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ABSTRACT 

Generally software systems are scantily documented and incomplete specifications in the documents results in 
high maintenance cost. To lower maintenance efforts, automated tools are necessary to aid software developers to 
understand their existing code base by extracting specifications from the software. Specification mining aids the document 
to intend software behaviour, software maintenance, refactor or add new features to software, and detecting software bugs. 
In this paper a new technique called CT Trace Miner is proposed to efficiently mine software specifications, which in turn 
mines software specifications from program execution traces. Then the mined specification using the CT Trace Miner 
approach is given as input to the ANOVA Two Way feature selection approach for selecting the best features. 
Conclusively, ARC-BC classifier is used to categorize the selected features. The experimental results exposed that the 
proposed approach provides better results than the existing approach. 
 
Keywords: ARC-BC, Compressed tree (CT), ANOVA two way, software specification, rule mining. 
 
INTRODUCTION 

Computers as well as software running on them 
play an important role in each and every aspect. Software 
Reliability is necessary for the computer to maintain the 
software quality. Software reliability is considered as the 
possibility of bug-free software operates at a particular 
time interval in a specified atmosphere [1]. Because of 
Application Program Interfaces (API), software system 
interconnects with its environment such as network, 
memory, operating system, graphics card and other 
software etc. Certain programming rules (API 
specifications) are essential to use these APIs effectively 
[2]. 

Two main hindrances for the reliable operation of 
a software system are such as security and robustness [3]. 
API violations directs to these issues. Consistency of 
software system with specifications, which controls the 
usage of APIs, is the chief factor of software reliability. 
Software testing [4, 5], and static verification [6, 7] have 
been agreed by the industries to assure software reliability. 
Several problems occur with these approaches. Software 
testing techniques [8, 9] mainly focus on problems such as 
correctness of functionality and performance and it lacks 
to assure the absence of API violations.  

Documented software specification is the main 
part of program artifacts. It describes about the software 
behavior. If the specification is well defined and clearly 
described, Software can be developed accurately and 
maintained easily. Specifications should be used as an 
input for formal program verification tools to identify bugs 
or convert it into runtime monitors to reveal the violations 
of specifications or properties of interests during program 
execution [10, 11, 12]. Hence, it is important if all 
programs and software projects are developed with clear, 
precise and well-documented specifications. But, normally 
documented specifications are insufficient or lacking in 

the industry. Specification mining is a computerize 
process to extract specifications from a program solves 
this issue. 

Obtaining patterns of frequent repetitive software 
behaviors plays significant role in the current scenario. 
Monotonicity or apriori property is essential to aid in 
assuring scalability. A suitable apriori property is viewed 
as prune the search space having insignificant patterns. 
Novel iterative pattern mining approach for mining closed 
iterative patterns is established in this paper. The proposed 
rule mining algorithms mines a closed set of iterative 
patterns. A search space pruning approach is utilized by 
early reorganization for filtering and pruning of non-
closed patterns to extract closed set of iterative patterns. 
Mined frequent patterns acquire global detailed behaviors 
of a system and software behaviors. Mined rules acquire 
constraints or implicit rules which are adhere by a piece of 
software during analysis process.  

Many rules can be gathered from traces, but it 
should not be important. The information about support 
and confidence utilized in data mining [13] are used to 
identify major rules. Rules which satisfy user-specified 
thresholds with minimum support and confidence are 
considered as being statistically important. Software 
behaviours should be calculated based on historical data of 
software and known failures. It is necessary to construct a 
classifier to generalize the failures and to further detect 
other unknown failures. Besides, the classifier can aid 
other software engineering tasks. 
 
RELATED WORK 

Chao Liu et al., [14] proposed a new technique to 
classify the structured traces of program executions 
through software activities graphs. He shows better 
advancement by analyzing the correct and incorrect 
processing in the code at the separation of program parts 
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which results in defective executions. Hong Cheng et al., 
find a systematic examination of frequent pattern-based 
classification, and afford solid reasons which support 
pattern mining techniques. The Hong Cheng presented the 
classification framework with the usage of frequent pattern 
which attain better scalability and improved accuracy in 
classifying huge quantity datasets. 

Ammons and Bodik [15] defined specification 
mining as a machine learning technique to find out the 
requirements of the protocols which should be followed by 
code while relating with an Application Program Interface 
(API) or Abstract Data Type (ADT). Feature selection is a 
major step in text categorization to minimize the feature 
space. Practical observations of text categorization shows 
that good text categorization performance is associated to 
certain feature selection criteria, and when a criterion is 
not satisfied, it often represents non-optimality of the 
technique. 

Rehg et al., [16] presented a method which 
models program executions as Markov models and a 
clustering technique for Markov models that integrates 
multiple program executions into competent behavior 
classifiers. Bowring et al., [16] presented an active 
learning technique to build a classifier of program 
behaviors. Frequency profile of single events in the trace 
becomes the input for this approach. Bowring studied two 
groups of first-order Markov models, where each set 
characterizes correct and incorrect behaviors. 

Gait feature subset selection [17 - 20] researches 
have mainly considered conventional dimensionality 
reduction or statistical tools such as Analysis Of Variance 
(ANOVA) and PCA. Still, some challenges remained for 
gait feature selection. The ANOVA technique helps to 
identify the features based on a null hypothesis test. 
However, the difference between classes highlighted by 
ANOVA is carried out by examining whether the 
population means vectors are the same, whether it lacks 
the explicit or definite relation with the recognition 
accuracy. Several classification techniques available in the 
literature such as decision tree induction [21], Bayesian 
networks [22] and association based classification [23]. 
Association-based classification has recently received 
much attention. 

Buddeewong et al., [24] proposed a new 
association rule-based text classifier algorithm to enlarge 
the prediction accuracy of association rule-based classifier 
by categories (ARC-BC) algorithm. The proposed 
association rule generation technique generates two kinds 
of frequent item sets: Lk consist of all term that have no an 
overlap with other classes and OLk consists of all features 
that have an overlap with other classes. He also proposed a 
new join operation for the second frequent item sets OLk.  
 
METHODOLOGY 

A trace is a record of the execution of a computer 
program which reveals the sequence of operations 
executed. Dynamic traces are obtained by executing the 
program based on the input. This would result in 
abstracted traces. These abstracted traces are given as 

input to the Rule mining algorithm like Trace Miner and 
CT apriori Trace Miner. Then, the mined specifications 
are given as input to the feature selection approach 
ANOVA Two Way. Then the selected features are given 
to the ARC-BC classifier. 
 
 Classification of the software behavior comprises 
of three phases: 
 
a) Rule mining 
b) Feature selection  
c) Classification 
 
A. Rule mining 

Association Rule Mining (ARM) [25] has been 
the focus in many research areas such as data mining, 
artificial intelligence, machine learning for a decade. 
Though, ARM has been employed in several application 
areas and it is also extended to data mining tasks of 
classification [26] and clustering. ARM approaches 
classify the issue into two segments. (i) To find the 
frequent patterns and then use them to form the rules. (ii) 
Generating the association rules in simple once frequent 
patterns are identified. 

The problem of generating frequent item sets has 
been a wide research area and large number of algorithms 
has been proposed for it. Frequent item set mining is a 
major part of association rules mining. The general 
performance of association rules mining is determined as 
frequent item set mining is computationally more 
expensive. The frequent item set concept has been 
extended for several data mining techniques such as 
classification, clustering and sequential pattern discovery. 
The data structures play a key role in the performance of 
these techniques. A new data structure is represented here 
namely Compressed Tree (CT-Tree). 
 
CT-Apriori Trace Miner 

A specification database consists of information 
about often used patterns of potential program executions. 
The process of acquiring this information is called 
Frequent Pattern Mining and it can be recognized by 
several data mining techniques such as clustering, 
classification, prediction and association analysis. CT-
Apriori (Compact Tree-Apriori) is based on association 
rules. 
Let I = {i1, i2, … , im} be a set of m execution traces. A 
subset X I is called a trace set. A k-trace set is a trace 
set which contains k traces. 
 
Definition: A specification database SPDB = {T1, T2, …, 
TN} is a set of N traces, where each trace is a set of traces 
Tn (n {1, 2, …, N}) such that Tn  I. A specification T 
contains a trace set X if and only if X  T. 
 
Algorithm description 
 
CT Trace miner algorithm 
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The Apriori algorithm is one of the most widely used 
algorithms for mining frequent patterns and association 
rules.  
 There are two vital differences between proposed 
CT Apriori algorithm and Apriori algorithm. They are as 
follows: 
 
a) The CT-Apriori algorithm skips the initial search of 

database in the Apriori algorithm by reading the 
beginning part of the compact transaction database 
and inserting the frequent 1-itemsets into F1. Then 
candidate 2-itemset C2 is produced from F1 directly. 

b) In CT-Apriori, as shown in the Figure-1 (step 10), 
counts are incremented by the occurrence count of that 
transaction stored in the body of the compact 
transaction database, which is always greater than 1 
which differs from Apriori algorithm. 

 
 The proposed CT_Trace Miner algorithm is 
shown in the Figure-1. 
 

 
 

Figure-1. CT_ Trace Miner algorithm. 
 
B. Feature selection 

Feature selection becomes an active research 
topic in statistics and pattern recognition. Feature selection 
is also known as variable selection, feature reduction, 
attribute selection or variable subset selection. It is the 
major technique commonly employed in machine learning 
by selecting a subset of relevant features to build robust 

learning models. It is important because it can simplify the 
data description and this in turn results in understanding 
the problems easily and solving the problems quickly. 

Analysis of variance (ANOVA) is a method used 
to analyze data in which one or more response (or 
dependent or simply Y) variables are measured under 
various conditions identified by one or more classification 
variables. The combinations levels for these classification 
variables form the cells for the design of data. 

Analysis of variance constructs several tests to 
determine the significance of the classification effects. A 
typical goal in such an analysis is to compare means of the 
response variable for several combinations of the 
classification variables. The least squares principle is a key 
object to compute the sum of squares in analysis of 
variance models. One-way analysis of variance (ANOVA) 
test measures significant effect of one factor, whereas two-
way analysis of variance (ANOVA) tests (also called two-
factor analysis of variance) measures the effect of two 
factors simultaneously. ANOVA two way analysis is the 
best feature selection method when compared with others. 
The two-way analysis of variance is an extension of one-
way analysis of variance. There are two qualitative factors 
(A and B) on one dependent continuous variable Y. Three 
null hypotheses are tested in this procedure such as factor 
A does not influence variable Y, factor B does not 
influence variable Y, the effect of factor A on variable Y 
does not depend on factor B (i.e., there is no interaction of 
factors A and B).  

Two-way analysis of variance requires data for 
each combination of the two qualitative factors A and B. A 
two-way ANOVA can be used when there are two 
independent variables (factors) influencing one dependent 
variable. The idea is that two variables which affects the 
dependent variable. Each factor will have two or more 
levels within it, and the degrees of freedom for each factor 
is one less than the number of levels.  
 The generally used statistical measure of 
ANOVA two-way ranking is defined through the 
following steps:  
 
a) Determine whether the M rules have been drawn from 

the same rule database.  
b) Cases are ranked and the mean rank is calculated for 

each sample.  
c) The test statistic H is calculated as follows: 
 
H = [12R/NM (M+1)]-3N (M+1) 
 
where N is the number of rows, M is the number of 
columns and R is the sum of squares of column rank 
totals. 

A feature selection algorithm on Iterative patterns 
using ANOVA two way is used to filter indiscriminative 
patterns. The algorithm performs a sequential scan of the 
ranked iterative patterns. If a pattern covers some training 
instances, it will be selected. Any data instances covered 
by at least ± features will be removed from further 
consideration. The algorithm terminates if either all 



                                         VOL. 8, NO. 1, JANUARY 2013                                                                                                                   ISSN 1819-6608            

ARPN Journal of Engineering and Applied Sciences 
 

©2006-2013 Asian Research Publishing Network (ARPN). All rights reserved. 

 
www.arpnjournals.com 

 

 
67

instances are covered by the selected features or the 
feature set becomes empty. 
 
C. Classification 

Association Rule-based Classifier by Categories 
(ARC-BC) algorithm is proposed to build an associative 
text classifier. ARC-BC (Associative Rule-based 
Classifier by Category) considers each set of rules belong 
to one category as a separate text collection to generate 
association rules. If rules belongs to more than one 
category it will be present in each set associated with the 
categories. The ARC-BC algorithm is described in below. 
 

Algorithm: ARC-BC detects association rules on the 
training set of the rule database. 
 

Input: A set of rules (D) of the form 
 where  is the category attached 

to the document and  are the selected terms of the 
document; a minimum support threshold; a minimum 
confidence threshold;  
 

Output: A set of association rules of the form 
 where the category is and   is a 

term; 
 

 
 

Figure-2. Constructing ARC-BC classifier. 
 

In ARC-BC algorithm step (2) generates the 
frequent 1- item set. In steps (3-13), all the k-frequent item 
sets are generated and merged with the category in 

Steps (16-18) generate the association rules. The 
document space is reduced in each step of iteration by 
eliminating the transactions that do not contain any of the 
frequent item sets. This step is done by 

function. If the amount of rules 
generated is too large it is time consuming to read the set 
of rules for further tuning of the system. 
 

EXPERIMENTAL RESULTS 
Classification framework for software failure 

detection is evaluated using different programs is analyzed 
by Siemens Test Suite [18]. The test suite contains several 
programs. Each program contains different versions where 
each version has a bug. These bugs comprises of wide 
array of realistic bugs. Four largest programs are taken in 
the test suite. They are replace, schedule, print tokens and 
tot_ info. For this case study, replace and tot_ info datasets 
are used. 

To simulate real life situation where there are 
many bugs occurring together, 3 bugs are injected to each 
program and add 3 additional simulated ordering bugs to 
the execution traces. Running the instrumented program 
with an input produces a trace. A set of traces is collected 
by running set of test cases provided by Siemens Test 
Suite. The test suite allows computing the actual correct 
output. 
 
A. Replace dataset 

Table-1 shows the performance evaluation of the 
mining algorithms for the replace dataset. The results of 
the CT apriori mining algorithm proposed in the present 
research work are evaluated. The results of the feature 
selection algorithms like fisher score and ANOVA Two 
way are obtained for CT Apriori Trace Miner. The results 
are obtained for the parametric standards like AUC, 
Accuracy and Time. It is observed from the Table-1 that 
the ANOVA Two Way feature selection approach 
provides better results when compared with the Fisher 
score feature selection approach. Time taken by the CT 
Trace Miner mining algorithm with the ANOVA Two 
Way feature selection approach is very less when 
compared to the fisher score feature selection approach. 
Table-1 shows the performance evaluation of the 
classification algorithms like ARC-BC with Fisher Score 
and ARC-BC with ANOVA. It is observed from the Table 
that the proposed ARC-BC classifier with ANOVA Two 
Way provides better results.  

 

 
 

Figure-3. AUC value comparisons of ARC-BC 
classifier for replace dataset.
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Table-1. Performance evaluation of ARC-BC classifier for replaces data set. 
 

Classification result with feature selection approaches 
ARC-BC with fisher score ARC-BC with ANOVA Two Way Rule mining 

algorithm 
AUC Accuracy 

(%) 
Time 
(Sec) AUC Accuracy 

(%) 
Time 
(Sec) 

CT-TM 0.7398 99.34 0.25 0.7429 99.45 0.218 
 

 
 

Figure-4. Comparison of classification accuracy for 
replace dataset. 

 

 
 

Figure-5. Execution time comparisons of ARC-BC 
classifier for replace dataset. 

 
From the Figures 3, 4 and 5 it is clearly shown 

that the AUC value and classification accuracy of the 

ARC-BC classifier with ANOVA Two Way for the CT-
Trace Miner is very high when compared with the ARC-
BC classifier with fisher score approach using replace 
dataset. The execution time taken by the ARC-BC 
classifier with ANOVA Two Way approach is very less 
when compared with the ARC-BC classifier with fisher 
score approach. 
 
B. Tot_info dataset 
 

 
 

Figure-6. AUC value comparison of ARC-BC classifier 
for tot-info dataset. 

 
The Figures 6, 7 and 8 clearly show that the AUC 

value and classification accuracy from Table-2 for the 
feature selection algorithms for CT-Apriori mining 
approach. ANOVA Two Way feature selection approach 
is observed to provide better results for CT Trace Miner. 
ANOVA Two Way technique is observed to take very less 
execution time when compared with the fisher score. 
Table-2 shows the performance evaluation of the 
ARC_BC classification algorithm with ANOVA Two 
Way and Fisher score for tot-info dataset. It is observed 
that the ARC_BC with ANOVA Two Way approach is 
observed to outperform the SVM with fisher score 
approach in terms of accuracy and execution time. 
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Table-2. Performance evaluation of ARC-B classifier for Tot_Info data set. 
 

Classification result with feature selection approaches 
ARC-BC with fisher score ARC-BC with ANOVA Two Way Rule mining 

algorithm 
AUC Accuracy

(%) 
Time 
(Sec) AUC Accuracy 

(%) 
Time 
(Sec) 

CT-TM 0.7386 88.1 0.375 0.7463 96.1 0.218 
 

 
 

Figure-7. Comparison of classification accuracy for 
Tot-info dataset.  

 

 
 

Figure-8. Execution time comparison of ARC-BC 
classifier for Tot-info dataset. 

 
CONCLUSIONS 

In this paper, an efficient approach for 
classification of fault detection through CT -Trace Miner 
is proposed. CT-tree is devised to generate compact 
specification database and store it into disk for effective 
frequent pattern mining and other mining process, in 
which compact database saves storage space and reduce 
mining time. It reduces the number of specifications in the 
original databases and save storage space. It also reduces 

the I/O time required by database scans and improves the 
efficiency of the mining process.  

Mined specifications are then preceded by feature 
selection approaches. ANOVA Two way is used as the 
feature selection approach. The selected features are given 
to the ARC-BC classifier. ARC-BC provides the classified 
results of the software under several tests. It is examined 
from the experimental results that the proposed CT-Trace 
Miner approach with ANOVA Two Way feature selection 
provides very good results in detecting fault traces and 
normal traces when compared to the previous approaches. 

The performance of the proposed approach is 
evaluated based on the parametric standards such as 
Accuracy, AUC and Execution Time. As a future work, 
the chance of direct mining can be focused using 
discriminative iterative patterns, applications of the 
classifier to other domains, and pipelining. 
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