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ABSTRACT 

The compressible two-dimensional planar and axisymmetric Navier-Stokes equations are solved in generalized 
curvilinear coordinates to simulate non-reacting and chemical equilibrium nozzle flows. A zonal turbulence model of 

ω−k  is used in the simulations to compute the eddy viscosity. A numerical method is developed to discretize the 
governing equations using the finite difference technique. The convective terms in the governing equations are solved 
numerically using a second order flux difference splitting method of Roe while a second order central difference is used for 
the viscous terms. The discretized equations are integrated implicitly in time to increase the stability of the numerical 
scheme. The flow solver is coupled with a chemical equilibrium module to compute the composition of gas mixture of 
known enthalpy and pressure. Few test cases are performed to illustrate the capabilities of the flow solver to predict nozzle 
flow with and without chemical equilibrium. The results are compared with the published data and the results are in good 
agreement with those published simulations of the same test cases.  
 
Keywords: nozzle flow, chemical equilibrium, turbulent flow, upwind schemes, roe scheme. 
 
Nomenclature 
C                Speed of sound          
Dth              Throat diameter                                                           
h                 Enthalpy 
p                 Pressure  
Pr                        Prandtle number 
Prt                       Turbulent Prandtle number 
Ru               Universal gas constant 
Re                Reynolds number 
t                   Physical time  
T                  Temperature 
u                  Velocity in x1-direction 
v                  Velocity in x2-direction 
µ               Fluid viscosity 

tµ               Turbulent eddy viscosity 

φ                 Dissipation term    
ϕ                 Equivalence ratio 

sϕ                Stoichiomertric mixture ratio 
ρ        Fluid density 
 
1. INTRODUCTION 

In recent years, there has been a renewed interest 
in hypersonic gas dynamics and supersonic turbulent 
reacting flows. In this context, flow problems involving 
chemical activity of fuel and oxidizer mixtures have 
received widespread attention. Finite rate chemistry 
calculations have been successfully attempted by several 
investigators such as Cinnella [1]. 

The actual expansion process in a rocket or 
ramjet nozzle is intermediate between the extremes of 
frozen and equilibrium flow, with the latter producing 
higher performance due to recovery of some of the 
chemical energy tied up in the decomposition of complex 
molecular species in the chamber. Flow simulations 

performed using the assumption of the chemical 
equilibrium assumption have the potential of yielding 
results at a fraction of the computational cost associated 
with an equivalent finite rate calculation. A flow solver 
based on chemical equilibrium requires solving only the 
four basic flow equations in two dimensions instead of 
N+3 that are necessary for a finite rate solver, where N is 
the number of chemical species. Moreover, the 
equilibrium composition of a mixture of gases is well 
known from classical thermodynamics, and the 
thermodynamic data for gaseous species are will 
established. Unfortunately, chemical equilibrium is only a 
limiting case of real life finite rate chemistry, with the 
limit taken for reactions rates going to infinity, and the 
accuracy of its predictions should be investigated for each 
class of problems of interest. Nevertheless, the 
aforementioned numerical and physical difficulties 
associated with finite rate simulations render chemical 
equilibrium a very attractive tool for the scientist and 
engineer, in particular when the driving consideration is a 
relative inexpensive inclusion of real gas effects.   

Numerical simulation of high-speed, 
compressible, turbulent and reacting coaxial jet flow is 
performed by Mehta [2]. Numerical analysis has been 
performed using a cell-centered finite volume 
discretization in conjunction with three-stage Rung-Kutta 
time stepping scheme. Turbulence is described by a ε−k  
two equations model. The eddy break-up model is applied 
for turbulent diffusion flames. A considerable amount of 
computational time is saved in the evaluation of the 
viscous flux vectors using a simple structured grid 
arrangement. The numerical algorithm has been tested for 
the well-documented supersonic burner problem.  

Westmoreland and Cinnella [3] focused their 
work on the development of robust and efficient numerical 
techniques for the calculation of equilibrium composition 
and thermodynamic properties of mixtures of thermally 
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perfect gases. The approach chosen lends itself to the 
utilization as a Black-Box for the simulation of reacting 
flows of interest to the applied aerodynamics. The flow 
solver interacts with the chemical equilibrium solver 
through the exchange of inputs, such as density, internal 
energy, and initial guesses for temperature and 
composition, and output, such as speed of sound, 
isentropic index, pressure, and transport coefficients.  

The objective of the current study is to develop a 
numerical tool that can be used to simulate fluid flows in 
rocket engines with the assumption of chemical 
equilibrium. The unsteady, turbulent and compressible 
Navier-Stokes equations are coupled with a set of 
chemical equilibrium equations to estimate the flow 
variables and the concentration of the products of 
combustion. The chemical reactions are assumed to be in 
chemical equilibrium at every grid point in the 
computational domain. The fluid flow equations are 
discretized on a structured grid using the finite difference 
method. The convection term is discretized using upwind 
differencing scheme that has uniformly high accuracy 
throughout the interior grid points. The viscous fluxes are 
differenced using second-order accurate central 
differences. A two-equation ω−k  model is used for the 
turbulence closure. The model is a modified version of the 
model used by Rogers [4] to compute single-phase 
compressible flows. This model has different coefficients, 
depending on the region of solution, to reduce the free 
stream dependency of the model. The model switches 
from the ω−k  model near the wall to the ε−k model 
away from the wall. The variation of the mixture density is 
implemented in the current model as explained by Owis 
[5]. Finally, the results of the non-reactive and reactive 
flows are compared with published test cases.  
 
2. GOVERNING EQUATIONS 

The unsteady, compressible two-dimensional 
Navier-Stokes equations are used in the simulations. The 
governing equations for axisymmetric and planar flows are 
written in the following form: 
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Where Q is the solution vector, E and F are called the flux 
vectors, and H is the source term. 
 
α =1 for axisymmetric flow 
α =0 for planar flow 
 
u is the velocity component in axial direction, v is the 
velocity component in radial direction, p is the pressure, h 
is the enthalpy, ρ is the density, and ht is the total enthalpy. 
Where the shear stresses τ and the heat flux q can be 
expressed as follows: 
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The governing equations can be rewritten in the 
generalized curvilinear coordinates as follows:  
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Where vE , vF  and vH  are the viscous fluxes in the 
generalized curvilinear coordinates. 
 
3. TURBULENCE MODELING 

A two-equation ω−k  model is used for the 
turbulence closure. The model is a modified version of the 
model used by Rogers [4] to compute single-phase 
incompressible flows. This model has different 
coefficients, depending on the region of solution, to reduce 
the free stream dependency of the model. The model 
switches from the ω−k  model near the wall to the 

ε−k  model away from the wall. The variation of the 
mixture density is implemented in the current model. The 
model is defined as follows: 
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Where kp  and ωp  are the production terms and Ω  is 
the magnitude of the vorticity. 
 
4. NUMERICAL SCHEME 

Upwind difference schemes are used to compute 
the convective flux derivatives. The flux difference 
splitting of Roe [6] scheme is used to discretize the 
convective terms. In order to use the upwind flux 
differencing schemes, the Jacobian matrices of the flux 
vectors are required in addition to their eigensystem. The 
convective flux is linearized as explained by Owis [5], 
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Where λ is the eigenvalues of the matrix A  
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Where c is the speed of sound for compressible flow, 
which can be expressed as: 
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The right eigenvector and the inverse of the right 

eigenvector matrices are given by: 
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The details of the numerical scheme are 

explained in Owis [5], Roe [6] and Chakravarthy [7]. 
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5. IMPLICIT SCHEME 
The time derivatives in the governing equations 

are integrated implicitly with the time as explained by 
Owis [5], barth [8], and Yee [9], Chakravarthy [10] and 
Kwak [11]. 
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Application of a first order backward Euler 

formula to this system of equations yields the following 
delta form equation: 
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Where R is the residual vector. 
 
6. THERMOCHEMISTRY MODEL 

A thermochemical module is developed based on 
the assumption of chemical equilibrium of the dissociation 
reactions. This module is used to evaluate the equilibrium 
composition and the temperature of the gases at a given 
enthalpy and pressure. The flow variables such as the 
pressure and enthalpy are computed using numerical 
solution of the Navier-Stokes equations as described in the 
previous sections. The chemical equilibrium module 
assumes conservation of elements and chemical 
equilibrium between the different species. 

There are several methods used to determine the 
equilibrium composition including the method of 
equilibrium constants and the Gibbs function. In the 
current study, the method of equilibrium constants is 
adopted to calculate the chemical composition of the 
exhaust gases. The system used to determine the 
equilibrium composition at given pressure and enthalpy is 
formed by a set of linear equations representing the 
conservation of the species and by the equations which can 
be written linearly in logarithmic form and represent the 
equilibrium between the various species. 

Conservation equations can be written for the 
various elements in the gas mixture such as carbon, 
hydrogen, oxygen and all other chemical elements in the 
gases as follows: 
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where i is the number of species in the gases and Ak is the 
chemical content of element k in the fuel and oxidizer.   

For every equilibrium reaction of the following 
form: 
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Where p is the pressure and [C] is the concentration of 
specie [C] = nc/nt  

Such a system can be solved by trial and error. It 
can be linearized by choosing arbitrary values for the 

numbers of moles o
in .if o

iξ is sufficiently small, then by 
writing: 
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This system is linear with respect to o
iξ and can 

be solved by the standard methods. The value of o
iξ  

obtained from this system provides new values for the 
species number of moles as follows, 
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The convergence of the system is given by the expression: 
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And the system is solved when c becomes 

sufficiently small. 
Then at certain pressure and enthalpy computed 

from the solution of Navier-Stokes equations, we can 
calculate the temperature using the following equation of 
state: 
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Where H is the enthalpy, in  is the number of moles of 

species i, fQ  is the heat of formation, ipc  is specific heat 

at constant pressure of species i, and sT  is standard 
temperature. The specific heat of the mixture Cpm and gas 
properties are calculated for the equilibrium flow as 
follows: 
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Where 
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Where Cpf is specific heat for frozen flow, Cpr is the 
contribution of the chemical reaction at equilibrium, Ru is 
the universal gas constant, Mw is the molecular weight of 
the mixture and Dp, DT are coefficients which express the 
variation in composition around a mean value. 
 
7. BOUNDARY CONDITIONS 

Different boundary conditions are used in the 
simulations, including inflow, outflow, symmetry and no-
slip boundary conditions. All of the boundary conditions 
are treated implicitly in the code to reduce the restriction 
on the time step and to increase the stability of the code.  
 
8. RESULTS 
 
8.1. Transonic and non-reactive nozzle flow 

An axisymmetric convergent-divergent 
axisymmetric nozzle with a subsonic inlet and supersonic 
outlet is simulated numerically. The fluid is assumed to be 
air and nozzle flow is computed in this case with no 
chemical reactions. The current results of this non reactive 
nozzle flow are compared with the same case presented by 
Eggers [12]. In the simulation of this case, Reynolds 
number is computed based on the inlet flow conditions and 
the exit diameter as follows, 
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Where ai the speed of sound at the inlet, 
mDX e 3021.0,1084.1, 4.1 5

i === −µγ .  

The Mach number and the static pressure at the 
inlet are assumed to be Mi=0.14, Pi=11.03 bar, 
respectively. Therefore, Reynolds number is taken to be 
Re=10.37x106. The nozzle back pressure (Pback) is assumed 
to be 1.0 bar and Ti=292 K. The inlet conditions of the 
nozzle and the back pressure are selected such that this test 
case is shock free. The contours of the non-dimensional 
static pressure, Mach number and static temperature are 
introduced in Figure-1, Figure-2 and Figure-3. The axial 
velocity profile at the nozzle exit is compared with that 
obtained by Eggers [12] as shown in Figure-4 and the 
results are in good agreement. Similar observation is 
obtained by comparing the axial velocity-density profile 
with the profile of Eggers [12] as clear from Figure-5. 
Good agreement is observed except near the wall due to 
different turbulence model adopted by Eggers [12] which 
is Spalart-Allmaras turbulence model.   

Grid sensitivity analysis is introduced in Figure-7 
where the variation of the nozzle Mach number at the 
centerline is computed at two different grid sizes. The 
results indicate that for the coarse grid of size 150x50, a 
value of 2.15 Mach number is obtained at the exit. This 
result is less than that computed by Eggers which is 2.25 
while for a fine grid of size 180x50; an exit Mach number 
of 2.21 is obtained. Therefore, the grid size of 180x50 is 
considered to be enough for accurate simulation. The 
simulations of this non-reactive and shock free nozzle 
flow are performed for different accuracies of the upwind 
scheme as shown in Figure-6. Comparison of the Mach 
number along the centerline for first order and third order 
upwind flux difference scheme indicates that oscillation at 
the exit is observed for third order upwind flux difference 
scheme due to lack of enough dissipation. Therefore, first 
order upwind flux difference scheme is adopted in the 
current study. 
 

 
 

Figure-1. Contours of the non-dimensional static pressure 
(P/Pi) in the nozzle. 
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Figure-2. Mach number contours. 
 

 
 

Figure-3. Contours of the static temperature (T/Ti). 
 

 
 

Figure-4. Centerline axial velocity referenced to exit 
velocity comparison with REF [12]. 

 

 
 

Figure-5. (Density x axial velocity) at centerline 
referenced to exit (density x axial velocity) 

comparison with REF [12]. 
 

 
 

Figure-6. Variation of Mach number along the centerline, 
with 180 x 50 grid points. 

 

 
 

Figure-7. Variation of Mach number along the centerline, 
with first order upwind flux difference scheme 

and two grid sizes. 



                                         VOL. 8, NO. 5, MAY 2013                                                                                                                          ISSN 1819-6608            

ARPN Journal of Engineering and Applied Sciences 
 

©2006-2013 Asian Research Publishing Network (ARPN). All rights reserved. 

 
www.arpnjournals.com 

 

 
322

8.2. Reactive flow space shuttle main engine nozzle  
The flow in the nozzle of the space shuttle main 

engine with chemical reactions is simulated numerically. 
The geometry of this case and the grid used in the 
simulations are shown in Figure-8. A grid size of 51x51 I 
used in the simulations. This test case is also solved by 
Cinnella [1] using chemical equilibrium. The inlet 
conditions at the nozzle are assumed to be Mach number 
Mi=0.5, static pressure Pi=202.4 bar, static temperature 
Ti=3639 K, and oxygen/hydrogen ratio of 6.0 (fuel rich). 
The contours of the Mach number for the chemical 
equilibrium are presented in Figure-9 where a smooth 
variation of the Mach number in the axial direction is 
obtained without shock waves. The variation of the Mach 
number along the nozzle centerline with two different 
assumptions for the chemical reactions is introduced in 
Figure-10. The chemical equilibrium assumption yields 
lower exit Mach number than the frozen flow. The 
chemical equilibrium assumption produces greater thrust 
force than the frozen flow.  

The non-dimensional static temperature contours 
of the chemical equilibrium flow are presented in Figure-
11. The results indicate that static temperature at the 
nozzle exit is decreased to 0.3 of the nozzle inlet static 
temperature for the chemical equilibrium while lower exit 
temperature is obtained with the frozen flow assumption 
as clear from Figure-12. The chemical equilibrium 
assumption yields accurate results for the nozzle 
simulations than the frozen flow. Contours of the static 
pressure are introduced in Figure-13 where smooth 
variation of the static pressure along the nozzle is obtained 
and no shock waves exist in the flow.  

The chemical composition of the exhaust gases is 
computed using the chemical equilibrium assumption and 
the results are compared with those obtained by Cinnella 
[1] for the same case as indicated in Figure-14 through 
Figure-19. The numerical results obtained in the current 
study are in good agreement with the results computed by 
Cinnella [1]. The results indicate that the concentration of 
the hydrogen (H2) in the exhaust gases is very high 
because the propellant is fuel rich. The concentration of 
the hydrogen in the gases is about 80%. The dissociation 
of the chemical species is reduced as the flow expands in 
the nozzle and the temperature is reduced. Therefore, no 
dissociation is observed after x=2.0 in the divergent part of 
the nozzle as shown in the Figures 16, 17, 18 and 19.  
 

 
 

Figure-8. 51x51 Grid points for SSME nozzle. 
 

 
 

Figure-9. Mach number distribution for SSME. 
 

 
 

Figure-10. Comparison of the centerline Mach number 
computed using frozen flow and chemical 

equilibrium flow. 
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Figure-11. Static temperature (T/Ti) distribution. 
 

 
 

Figure-12. Comparison of equilibrium and frozen flow 
temperature along centerline. 

 

 
 

Figure-13. Static pressure (P/Pi) distribution. 
 

 
 

Figure-14. H2 Mole fraction comparison with REF 1. 
 

 
 

Figure-15. H2O Mole fraction comparison with REF 1. 
 

 
 

Figure-16. H Mole fraction comparison with REF 1. 
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Figure-17. O2 Mole fraction comparison with REF 1. 
 

 
 

Figure-18. OH Mole fraction comparison with REF 1. 
 

 
 

Figure-19. O Mole fraction comparison with REF 1. 

9. CONCLUSIONS 
A two-dimensional compressible Navier-Stokes 

solver is developed to simulate reactive flow with the 
assumption of chemical equilibrium. The code is used to 
compute nozzle flows with and without reactive flow. The 
governing equations are solved numerically on a 
structured grid using the finite difference technique. Flux 
difference splitting scheme of first or third order accurate 
is used for the discretization of the convective terms, while 
second-order central difference is used for the 
discretization of the viscous terms. A chemical 
equilibrium module is developed using the method of 
equilibrium constants and the module is coupled with flow 
solver to compute the temperature and the thermodynamic 
properties of the exhaust gases. The code is validated by 
comparing the results of non-reactive and reactive nozzle 
flows with the published data and the current results show 
excellent agreement with the published simulations. 
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