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ABSTRACT 

Selective assembly is an economic method to obtain perfect precision assemblies by using the components 
manufactured with wide tolerance specifications. The mating component’s tolerances are divided into equal number of 
groups. The manufactured components are segregated according to these groups and the components from the 
corresponding groups are assembled interchangeably in the conventional method. The required clearance can be achieved 
at this assembly method that is tighter than those achieved at the normal fabrication method with lowest total cost. Still 
there are more variations in the clearance range. In this paper, a new optimization method is proposed to find the best 
combination of the selective groups to minimize assembly variation for the complex assemblies. A case example is 
analyzed for piston, cylinder and piston ring assembly. Fuzzy evolutionary programming (EP) method is used to obtain the 
best combination of the selective groups to control the assembly variation. Selective assembly is successfully applied for a 
piston and cylinder assembly using fuzzy EP method to achieve minimum clearance variation without sacrificing the 
benefit of wider tolerance in manufacturing. 
 
Keywords: selective assembly, assembly clearance, piston and cylinder assembly, fuzzy evolutionary programming method. 
 
1. INTRODUCTION 

Variation in either side of the target is natural in 
any manufacturing process. The allowable amount of 
variation that will not affect the functional requirements of 
the component is called tolerance. Due to the allowable 
tolerance limits on the components, the assembled product 
will get the clearance. When a product consists of two or 
more components being assembled, the cumulative 
amount of clearances will affect the functional 
performance of the assembled product. Manufacturing the 
components with tight tolerance may reduce the clearance, 
but it will increase the manufacturing cost. Components 
with wider tolerances increase the clearance and affect the 
functional performance. For high volume production, there 
are two types of assembly system: interchangeable 
assembly and selective assembly. In interchangeable 
assembly, the components are assembled by selecting 
them randomly from the lots produced. Due to the random 
selection, this system of assembly is desirable for speeding 
up the assembly process and reducing cost. But the 
assembled product can not be obtained with the required 
clearance range. If the variation acceptable is less than the 
sum of the available component tolerances, it is not 
possible to assemble interchangeable assembly system. 
Selective assembly is the only solution to achieve the 
required clearance range.   

Selective assembly is a method of obtaining high 
precision assemblies from relatively low precision 
components at the lowest manufacturing cost. In selective 
assembly, the mating components are manufactured with 
wider tolerances. Each mating component tolerances are 
partitioned into equal number of selective groups, and the 
components from the corresponding groups are assembled. 
This economic method is very much useful where the 

process variation is too large, and the required clearance 
variation for the assemblies is too small. The assembly 
products used in the selective assembly method can be 
classified into two groups: linear assembly and radial 
assembly. The dimensional variation (tolerance variation) 
is parallel to the axis of the assembly in linear assembly as 
in the case of gears assembled in an automobile gear box. 
In radial assembly, the dimensional variation under 
consideration is radial like in shaft and hole (pin and bush) 
assembly. The tolerance variation is called as clearance 
variation or interference in radial assemblies. When the 
number of components in an assembly is more than two 
and if the clearance variation is depending on the quality 
characteristics contributed by the components, then is it 
called a complex assembly. It can be linear (valve train 
assembly - clearance between cam and tappet), or radial 
(piston, piston ring and cylinder assembly - clearance 
between piston rings and cylinder walls), or both (turbine 
rotor assembly). 

Research in the area of selective assembly has 
been focused on several key aspects. Kannan and 
Jayabalan (2001a) described a method for designing the 
required dimensional mean when manufacturing mating 
components to minimize surplus parts and grouping for 
selective assembly. Kannan and Jayabalan (2001b) 
analyzed a complex assembly with three mating parts and 
proposed a method of partitioning the lots to obtain lesser 
assembly variation with minimum surplus parts by 
selective assembly. Fang and Zhang (1995) proposed a 
method of making groups with equal probabilities. In the 
proposed method, the parts are manufactured within the 
tolerance specifications and the grouping is planned after 
manufacturing. This method is suitable when the clearance 
specifications are greater than the difference in standard 
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deviations of the mating parts. Allen Pugh (1992) 
presented a method to truncate the component’s 
dimensional distribution with large variance. The resulting 
components variances are equal the components produced 
at the extremes of the distribution are discarded during the 
assembly process. This method has limitations in 
minimizing the surplus parts and in meeting the closer 
clearance specifications. Allen Pugh (1986) suggested a 
method (computer program) of partitioning the mating 
parts population for selective assembly. The limitation 
given in this method is the number of groups. Mansoor 
(1961) classified the selective assembly problem based on 
the natural process tolerance and their relationship to the 
tolerance on the fit. Desmond and Setty (1962)  
recommended a method to determine the relationship 
between size and performance and to establish limits for 
the assembly, which will satisfy performance 
requirements. Shan and Satywadi (1989) described a 
procedure for one-to-one pairing of component parts to be 
assembled. To improve the selective assembly process 
Zhang and Fang (1999) developed an analytical model 
involving PCI-based tolerance to predict and assure the 
matcheable degree. Arne Thesen and Akachai 
Jantayavichit (1999) proposed and evaluated the design of 
a high-speed station for the selective assembly of certain 
high precision automotive components. David Kern et al. 
(2003) proposed an approach to forecast the 
manufacturing quality of a product and optimize its 
robustness while it is being designed. David Mease et al. 
(2004) defined selective assembly as a cost effective 
approach for reducing the overall variation and thus 
improving the quality of an assembled product. The 
authors described the statistical formulation of the 
population and developed optimal binning strategies under 
several loss functions and distributional assumptions. 

Selective assembly can be used for the fabrication 
of high precision assemblies with minimum clearance and 
less surplus parts by using the best combination of 
selective groups. This best combination can be obtained 
using various optimization tools. Kannan et al. (2003  and 
2008) proposed new selective assembly methods that are 
selecting the matting components form the best 
combination rather than from corresponding groups. The 
methods are proposed for linear and radial assemblies and 
the assembly variation and surplus parts are minimized 
using best combination obtained through genetic 
algorithm. But for a complex assembly where the matting 
components are having mare than one quality 
characteristics and more than one objective, it is not 
possible with genetic algorithm. In this paper, a new fuzzy 
evolutionary programming (EP) method is proposed to 
obtain the best combination for selective assembly that 
involves more objective functions as well as more than 
one quality characteristics in matting component (complex 
assembly). 
 
 
 
 

2. PROBLEM BACKGROUND    
The quality of an assembly depends on the 

quality of the mating parts being assembled. The mating 
parts are manufactured in different processes and in 
different machines. So the standard deviation (σ) of the 
mating parts will be different. The dimensional 
distribution of the components is not uniform. It results 
more surplus parts at selective assembly process. The 
dimensional distribution of the components is equivalent 
to the process capability (6σ) of the process. So the 
process capability 6σ (±3σ) of the process is considered 
for analysis. The assembly clearance depends on the 
tolerance of the individual components. To minimize the 
assembly clearance variation, it is vital to minimize the 
individual component tolerance. It may require an 
improved process or an improved machine to manufacture 
the parts with small tolerances. It is not possible under 
economical consideration. In some high precision complex 
assemblies, it may not be possible to have a closer 
assembly clearance variation with interchangeable system. 
The proposed new method of selective assembly meets the 
above requisite and gives an enhanced solution. In 
conventional selective assembly, the corresponding groups 
are assembled resulting in higher clearance variation. Here 
the probability areas of all components are same. 
Minimum clearance can be obtained through the best 
combination of selective assembly groups.    
 
3. THE PROBLEM  

In the assembly of two components (simple 
assembly), the clearance variation is very high with 
interchangeable system and slightly reduced within the 
groups in conventional selective assembly. However in 
selective assembly, the clearance variation of the 
population is the same (Kannan et al., 2003). If a better 
combination, instead of assembling corresponding groups 
is used, the clearance variation of the population can be 
reduced largely. In complex assemblies, the clearance 
variation is very high, as it is contributed by the tolerances 
of all the components. A complex assembly of piston and 
cylinder assembly is considered for analysis as shown in 
Figure-1. It consists of the matting components as piston, 
piston ring and cylinder. 
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Figure-1. Piston, piston ring and cylinder assembly. 
 

In Figure-1, the quality characteristics of the 
piston and cylinder assembly are cylinder inner diameter 
(d1), piston diameter (d2), piston groove diameter (d3), 
piston groove thickness (t1), piston ring thickness (t2), 
piston ring width (w) and circumferential area of the 
piston ring (AR). The dimensions of the above quality 
characteristics are considered as follows: 
 

Cylinder inner diameter (d1) 
028.0
004.050± mm 

Piston diameter   (d2) 
012.0
000.050± mm  

Piston groove diameter (d3) 
000.0
018.042± mm 

Piston groove thickness (t1) 
000.0
012.02.3 ± mm 

Piston ring thickness  (t2) 
000.0
006.03± mm 

Piston ring width   (w) 
000.0
018.04± mm 

Circumferential area of the piston ring (AR) 
008.0
008.0156± mm 

 
The tolerances for these quality characteristics are 

considered as the natural tolerances of the manufacturing 
process. But, this complex assembly consists of more than 
one quality characteristics in a matting component. Piston 
consists of the important quality characteristics as d2, d3 
and t1. Piston ring consists of the quality characteristics as 
d4, t2 and w. By considering all the above quality 
characteristics of the matting components, there are three 
important assembly clearances in between piston groove 
and piston ring (δ1), piston ring and cylinder wall (δ2), 
piston and cylinder wall (δ3) and the gap between the 
piston ring ends at its open end position (δ4). These 
clearances of piston and cylinder assembly are calculated 
as follows: 
 
δ1  = d1 - (d3 + 2w) 

δ2  = t1 - t2 
δ3  = d1 - d2 
δ4  = circumferential are of cylinder-circumferential  
                  area of piston ring 
              = πd1 - AR 
 

The gap between the piston ring ends at its closed 
position in the cylinder is most critical parameter for the 
piston and cylinder assembly. For the cylinder dimension 

of 
028.0
004.050± mm, its circumferential area varies as 

038.0
038.013.157 ± mm. The allowable specification for the piston 

ring circumferential area (at cold condition) is 
008.0
008.0156± mm. 

 
Based on the most important dimensional 

distributions like cylinder inner diameter (d1), piston 
diameter (d2) and piston ring circumferential area (AR) the 
corresponding matting components cylinder (C), piston (P) 
and piston ring (R) are divided into six groups for 
selective assembly method. For a combination of selective 
groups, in one assembly set, the maximum assembly 
clearance (δmax) is the sum of the maximum limits of the 
component’s group tolerances. So δmax can be obtained by 
the sum of multiplications of group number (na) and group 
tolerance (δa), where ‘a’ is the matting component. Here, 
‘a’ defines the matting components cylinder (C), piston (P) 
and piston ring (R). The minimum assembly clearance 
(δmin) is the sum of the minimum limits of the component’s 
group tolerances. It can be obtained by the sum of 
multiplications of (na–1) and δa. Therefore maximum and 
minimum assembly clearances for a combination are, 
 
δmax = (nC×δC) + (nP×δP) + (nR×δR)   
 
δmin

 = ((nC–1)δC) + ((nP–1)δP) + ((nR–1)δR)   
 

Consider an example combination with six 
selective groups (n=6) as shown in Figure-2. Table-1 
shows their δ1 clearance calculation. The assembly 
clearance δ1 involves three quality characteristics of the 
matting components cylinder, piston and piston ring as 
cylinder inner diameter, piston groove diameter and piston 
ring width respectively. Tolerance for the cylinder is given 
as 32 µm. For the selective group size (n) of 6, the group 
tolerance becomes 5.3 µm. Similarly for the matting 
components piston and piston ring with the tolerances of 
18 µm results the group tolerances of 3 µm. The assembly 
clearance range for the assembly sets is calculated as 
follows. In Table-1, the first assembly set 4C, 2P and 2R 
(first column in the combination) is considered as an 
example. It means that, the component C (cylinder) is 
from the fourth selective group, the component P (piston) 
is from the second selective group and the component R 
(piston ring) is from the second selective group. The 
maximum assembly clearance is the sum of 
multiplications of selective groups and corresponding 
group tolerances [(4C×5.3µm) + (2P×3µm) + (2R×3µm) 
=28µm]. Similarly, the minimum assembly clearance is 
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the sum of multiplications of initial limits of the selective 
groups and their corresponding group tolerances [((4C–1) 
×5.3µm) + ((2P–1) ×3µm) + ((2R–1) ×3µm) =18µm]. For 
each ‘n’ number of selective group combination, ‘n’ 
number of assemblies can be produced. Each assembly 
will have different assembly clearances that lead assembly 
variations. Then the clearance range (δrange) for the 
assemblies of a combination is the subtraction of the 
minimum of δmin from the maximum of δmax. 
i.e., δrange = max (δmax) - min (δmin). 
 

 
 

Figure-2. Dimensional distribution of the quality 
characteristics for piston and cylinder assembly 

with n = 6 for δ1. 
 

Table-1. Assembly variation of δ1 calculation for the 
piston and cylinder assembly. 

 

Matting component 
(a) Combination 

C 4C 2C 3C 5C 6C 1C 
P 2P 1P 6P 3P 4P 5P 
R 2R 6R 4R 3R 1R 5R 

δ1
max 33.3 31.7 46 44.7 47 35.3Assembly 

clearance 
variation  (µm) δ1

min 22 20.4 34.7 33.4 35.7 24 
Clearance range 
(δ1

range) (µm) 46 - 20.4 = 25.6 

 
The maximum and minimum clearance values for 

each assembly set of the combination are calculated. The 
assembly clearance variation for the first set is 33.3 - 22 = 
11.3 µm. But δ1

range (25.6 µm) for the entire sets (one 
combination) is the difference between the maximum 
value of δ1

max (46µm) and minimum value of δ1
min

 (20.4 
µm). For this same combination, the second clearance δ2 
involves only the matting components piston groove and 
piston ring with their quality characteristics of thickness of 
piston groove and thickness of piston ring respectively. 
Figure-3 shows its dimensional distribution and the 
clearance (δ2) calculation is shown in Table-2.  
 

 
 

Figure-3. Dimensional distribution of the quality 
characteristics for piston and cylinder assembly 

with n = 6 for δ2. 

Table-2. Assembly variation of δ2 calculation for the 
piston and cylinder assembly. 

 

Matting component (a) Combination 
P 2P 1P 6P 3P 4P 5P

R 2R 6R 4R 3R 1R 5R

δ2
max 8 8 16 9 9 15Assembly clearance 

variation (µm) δ2
min 3 5 13 6 6 12

Clearance range (δ2
range) (µm) 16 - 3 = 13 

 
The best combination is to be selected such that it 

results in the minimum assembly clearances in each 
assembly sets as well as minimum assembly variation in 
the entire sets of the combination. But this complex 
assembly has more numbers of assembly clearances with 
different quality characteristics in the matting components. 
The example calculation shown in Table-1 involves the 
first clearance (δ1) calculation with three matting 
components. But for the same combination, the clearances 
δ2 δ3 and δ4 involve different matting component 
combination with different quality characteristics. It 
involves different dimensional, group tolerance 
considerations regarding to their clearance calculation. 
This complex process of finding the best combination for 
minimum overall assembly clearance variation is obtained 
through the fuzzy evolutionary programming method. 
 
4. FUZZY EP METHODOLOGY 

For solving this problem, fuzzy EP method is 
used as a tool to find the optimal combination of selective 
groups for obtaining minimum assembly clearance range. 
Dr. Lotfi Zadeh introduced the term fuzzy logic in 1965 at 
his seminal work in the journal of information and control 
(Timothy J. Rose, 1997). Fuzzy logic provides the 
opportunity for modelling conditions that are inherently 
imprecisely defined. It poses the ability to mimic the 
human mind to effectively employ modes of reasoning 
that are approximate rather than exact. The aim of such 
logic is to formalize the approximate reasoning that is used 
in everyday life. This formalization is carried out by the 
predicates as big, near or slow which are vague in nature. 
These predicates are interpreted by the notion of fuzzy set. 
Fuzzy sets are generalized sets introduced by Prof. Zadeh 
as a mathematical way to represent and deal with 
vagueness in everyday life (Paolo Dadone, 2001). 
Elements of a fuzzy set are taken from a universe of 
discourse or universe (U) in short. The universe contains 
all elements that can come into consideration. Every 
element (x) in the universe of discourse (U) is a member of 
the fuzzy set to some grade. The function that ties a 
number to each element x of the universe is called the 
membership function µ(x). Each fuzzy set is completely 
and uniquely defined by one particular membership 
function. The membership function is a relationship 
between the fuzzy set and the degree of satisfaction. The 
degree of satisfaction can vary from zero to one. 
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A fuzzy set A on a universe of discourse U is 
characterized by a membership function µa(x) that takes 
values in the interval [0, 1]. That is, every function µ: U→ 
[0, 1] is a fuzzy set. The higher the number indicates the 
higher value of membership. The grade of membership is 
a precise, but subjective measure that depends on the 
context. A fuzzy set expresses the degree to which an 
element belongs to a set. If U is a collection of objects 
denoted generically by x, then a fuzzy set A in U is defined 
as a set of ordered pairs,  
 
A = {(x, µa(x)) | x ∈ U}  
 
where, µa(x) is called the membership function for the 
fuzzy set A. 
 

Evolutionary algorithm (EA) is an umbrella term 
used to describe computer based problem solving and 
search methods that take their inspiration from natural 
selection and survival of the fittest in the biological world. 
EA differs from more traditional optimization techniques 
in that they involve a search from a population of 
solutions, not from a single point (Kalyanmoy Deb, 2003). 
Each iteration of an EA involves a competitive selection 
that weeds out poor solutions. The solutions with high 
fitness are recombined (crossed) with other solutions by 
swapping parts of a solution with another. Solutions are 
also mutated by making a small change to a single element 
of the solution. These cross over and mutation operators 
are used to generate new solutions that are biased towards 
regions of the space for which good solutions have already 
been seen. Several different types of evolutionary search 
methods were developed independently. These include (i) 
genetic programming (GP), which evolve programs, (ii) 
evolutionary programming (EP), which focuses on 
optimizing continuous functions without cross over 
operation, (iii) evolutionary strategies (ES), which focuses 
on optimizing continuous functions with recombination 
and (iv) genetic algorithm (GA), which focuses on 
optimizing general combinatorial problems. 

Evolutionary programming (EP) was first 
proposed by Lawrence J. Fogel in 1960, as an approach to 
artificial intelligence and it has been recently applied with 
success to many numerical and combinatorial optimization 
problems (Xin and Yong, 1999). The primary difference 
between evolutionary programming and the other 
approaches (GA, GP, and ES) is that no exchange of 
material between individuals in the population is made 
(Fogel D.B., 1995). Only mutation operators are applied 
within the materials of an individual that varies in the 
severity of their effect on the behaviour of the individual. 
Optimization by EP can be summarized into two major 
steps: (i) mutate the solutions in the current population and 
(ii) select the next generation from the mutated and the 
current solutions. An initially random population of N 
number of individuals (trial solutions) is created. Mutation 
is applied to each N number of individual. For each 
individual, a new offspring is generated, and it results in 
2N number individuals in the population. A typical 

selection method is applied on these 2N numbers of 
individuals, to test which of the newly generated best N 
numbers of solutions should survive to the next generation 
(Venkatesh et al., 2004). Fuzzy concepts are used for the 
selection process in fuzzy EP method. 
 
5. BEST COMBINATON THROUGH FUZZY EP  
    METHODOLOGY 

For this complex linear assembly of valve train 
assembly, fuzzy evolutionary programming (EP) method 
is used to find the best combination of mating components 
for achieving minimum assembly clearance variation. The 
combination of selective groups is considered as solution 
string (X) for this method. The fuzzy membership function 
is employed to choose best solution string that results 
minimum assembly clearance variation. The solution 
string for the proposed fuzzy EP method consists of 
numbers of elements. Figure-4 shows the example solution 
string for the piston and cylinder assembly.  
 
1C 2C 3C 4C 5C 6C 1P 2P 3P 4P 5P 6P 1R 2R 3R 4R 5R 6R

                                                                           ↑ 
                                   Element 

Figure-4. Example for solution string ‘X’. 
 

A set of solutions X1, X2, X3,…… XN are 
generated at first. N is the number of such generated 
solutions. Thereafter the process generates another set of 
an equal N numbers of solutions randomly. Among these 
two sets of 2N individuals, the EP process chooses N best 
solutions. This process continues until the optimum is 
reached. Thus, the evaluation of the objective function for 
each of the 2N solutions and their ranking is done in each 
EP iteration. Keeping these 2N numbers of solutions X1, 
X2, X3,…… XN, XN+1, XN+2, XN+3,…… X2N, the fuzzy 
objective functions and membership functions are 
modelled as below: 
 
First objective and its membership function 

Through this complex assembly of piston and 
cylinder, this paper addresses four objective functions 
which are the minimization of assembly clearances. The 
first objective is to minimize the clearance between piston 
groove and piston ring (δ1). For a solution string X, it is 
termed as δ1(X).  
 
δ1(X) = d1 – (d3 + 2w) 
 

Upon evaluating all the solutions [X1, X2, X3,…… 
X2N], the corresponding values of [δ1(X1), δ1(X2), δ1(X3), 
….. δ1 (X2N)] are obtained.  
 
It forms the fuzzy set E as,  
 
E = {[δ1 (X), µe [δ1(X)]] | δ1(X) ∈ [set of all permissible 
values]} 
 
The membership function µe (δ1(X)) is defined as, 
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µe [δ1(X)] = minmax
1

max )(
ee

Xe
−

− δ  

 
Where emax and emin are the maximum and minimum 
values of δ1

max and δ1
min , respectively. 

 
Second objective and membership function 

The second objective is to minimize the clearance 
between piston ring and cylinder wall (δ2). For a solution 
string X, it is termed as δ2(X).  
 
δ2(X) = t1 – t2 
 

All the solutions [X1, X2, X3,…… X2N] are 
evaluated and the corresponding values of [δ2(X1), δ2(X2), 
δ2(X3),….. δ2(X2N)] are obtained. It forms the fuzzy set F 
as,  
 
F = {[δ2(X), µf [δ2(X)]] | δ2(X) ∈ [set of all permissible 
values]} 
 
The membership function µf (δ2(X)) is defined as, 
 

µf [δ2(X)] = minmax
2

max )(
ff

Xf
−

−δ  

 
Where fmax and fmin are the maximum and minimum values 
of δ2

max and δ2
min , respectively. 

 
Third objective and membership function 
 The third objective is to minimize the clearance 
between piston and cylinder wall (δ3). For a solution string 
X, it is termed as δ3(X).  
 
δ3(X) = d1 – d2 
 

All the solutions [X1, X2, X3,…… X2N] are 
evaluated and the corresponding values of [δ3(X1), δ3(X2), 
δ3(X3),….. δ3(X2N)] are obtained. It forms the fuzzy set G 
as,  
 

G = {[δ3(X), µg [δ3(X)]] | δ3(X) ∈ [set of all permissible 
values]} 
 

The membership function µg (δ3(X)) is defined as, 
 

µg [δ3(X)] = minmax
3

max )(
gg

Xg
−

−δ  

 
Where gmax and gmin are the maximum and minimum 
values of δ3

max and δ3
min, respectively. 

 
Fourth objective and membership function 

The fourth objective is to minimize the gap 
between the piston ring ends at its open end position (δ4). 
For a solution string X, it is termed as δ4(X).  
 

δ4(X) = πd1 - circumferential area of the piston ring 

All the solutions [X1, X2, X3,…… X2N] are 
evaluated and the corresponding values of [δ4(X1), δ4(X2), 
δ4(X3),….. δ4(X2N)] are obtained. It forms the fuzzy set H 
as,  
 
H = {[δ4(X), µh [δ4(X)]] | δ4 (X) ∈ [set of all permissible 
values]} 
 
The membership function µh (δ4(X)) is defined as, 

µh [δ4(X)] = minmax
4

max )(
hh

Xh
−

−δ  

 
Where hmax and hmin are the maximum and minimum 
values of δ4

max and δ4
min , respectively. 

 
Overall objective function 

Then all the membership functions that are 
related to the individual objectives are combined, and the 
over all objective function is developed. It requires a 
method to combine the four objectives using a fuzzy 
intersection operator. In this paper simple product is 
chosen as the intersection operator. Thus the over all 
objective function is defined as below: 
 
µx(X) = µe[δ1(X)] × µf[δ2(X)] × µg[δ3(X)] × µh[δ4(X)] 
 

The overall objective function defined above 
quantifies the satisfaction with the solution string X and is 
used to evaluate a best string XJ from among the 2N 
solutions XJ to X2N in the proposed evolutionary 
programming method. The flowchart of the proposed 
fuzzy EP method is shown in Figure-5. The steps in the 
proposed fuzzy EP method are explained below: 
 

 
 

Figure-5. Structure of proposed fuzzy EP method. 
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Step-1: 
 The input data and example for the first stage are 
as follows: 
 

a) d1 = 
028.0
004.050± mm 

b) d2 = 
012.0
000.050± mm 

c) d3 = 
000.0
018.042± mm 

d) t1 = 
000.0
012.02.3 ± mm 

e) t2 = 
000.0
006.03± mm 

f) w = 
000.0
018.04± mm 

g) Population size N = 5 
h) Iteration t = 50 
 
Step-2: 

The numbers of solution strings equal to 
population size (N) are randomly generated based on the 
information given in the first step. Figure-6 shows the 
example for the 5 number of randomly generated solution 
strings as per in information given in step-1.  
 

4C 2C 3C 5C 6C 1C 2P 1P 6P 3P 4P 5P 2R 6R 4R 3R 1R 5R

 
2C 6C 3C 1C 4C 5C 4P 6P 3P 5P 2P 1P 3R 2R 6R 5R 1R 4R

 
6C 5C 2C 1C 3C 4C 5P 3P 4P 2P 1P 6P 6R 1R 4R 3R 2R 5R

 
4C 2C 3C 1C 6C 5C 2P 1P 6P 4P 5P 3P 4R 6R 5R 3R 2R 1R

 
6C 3C 5C 1C 2C 4C 3P 5P 1P 6P 2P 4P 1R 5R 2R 6R 4R 3R

 

Figure-6. Random generation of N number of 
combinations. 

 
Step-3: 

The objective function values δ1, δ2, δ3 and δ4 for 
each of the combinations Xj for j = 1 to N is evaluated. For 
the randomly generated combinations in the step-2 
(Figure-6), the objective function is evaluated and 
presented in Table-3. 
 
 
 
 
 
 
 
 
 
 

Table-3. Objective function evaluation for N numbers of 
combinations. 

 

Solution 
string (Xj) δ1 (Xj) δ2 (Xj) δ3 (Xj) δ4 (Xj) 

X1 26.5 13 34.6 68 

X2 37 12 36 70.6 

X3 56 16 40 71.3 

X4 38 13 36 75.9 

X5 28.6 17 30.6 65.3 
 
Step-4: 

Each individual combination X1, X2, X3,…… XN  
is considered as a parent. The mutation operator is applied 
in each parent strings and N more solutions XN+1, XN+2, 
XN+3,… X2N are generated. Mutation is the process of 
exchange of genes within the substring of one 
combination. In a combination, the selective groups of a 
component are considered as a substring. The parameter 
covering the mutation operation is called probability of 
mutation (p_mut), which is assigned as 0.75. A random 
number ‘r’ is generated for each element. If the random 
number r is less than the probability of mutation (r ≤ 
p_mut), that particular element is mutated with previous 
one. From Figure-4 the first combination X1 is selected to 
explain the mutation process and random numbers are 
generated for each element as shown in Table-4. The 
mutated offspring XN+1 is shown in Figure-7. 
 

Table-4. Mutation for the parent string X1   (* selected 
gene for mutation operation). 

 

4C 2C 3C 5C 6C 1C 2P 1P 6P 3P 4P 5P 2R 6R 4R 3R 1R 5R
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 *

 
0.

33
6 

0.
24
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 *

 
0.

98
4 

 
4C 2C 5C 6C 1C 3C 1P 6P 3P 4P 2P 5P 6R 4R 5R 1R 3R 2R

 

Figure-7. Mutated offspring XN+1. 
 
Step-5: 

All the combinations from step-2 and offspring 
from step-4 are combined. The membership functions for 
all 2N number of solution are evaluated. For example, 5 
numbers of combinations from step 2, and 5 numbers of 
newly generated combinations from step 4 are combined. 
For 2×5 number of combinations, membership functions µ 
[δ(X)] are evaluated and presented in Table-5. 
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Table-5. Membership evaluation for 2N numbers of combinations. 
 

X
J  

δ 1
(X

J ) 

em
ax

 

em
in

 

µ e
[δ

1(X
J )]

 

δ 2
(X

J ) 

fm
ax

 

fm
in

 

µ f
[δ

2(X
J )] 

δ 3
(X

J ) 

gm
ax

 

gm
in

 

µ g
[δ

3(X
J )]

 

δ 4
(X

J ) 

hm
ax

 

hm
in

 

µ h
[δ

4(X
J )] 

X1 26.5 0.6875 13 0.2941 34.6 0.22381 68 0.277136 
X2 37 0.5 12 0.3529 36 0.190476 70.6 0.247113 
X3 56 0.160714 16 0.1176 40 0.095238 71.3 0.23903 
X4 38 0.482143 13 0.2941 36 0.190476 75.9 0.185912 
X5 28.6 0.65 17 0.0588 30.6 0.319048 65.3 0.308314 
X6 41.7 0.416071 12 0.3529 30.7 0.316667 73.3 0.215935 
X7 32 0.589286 15 0.1765 32.6 0.271429 69.5 0.259815 
X8 29 0.642857 14 0.2353 38.6 0.128571 66 0.300231 
X9 46 0.339286 12 0.3529 34 0.238095 68.2 0.274827 
X10 38.6 

65 9 

0.471429 16 

18 1 

0.1176 36.8

44 2 

0.171429 71.9

92 5.4 

0.232102 
 
Step-6: 

The overall objective function is obtained for all 
the 2N solution strings. Table-6 shows the overall 
objective function value for the ten numbers of solution 
strings. 
 

Table-6. Overall objective function evaluation for 2N 
numbers of combinations. 

 

XJ µe [δ1(XJ)] µf 
[δ2(XJ)] 

µg 
[δ3(XJ)] 

µh 
[δ4(XJ)] µx (XJ) 

X1 0.6875 0.2941 0.22381 0.27713 0.01254 

X2 0.5 0.3529 0.19047 0.24711 0.00830 

X3 0.160714 0.1176 0.09523 0.23903 0.00043 

X4 0.482143 0.2941 0.19047 0.18591 0.00502 

X5 0.65 0.0588 0.31904 0.30831 0.00376 

X6 0.416071 0.3529 0.31666 0.21593 0.01004 

X7 0.589286 0.1765 0.27142 0.25981 0.00733 

X8 0.642857 0.2353 0.12857 0.30023 0.005839

X9 0.339286 0.3529 0.23809 0.27482 0.007835

X10 0.471429 0.1176 0.17142 0.23210 0.002206

 
Step-7: 

The higher value of overall objective function 
value indicates the highly fittest solution. From steps-6, all 
the 2N numbers of solutions strings are ranked. The first N 
numbers of fittest solutions are selected and others are 
omitted. In Table-7, the rank for the ten combinations are 
allotted and the best 5 number combinations X1, X9, X2, X4 
and X7 are selected orderly and renamed as X1, X2, X3, X4 
and X5. 
 
 

Table-7. Ranking and choosing the best N numbers of 
combinations from 2N numbers of combinations. 

 

XJ µx (XJ) Rank 

X1 0.01254 I 

X2 0.00830 III 

X3 0.00043 X 

X4 0.00502 VII 

X5 0.00376 VIII 

X6 0.01004 II 

X7 0.00733 V 

X8 0.00583 VI 

X9 0.00783 IV 

X10 0.00220 IX 
 
Step-8: 

If t < maximum, the iteration count is increased 
as t = t+1 and the loop is connected at step-3. The steps are 
repeated number of times for the predefined number of 
iterations that leads the proposed fuzzy EP method to find 
the optimal combination with minimum assembly 
clearance range.  
 
Step-9: 

When iteration exceeds the iteration count, the 
process will be completed and the best combination is 
displayed.  
 
RESULTS 

The best combinations for the piston and cylinder 
assembly are obtained and presented in Table-8.  
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Table-8. Best combination for the piston and cylinder 
assembly. 

 

Component Best 
combination 

δ1 
(µm) 

δ2 
(µm) 

δ3 
(µm)

δ4 
(µm)

C 6 2 1 3 4 5
P 2 6 5 3 4 1
R 1 4 6 5 2 3

13.8 14 27.8 65.3 

 
6. CONCLUSIONS 

Selective Assembly is useful in improving the 
quality of assembly particularly in high precision 
assemblies. Selective assembly is more effective only 
when the combination of selective groups is appropriate to 
get minimum clearance. In this paper, the objective is to 
minimize the assembly clearance variation in piston and 
cylinder assembly. The component population is divided 
in to six groups. The best combination of assembling the 
components for selective groups is obtained using fuzzy 
EP method. A computer program in advanced package of 
MATLAB 7 (R14) is written to obtain the best 
combination of selective groups using fuzzy EP method. 
This methodology can be extended for any other complex 
assemblies having more than three components and more 
objective functions. Fuzzy evolutionary programming 
method is applied in the complex assembly analysis 
successfully. 
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