
 VOL. 8, NO. 1, JANUARY 2013 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2013 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

64

AN EFFICIENT CLASSIFICATION OF FAULT DETECTION THROUGH
COMPRESSED TREE (CT) APRIORI BASED APPROACH USING

ARC-BC CLASSIFIER

R. Jeevarathinam1 and T. Santhanam2
1Department of Computer Science, SNR Sons College, Coimbatore, India

2PG and Research Department of Computer Science, D G Vaishnav College, Chennai, India
E-Mail: mani_jeeva_2000@yahoo.com

ABSTRACT

Generally software systems are scantily documented and incomplete specifications in the documents results in
high maintenance cost. To lower maintenance efforts, automated tools are necessary to aid software developers to
understand their existing code base by extracting specifications from the software. Specification mining aids the document
to intend software behaviour, software maintenance, refactor or add new features to software, and detecting software bugs.
In this paper a new technique called CT Trace Miner is proposed to efficiently mine software specifications, which in turn
mines software specifications from program execution traces. Then the mined specification using the CT Trace Miner
approach is given as input to the ANOVA Two Way feature selection approach for selecting the best features.
Conclusively, ARC-BC classifier is used to categorize the selected features. The experimental results exposed that the
proposed approach provides better results than the existing approach.

Keywords: ARC-BC, Compressed tree (CT), ANOVA two way, software specification, rule mining.

INTRODUCTION

Computers as well as software running on them
play an important role in each and every aspect. Software
Reliability is necessary for the computer to maintain the
software quality. Software reliability is considered as the
possibility of bug-free software operates at a particular
time interval in a specified atmosphere [1]. Because of
Application Program Interfaces (API), software system
interconnects with its environment such as network,
memory, operating system, graphics card and other
software etc. Certain programming rules (API
specifications) are essential to use these APIs effectively
[2].

Two main hindrances for the reliable operation of
a software system are such as security and robustness [3].
API violations directs to these issues. Consistency of
software system with specifications, which controls the
usage of APIs, is the chief factor of software reliability.
Software testing [4, 5], and static verification [6, 7] have
been agreed by the industries to assure software reliability.
Several problems occur with these approaches. Software
testing techniques [8, 9] mainly focus on problems such as
correctness of functionality and performance and it lacks
to assure the absence of API violations.

Documented software specification is the main
part of program artifacts. It describes about the software
behavior. If the specification is well defined and clearly
described, Software can be developed accurately and
maintained easily. Specifications should be used as an
input for formal program verification tools to identify bugs
or convert it into runtime monitors to reveal the violations
of specifications or properties of interests during program
execution [10, 11, 12]. Hence, it is important if all
programs and software projects are developed with clear,
precise and well-documented specifications. But, normally
documented specifications are insufficient or lacking in

the industry. Specification mining is a computerize
process to extract specifications from a program solves
this issue.

Obtaining patterns of frequent repetitive software
behaviors plays significant role in the current scenario.
Monotonicity or apriori property is essential to aid in
assuring scalability. A suitable apriori property is viewed
as prune the search space having insignificant patterns.
Novel iterative pattern mining approach for mining closed
iterative patterns is established in this paper. The proposed
rule mining algorithms mines a closed set of iterative
patterns. A search space pruning approach is utilized by
early reorganization for filtering and pruning of non-
closed patterns to extract closed set of iterative patterns.
Mined frequent patterns acquire global detailed behaviors
of a system and software behaviors. Mined rules acquire
constraints or implicit rules which are adhere by a piece of
software during analysis process.

Many rules can be gathered from traces, but it
should not be important. The information about support
and confidence utilized in data mining [13] are used to
identify major rules. Rules which satisfy user-specified
thresholds with minimum support and confidence are
considered as being statistically important. Software
behaviours should be calculated based on historical data of
software and known failures. It is necessary to construct a
classifier to generalize the failures and to further detect
other unknown failures. Besides, the classifier can aid
other software engineering tasks.

RELATED WORK

Chao Liu et al., [14] proposed a new technique to
classify the structured traces of program executions
through software activities graphs. He shows better
advancement by analyzing the correct and incorrect
processing in the code at the separation of program parts

 VOL. 8, NO. 1, JANUARY 2013 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2013 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

65

which results in defective executions. Hong Cheng et al.,
find a systematic examination of frequent pattern-based
classification, and afford solid reasons which support
pattern mining techniques. The Hong Cheng presented the
classification framework with the usage of frequent pattern
which attain better scalability and improved accuracy in
classifying huge quantity datasets.

Ammons and Bodik [15] defined specification
mining as a machine learning technique to find out the
requirements of the protocols which should be followed by
code while relating with an Application Program Interface
(API) or Abstract Data Type (ADT). Feature selection is a
major step in text categorization to minimize the feature
space. Practical observations of text categorization shows
that good text categorization performance is associated to
certain feature selection criteria, and when a criterion is
not satisfied, it often represents non-optimality of the
technique.

Rehg et al., [16] presented a method which
models program executions as Markov models and a
clustering technique for Markov models that integrates
multiple program executions into competent behavior
classifiers. Bowring et al., [16] presented an active
learning technique to build a classifier of program
behaviors. Frequency profile of single events in the trace
becomes the input for this approach. Bowring studied two
groups of first-order Markov models, where each set
characterizes correct and incorrect behaviors.

Gait feature subset selection [17 - 20] researches
have mainly considered conventional dimensionality
reduction or statistical tools such as Analysis Of Variance
(ANOVA) and PCA. Still, some challenges remained for
gait feature selection. The ANOVA technique helps to
identify the features based on a null hypothesis test.
However, the difference between classes highlighted by
ANOVA is carried out by examining whether the
population means vectors are the same, whether it lacks
the explicit or definite relation with the recognition
accuracy. Several classification techniques available in the
literature such as decision tree induction [21], Bayesian
networks [22] and association based classification [23].
Association-based classification has recently received
much attention.

Buddeewong et al., [24] proposed a new
association rule-based text classifier algorithm to enlarge
the prediction accuracy of association rule-based classifier
by categories (ARC-BC) algorithm. The proposed
association rule generation technique generates two kinds
of frequent item sets: Lk consist of all term that have no an
overlap with other classes and OLk consists of all features
that have an overlap with other classes. He also proposed a
new join operation for the second frequent item sets OLk.

METHODOLOGY

A trace is a record of the execution of a computer
program which reveals the sequence of operations
executed. Dynamic traces are obtained by executing the
program based on the input. This would result in
abstracted traces. These abstracted traces are given as

input to the Rule mining algorithm like Trace Miner and
CT apriori Trace Miner. Then, the mined specifications
are given as input to the feature selection approach
ANOVA Two Way. Then the selected features are given
to the ARC-BC classifier.

 Classification of the software behavior comprises
of three phases:

a) Rule mining
b) Feature selection
c) Classification

A. Rule mining

Association Rule Mining (ARM) [25] has been
the focus in many research areas such as data mining,
artificial intelligence, machine learning for a decade.
Though, ARM has been employed in several application
areas and it is also extended to data mining tasks of
classification [26] and clustering. ARM approaches
classify the issue into two segments. (i) To find the
frequent patterns and then use them to form the rules. (ii)
Generating the association rules in simple once frequent
patterns are identified.

The problem of generating frequent item sets has
been a wide research area and large number of algorithms
has been proposed for it. Frequent item set mining is a
major part of association rules mining. The general
performance of association rules mining is determined as
frequent item set mining is computationally more
expensive. The frequent item set concept has been
extended for several data mining techniques such as
classification, clustering and sequential pattern discovery.
The data structures play a key role in the performance of
these techniques. A new data structure is represented here
namely Compressed Tree (CT-Tree).

CT-Apriori Trace Miner

A specification database consists of information
about often used patterns of potential program executions.
The process of acquiring this information is called
Frequent Pattern Mining and it can be recognized by
several data mining techniques such as clustering,
classification, prediction and association analysis. CT-
Apriori (Compact Tree-Apriori) is based on association
rules.
Let I = {i1, i2, … , im} be a set of m execution traces. A
subset X I is called a trace set. A k-trace set is a trace
set which contains k traces.

Definition: A specification database SPDB = {T1, T2, …,
TN} is a set of N traces, where each trace is a set of traces
Tn (n {1, 2, …, N}) such that Tn I. A specification T
contains a trace set X if and only if X T.

Algorithm description

CT Trace miner algorithm

 VOL. 8, NO. 1, JANUARY 2013 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2013 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

66

The Apriori algorithm is one of the most widely used
algorithms for mining frequent patterns and association
rules.
 There are two vital differences between proposed
CT Apriori algorithm and Apriori algorithm. They are as
follows:

a) The CT-Apriori algorithm skips the initial search of

database in the Apriori algorithm by reading the
beginning part of the compact transaction database
and inserting the frequent 1-itemsets into F1. Then
candidate 2-itemset C2 is produced from F1 directly.

b) In CT-Apriori, as shown in the Figure-1 (step 10),
counts are incremented by the occurrence count of that
transaction stored in the body of the compact
transaction database, which is always greater than 1
which differs from Apriori algorithm.

 The proposed CT_Trace Miner algorithm is
shown in the Figure-1.

Figure-1. CT_ Trace Miner algorithm.

B. Feature selection

Feature selection becomes an active research
topic in statistics and pattern recognition. Feature selection
is also known as variable selection, feature reduction,
attribute selection or variable subset selection. It is the
major technique commonly employed in machine learning
by selecting a subset of relevant features to build robust

learning models. It is important because it can simplify the
data description and this in turn results in understanding
the problems easily and solving the problems quickly.

Analysis of variance (ANOVA) is a method used
to analyze data in which one or more response (or
dependent or simply Y) variables are measured under
various conditions identified by one or more classification
variables. The combinations levels for these classification
variables form the cells for the design of data.

Analysis of variance constructs several tests to
determine the significance of the classification effects. A
typical goal in such an analysis is to compare means of the
response variable for several combinations of the
classification variables. The least squares principle is a key
object to compute the sum of squares in analysis of
variance models. One-way analysis of variance (ANOVA)
test measures significant effect of one factor, whereas two-
way analysis of variance (ANOVA) tests (also called two-
factor analysis of variance) measures the effect of two
factors simultaneously. ANOVA two way analysis is the
best feature selection method when compared with others.
The two-way analysis of variance is an extension of one-
way analysis of variance. There are two qualitative factors
(A and B) on one dependent continuous variable Y. Three
null hypotheses are tested in this procedure such as factor
A does not influence variable Y, factor B does not
influence variable Y, the effect of factor A on variable Y
does not depend on factor B (i.e., there is no interaction of
factors A and B).

Two-way analysis of variance requires data for
each combination of the two qualitative factors A and B. A
two-way ANOVA can be used when there are two
independent variables (factors) influencing one dependent
variable. The idea is that two variables which affects the
dependent variable. Each factor will have two or more
levels within it, and the degrees of freedom for each factor
is one less than the number of levels.
 The generally used statistical measure of
ANOVA two-way ranking is defined through the
following steps:

a) Determine whether the M rules have been drawn from

the same rule database.
b) Cases are ranked and the mean rank is calculated for

each sample.
c) The test statistic H is calculated as follows:

H = [12R/NM (M+1)]-3N (M+1)

where N is the number of rows, M is the number of
columns and R is the sum of squares of column rank
totals.

A feature selection algorithm on Iterative patterns
using ANOVA two way is used to filter indiscriminative
patterns. The algorithm performs a sequential scan of the
ranked iterative patterns. If a pattern covers some training
instances, it will be selected. Any data instances covered
by at least ± features will be removed from further
consideration. The algorithm terminates if either all

 VOL. 8, NO. 1, JANUARY 2013 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2013 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

67

instances are covered by the selected features or the
feature set becomes empty.

C. Classification

Association Rule-based Classifier by Categories
(ARC-BC) algorithm is proposed to build an associative
text classifier. ARC-BC (Associative Rule-based
Classifier by Category) considers each set of rules belong
to one category as a separate text collection to generate
association rules. If rules belongs to more than one
category it will be present in each set associated with the
categories. The ARC-BC algorithm is described in below.

Algorithm: ARC-BC detects association rules on the
training set of the rule database.

Input: A set of rules (D) of the form
 where is the category attached

to the document and are the selected terms of the
document; a minimum support threshold; a minimum
confidence threshold;

Output: A set of association rules of the form
 where the category is and is a

term;

Figure-2. Constructing ARC-BC classifier.

In ARC-BC algorithm step (2) generates the
frequent 1- item set. In steps (3-13), all the k-frequent item
sets are generated and merged with the category in

Steps (16-18) generate the association rules. The
document space is reduced in each step of iteration by
eliminating the transactions that do not contain any of the
frequent item sets. This step is done by

function. If the amount of rules
generated is too large it is time consuming to read the set
of rules for further tuning of the system.

EXPERIMENTAL RESULTS
Classification framework for software failure

detection is evaluated using different programs is analyzed
by Siemens Test Suite [18]. The test suite contains several
programs. Each program contains different versions where
each version has a bug. These bugs comprises of wide
array of realistic bugs. Four largest programs are taken in
the test suite. They are replace, schedule, print tokens and
tot_ info. For this case study, replace and tot_ info datasets
are used.

To simulate real life situation where there are
many bugs occurring together, 3 bugs are injected to each
program and add 3 additional simulated ordering bugs to
the execution traces. Running the instrumented program
with an input produces a trace. A set of traces is collected
by running set of test cases provided by Siemens Test
Suite. The test suite allows computing the actual correct
output.

A. Replace dataset

Table-1 shows the performance evaluation of the
mining algorithms for the replace dataset. The results of
the CT apriori mining algorithm proposed in the present
research work are evaluated. The results of the feature
selection algorithms like fisher score and ANOVA Two
way are obtained for CT Apriori Trace Miner. The results
are obtained for the parametric standards like AUC,
Accuracy and Time. It is observed from the Table-1 that
the ANOVA Two Way feature selection approach
provides better results when compared with the Fisher
score feature selection approach. Time taken by the CT
Trace Miner mining algorithm with the ANOVA Two
Way feature selection approach is very less when
compared to the fisher score feature selection approach.
Table-1 shows the performance evaluation of the
classification algorithms like ARC-BC with Fisher Score
and ARC-BC with ANOVA. It is observed from the Table
that the proposed ARC-BC classifier with ANOVA Two
Way provides better results.

Figure-3. AUC value comparisons of ARC-BC
classifier for replace dataset.

 VOL. 8, NO. 1, JANUARY 2013 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2013 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

68

Table-1. Performance evaluation of ARC-BC classifier for replaces data set.

Classification result with feature selection approaches
ARC-BC with fisher score ARC-BC with ANOVA Two Way Rule mining

algorithm
AUC Accuracy

(%)
Time
(Sec) AUC Accuracy

(%)
Time
(Sec)

CT-TM 0.7398 99.34 0.25 0.7429 99.45 0.218

Figure-4. Comparison of classification accuracy for
replace dataset.

Figure-5. Execution time comparisons of ARC-BC
classifier for replace dataset.

From the Figures 3, 4 and 5 it is clearly shown

that the AUC value and classification accuracy of the

ARC-BC classifier with ANOVA Two Way for the CT-
Trace Miner is very high when compared with the ARC-
BC classifier with fisher score approach using replace
dataset. The execution time taken by the ARC-BC
classifier with ANOVA Two Way approach is very less
when compared with the ARC-BC classifier with fisher
score approach.

B. Tot_info dataset

Figure-6. AUC value comparison of ARC-BC classifier
for tot-info dataset.

The Figures 6, 7 and 8 clearly show that the AUC

value and classification accuracy from Table-2 for the
feature selection algorithms for CT-Apriori mining
approach. ANOVA Two Way feature selection approach
is observed to provide better results for CT Trace Miner.
ANOVA Two Way technique is observed to take very less
execution time when compared with the fisher score.
Table-2 shows the performance evaluation of the
ARC_BC classification algorithm with ANOVA Two
Way and Fisher score for tot-info dataset. It is observed
that the ARC_BC with ANOVA Two Way approach is
observed to outperform the SVM with fisher score
approach in terms of accuracy and execution time.

 VOL. 8, NO. 1, JANUARY 2013 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2013 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

69

Table-2. Performance evaluation of ARC-B classifier for Tot_Info data set.

Classification result with feature selection approaches
ARC-BC with fisher score ARC-BC with ANOVA Two Way Rule mining

algorithm
AUC Accuracy

(%)
Time
(Sec) AUC Accuracy

(%)
Time
(Sec)

CT-TM 0.7386 88.1 0.375 0.7463 96.1 0.218

Figure-7. Comparison of classification accuracy for
Tot-info dataset.

Figure-8. Execution time comparison of ARC-BC
classifier for Tot-info dataset.

CONCLUSIONS

In this paper, an efficient approach for
classification of fault detection through CT -Trace Miner
is proposed. CT-tree is devised to generate compact
specification database and store it into disk for effective
frequent pattern mining and other mining process, in
which compact database saves storage space and reduce
mining time. It reduces the number of specifications in the
original databases and save storage space. It also reduces

the I/O time required by database scans and improves the
efficiency of the mining process.

Mined specifications are then preceded by feature
selection approaches. ANOVA Two way is used as the
feature selection approach. The selected features are given
to the ARC-BC classifier. ARC-BC provides the classified
results of the software under several tests. It is examined
from the experimental results that the proposed CT-Trace
Miner approach with ANOVA Two Way feature selection
provides very good results in detecting fault traces and
normal traces when compared to the previous approaches.

The performance of the proposed approach is
evaluated based on the parametric standards such as
Accuracy, AUC and Execution Time. As a future work,
the chance of direct mining can be focused using
discriminative iterative patterns, applications of the
classifier to other domains, and pipelining.

REFERENCES

[1] J. D. Musa, A. Iannino and K. Okumoto. 1987.

Engineering and Managing Software with Reliability
Measures. McGraw-Hill.

[2] M. Acharya, T. Xie, J. Pei and J. Xu. 2007. Mining
API Patterns as Partial Orders from Source Code:
From Usage Scenarios to Specifications. In:
Proceedings of Joint Symposium on the Foundation of
Software Engineering and European Software
Engineering Conference (ESEC/SIGSOFT FSE)
Symposium on the Foundations of Software
Engineering. pp. 25-34.

[3] Benjamin Schwarz, Jeremy Lin and Wei Tu. 2005.
Model Checking an Entire Linux Distribution for
Security Violations. In: Proceedings of the Annual
Computer Security Applications Conference
(ACSAC), IEEE. pp. 13-22.

[4] Nathan Kropp, Philip J. Koopman and Daniel P.
Siewiorek. 1998. Automated Robustness testing of
off-the-shelf Software Components. In: Proceedings
of the of IEEE International Symposium on Fault-
Tolerant Computing (FTCS). pp. 230-239.

[5] Jennifer Haddox, Gregory Kapfhammer and Michael
Schatz. 2001. Testing Commercial-off-the-shelf
Software Components. In: Proceedings of the 18th
International Conference and Exposition on Testing
(ICET).

 VOL. 8, NO. 1, JANUARY 2013 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2013 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

70

[6] GrammaTechCodeSurfer.
http://www.grammatech.com/products/codesurfer/.

[7] Coverity’s Static Analysis.
http://www.coverity.com/products/static-
analysis.html.

[8] Pattern Insight’s Patch Miner.
http://www.patterninsight.com/solutions/index.html.

[9] FindBugs. http://findbugs.sourceforge.net/.

[10] Thomas Ball and Sriram K. Rajamani. Automatically
Validating Temporal Safety Properties of Interfaces.
In: Proceedings of the SPIN 2001 Workshop on
Model Checking of Software, LNCS 2057. pp. 103-
122.

[11] Justin Forrester and Barton P. Miller. 2000. An
empirical study of the robustness of Windows NT
applications using random testing. In: Proceedings of
the USENIX Windows Systems Symposium. pp. 69-
78.

[12] Barton Miller, Ajitkumar Natarajan and Jeff Steidl.
1995. Fuzz revisited: A re-examination of the
reliability of UNIX utilities and services. Computer
Science Technical Report 1268, University of
Wisconsin-Madison, United States.

[13] J. Han and M. Kamber. 2006. Data Mining Concepts
and Techniques. 2nd Edition, Morgan Kaufmann.

[14] Chao Liu, Xifeng Yan, Hwanjo Yu, Jiawei Han and
Philip S. Yu. Mining Behavior Graphs for Backtrace
of Noncrashing Bugs.

[15] G. Ammons, R. Bodik and J. R. Larus. 2002. Mining
specification. In: Proceedings of SIGPLAN-SIGACT
Symposium on Principles of Programming
Languages.

[16] J. F. Bowring, J. M. Rehg and M. J. Harrold. 2004.
Active learning for automatic classification of
software behavior. In: Proceedings of International
Symposium on Software Testing and Analysis.

[17] B. Bhanu and J. Han. 2003. Human recognition on
combining kinematic and stationary features. In:
Proceeding of 4th Int. Conf. AVBPA. pp. 600-608.

[18] A. Veeraraghavan, R. Chellappa and A. Roy
Chowdhury. 2004. Role of shape and kinematics in
human movement analysis. In: proceedings of the
IEEE Conference CVPR. 1: 730-737.

[19] Z. Liu, L. Malave, A. Osuntogun, P. Sudhakar and S.
Sarkar. 2004. Toward understanding the limits of gait

recognition. In: Proceedings of the SPIE. 5404: 195-
205.

[20] M. S. Nixon, T. N. Tan and R. Chellappa. 2005.

Human Identification Based on Gait. New York:
Springer-Verlag. ch. 5, pp. 45-104.

[21] Mehmet Sabih Aksoy. 2005. Pruning Decision Trees
Using R S3 Inductive Learning Algorithm.
Mathematical and Computational Applications. 10(1):
113-120.

[22] N. Friedman, D. Geiger, M. Goldszmidt, G. Provan, P.
Langley and P. Smyth. 1997. Bayesian network
classifiers. Machine Learning. 29: 131-163.

[23] B. Liu, W. Hsu and Y.Ma. 1998. Integrating
classification and association rule mining. In:
Proceeding of 4th Int. Conf. on Knowledge Discovery
and Data Mining (KDD’98), New York. pp. 80-86.

[24] S. Buddeewong and W. Kreesuradej. 2005. A New
Association Rule-Based Text Classifier Algorithm.
ICTAI. 17th IEEE International Conference on Tools
with Artificial Intelligence. pp. 684-685.

[25] R. Agrawal, T. Amielinski and A. Swami. 1993.
Mining association rule between sets of items in large
databases. In: Proceeding of the ACM SIGMOD
International Conference on Management of Data.
May 26-28. pp. 207-216.

[26] X. Yin, J. Han, J. Yang and P. S. Yu. 2006. Efficient
classification across multiple database relations: A
crossmine approach. IEEE Trans. Knowledge and
Data Engineering. 18: 770-783.

