing the wait free data 
structure can complete its process within a restricted 
number of steps not considering the behavior of other 
threads. Therefore when batching CFTS scheduling with 
wait free data structure where all the threads are given a 
priority based on the either by the programmer (via system 
API) or the operating system. There are several scheduling 
queues are available each with its own priority. Initially 
the scheduler tries to schedule threads waiting with top 
priority queue then subsequently queue with low priority. 
Thus no queue left unattended. In CFTS, if a thread is 
ready to execute but the only available cores are not in its 
processor affinity set, then the thread is forced to wait. To 
satisfy this requirement, Cache Fair Thread Scheduling 
(CFTS) is integrated with Wait Free data structure to 
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access the internal scheduler and to achieve optimal 
efficiency in terms of energy, processing power, and line 
rate and network traffic stability. Hence CFTS-WF 
schedules such that maximum throughput, minimum 
response time, minimum waiting time and utmost CPU 
consumption is obtained [10].  
 
5. GENETIC ALGORITHMS FOR SCHEDULING   

Genetic algorithms are a kind of random search 
algorithms coming under evolutionary strategies which 
uses the natural selection and gene mechanism in nature 
for references. The key concept of genetic algorithm is 
based on natural genetic rules and it used random search 
space. GA was formulated by J. Holland with a key 
advantage of adopting population search and exchanging 
the information of individuals in population [11, 12 and 
14]. The algorithm used to solve scheduling problem is as 
follows: The flowchart depicting the approach of genetic 
algorithm is as shown in Figure-1. 
 
Step-1: Initialize the population to start the genetic 
algorithm Process. For initializing population, it is 
necessary to input number of processors, task size and 
core speed.  
 
Step-2: With the generated populations the fitness 
function is calculated. For the defined problem, the fitness 
function can be obtained using the equation fi = α x e-

βxEmax where ‘α and β’ should be set to select an 
appropriate positive real number for ensuring the fitness of 
all good individuals to be positive in the solution space. 
And Emax is the objective function value. 
 
Step-3: Perform selection process to select the best 
individual based on the fitness evaluated to participate in 
the next generation and eliminate the inferior. The job 
with the minimal execution time and waiting time is the 
best individual corresponding to a particular generation.  
 
Step-4: Two crossover points are generated uniformly in 
the mated parents at random, and then the two 
 
Step-5: In this step, mutation operation is performed to 
further create new offsprings, which is necessary for 
adding diversity to the solution set. Using turn over 
operation mutation is performed. Generally, mutation is 
adopted to avoid loss of information about the individuals 
the process of evolution. Mutation is performed by setting 
a random selected job to a random processor.  
 
Step-6: Next stopping criteria must be tested. Stopping 
condition may be obtaining the best fitness value with 
minimum execution time and minimum waiting time for 
the given objective function. If the stopping criterion is 
satisfied then go to step-7 else go to step-2. 
 
Step-7: From the completed generations optimum result is 
declared. Stop. 
 

 
 

Figure-1. Flowchart for Genetic Algorithm 
 
6. SCHEDULING HETEROGENEOUS MULTI  
    CORES USING GENETIC ALGORITHM 

High performance in a heterogeneous multicore 
system can be achieved by an efficient scheduling onto the 
process which minimizes the execution time and also   
average of response time. In this method genetic algorithm 
present the optimal scheduling directly from the final 
chromosome in final generation. A matrix X is composed 
of variables x (i, j) and it has following significance. The 
row I of the matrix X consists of n cores to process the 
different task based on the core speed. Rows are called 
“genes” (c1, c2, c3….cg…cn) and they represent cores to 
i, (ci) depend on size of the task and speed of the core. 
 
A. Initial population 

An initialization operator is applied first. An 
intermediate population of n “parent” individuals is 
created by the initialization operator. Then n independent 
removal of an individual from the old population is carried 
out [18] to produce “parents”. Each individual being 
removed must be in linear relationship with the fitness of 
that individual. The average individuals which lie in the 
above range should have more copies in the new 
population; while below average individuals should have 
few to no copies present. The selection operator chooses 
two members of the present generation to participate in 
later crossover and mutation operations. Initialization 
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process raises the issue of fitness function. A requirement 
of the selection methods is that the probability fi of an 
organism must be the best to be selected. 
 
B. Fitness evaluation 

The performance of an individual with respect to 
the current optimum so that different individuals can be 
compared to get a numerical value is called the fitness 
value. There exists a range of solutions for fitness from 
worst to best. The degree of success in the application of 
evolutionary algorithms depend significantly on the 
definition of a fitness that changes neither too rapidly nor 
too slowly wit the design parameters of the optimization 
problem. Performance evaluation of chromosomes is 
merely based on fitness function. After the generation of 
new population, fitness value of each chromosome is 
calculated (fj). The higher the fitness value, the better the 
performance of the chromosome (i.e., parent). Hence, 
parents with higher fitness value have more chances to 
survive. Because the objective function is to minimize the 
execution time, fitness values can be obtained using the 
following function.fi = α x e-βxEmax, where α and β are 
positive real number and Emax is the objective function 
value (execution time) of the chromosome k. 
 
C. Reproduction 

Based on roulette-wheel selection, is a genetic 
operation for selecting potentially useful solutions for 
recombination. In fitness proportionate selection, as in all 

selection methods, the fitness function assigns fitness to 
possible solutions or chromosomes. This fitness level is 
used to associate probability of selection with each 
individual chromosome. Selection probability is given 
below if fi is the fitness of individual i in the population,  

∑
=

= N

j
j

i
i

f

fP

1

                               (3) 

where N is the number of individuals in the population. 
  

This could be imagined similar to a Roulette 
wheel in a casino. Based on their fitness value a proportion 
of the wheel is assigned to each of the possible selections. 
Normalization could be achieved by dividing the fitness of 
a selection by the total fitness of all the selections. 

Table-1 shows the selection probability for 12 
individuals, linear ranking and selective pressure of 2 
together with the fitness value. Individual 1 is the fit 
individual and occupies the largest interval, whereas 
individual 11 as the second least fit individual has the 
smallest interval on the line. Individual 12, the least fit 
interval, has a fitness value of 0 and get no change for 
reproduction for selecting the mating population the 
appropriate number of uniformly distributed random 
numbers (uniform distributed between 0.0 and 1.0) is 
independently generated. 

 
Table-1. Selection probability and fitness value. 

 

Number of 
individual 1 2 3 4 5 6 7 8 9 10 11 12 

Fitness 
value 2.2 2.0 1.8 1.6 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0.0 

Selection 
probability 0.2 0.19 0.17 0.15 0.13 0.11 0.09 0.07 0.06 0.03 0.02 0.0 

 
D. Recombination (Crossover) operators 

A new generation is formed by (a) selecting, 
according to fitness values, some of the parents and 
offspring and (b) rejecting others so as to keep the 
population size constant. Filter chromosomes have higher 
probabilities of being selected. Crossover is the major 
genetic operator which works on two chromosomes at a 
time and generates offspring by combining both 
chromosomes features. A simple way to achieve crossover 
would be to choose a random cut-point and generate the 
offspring by combining the segment of one parent to the 
left of cut-point with the segment of the other parent to the 
right of the cut-point. This method works well with the bit 
string representation. To a great extent the performance of 
genetic algorithm depends, based on the performance of 
the crossover operator used. In our method, crossover 
operator deals with genes and not chromosomes like most 
of the applications in literature. Each gene “i” consists of n 
cores to execute the various task on core i, (x (i, j) ≠ 0, j = 
1, 2…n); each chromosome contains m genes and each 

one consists in one feasible schedule. Crossover operator 
described here combines two genes of same chromosome, 
in proper order to obtain a new chromosome giving a 
better solution. Therefore crossover operation is carried 
out by moving one core to another for different task size 
and core speed to get a better solution. Figure-2 depicts the 
process of arithmetic cross over for different cores. 
 

 
 

Figure-2. Arithmetic cross over. 
 

The first gene to combine, gi, is the one that 
indicates the core with maximum execution time: 
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The core with the minimum processing time of 

gene gi is given by the equation below: 
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E. Mutation operator 

Impulsive haphazard change in various 
chromosomes is produced by background mutation 
operator. Alteration of one or more genes is a simple 
method to achieve mutation. In genetic algorithms 
mutation place the following critical role either by (a) 
during the selection process replacement of genes lost 
from the population takes place by which they can be tried 
in a new context or (b) adopting the genes which were not 
available in the initial population. Crossover operator is 
used to combine existing genes in order to obtain new 
chromosomes, whereas mutation operator creates new 
chromosomes by causing small perturbation in genes. 
Therefore, it helps to maintain the diversity of the 
population and to extend the solution space. Because of 
the coding method used in this paper, mutation operator 
can be applied easily by alternating some elements x (i, j) 
of matrix X. every column of matrix X has only one 
element valued “1” (one job is processed only on one 
core). Mutation operation is carried out by alternating 
some elements x (i, j) of matrix X. Therefore here by 
alternating tasks randomly from one core to another 
mutation is done. This operation prevents from getting 
stuck on local suboptimal solutions and it is very helpful 
to maintain the richness of the population in dealing with 
large scale problems. 

This operator replaces the value of the chosen 
gene with a uniform random value selected between the 
user-specified upper and lower bounds for that gene. This 
mutation operator can only be used for integer and float 
genes. For lower bound (task size) = 1 and upper bound 
(task size) = 5, the output produced based on the following 
equation (6). 
 
Y = a +(b-a) rand (2, 1)                                                    (6) 
 
7. NUMERICAL APPLICATION 

In this section, the scheduling problem of jobs on 
m heterogeneous cores is solved using GA described 
below.  

The computational results are compared to the 
faster scheduler CFTS-WF. As a numerical example 20 
tasks of different size are scheduled on 8 heterogeneous 
cores. The objective function is to minimize the 
completion time. The speed of the cores is given as (V1, 
V2, V3, V4, V5, V6, V7, V8) = (1, 2, 4, 5, 7, 9, 10, 12).  

The scheduling task with GA is summarized in 
Table 2. 
 
 

8. RESULTS AND DISCUSSIONS 
We have used simulation to validate the genetic 

algorithm. The simulation was performed on simulation 
environment for parallel program execution that was 
developed using MATLAB programming language. 
Genetic Algorithm was invoked with the number of 
populations to be 100 and 800 generations. The crossover 
rate was 0.5 and the mutation rate was 0.01 randomly the 
populations were generated and for various trials of the 
number of cores and task sizes, the completed fitness 
values of execution time is calculated. Simulation results 
of genetic algorithm shows that when the task sizes are 
larger and close to neighborhood sizes the core utilization 
is higher than that of the smaller tasks. Figure-1 shows the 
result of scheduling with GA and CFTS-WF algorithm 
with respect to task size and Figure-2 shows the result of 
scheduling with genetic algorithm and fast scheduler 
(Cache Fair Thread Scheduler with Wait Free data 
structure) CFTS-WF based on number of processing cores. 
From Figure-2, it can be observed that as the number of 
core increases, the completion time has got reduced for 
GA than CFTS-WF. Figure-3 shows the variations in the 
task size with respect to number of cores for GA, and 
CFTS-WF scheduler. The execution time and waiting time 
is observed based on the number of tasks allocated to each 
cores. Also it shows the variation in execution time for the 
assigned size of tasks and speed of the core. 

 
Table-2. Scheduling Task with GA 

Scheduling with GA (iteration-1 ) 

Cores Scheduled tasks Execution 
time 

C.1 Task2 15.5 
C.2 Task3 Task5 14.8 
C.3 Task7 Task6 Task4 16.0 
C.4 Task13 Task8 15.0 

C.5 Task12 Task10 Task20 
Task1 15.4 

C.6 Task11 Task17 15.8 
C.7 Task15 Task19 16.2 

C.8 Task14 Task16 Task18 
Task9 16.0 

Scheduling with GA (iteration-1I ) 

Core Scheduled tasks Execution 
time 

C.1 Task12 15.0 
C.2 Task13 Task15 14.9 
C.3 Task17 Task16 Task14 16.2 
C.4 Task3 Task18 16.1 

C.5 Task20 Task1 Task2 
Task11 15.8 

C.6 Task10 Task7 16.0 
C.7 Task5 Task9 16.0 

C.8 Task4 Task6 Task8 
Task19 15.8 
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Task Size Vs Completion Time 
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Figure-3. Task size Vs Completion time. 
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Figure-4. No. of processing cores Vs Completion time. 
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Figure-5. No. of processing cores Vs Tasks. 
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Figure-6. No. of processing cores Vs Average utilization. 
 

9. CONCLUSIONS 
Most of the scheduling problems are NP-hard. 

Mathematical optimization techniques can give an optimal 
solution for a reasonably sized problem, however, in the 
case of a large scale problem, their application is limited. 
Scheduling schemes without GA are suitable only for 
small scale problems and no scheduling schemes without 
GA guarantees optimum result in various problems. 
Research efforts have therefore concentrated on heuristic 
approaches. Among these approaches, GA outperforms 
others in view of its characteristic such as high 
adaptability, near optimization and easy realization. As 
many practical job shop and open shop scheduling 
problems can be simplified as heterogeneous multi core 
scheduling problems under certain conditions, the same 
has received a great deal of attention in the academic and 
engineering circle. There are many applications of GA to 
solve heterogeneous multi core scheduling problem; but, 
even though it is a common problem in the industry, only 
a small number of them deal with heterogeneous multi 
core systems. We therefore decided to concentrate our 
research effort on scheduling heterogeneous multi core 
with different parameters using GA so that better results 
may be produced. 
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