

www.arpnjournals.com

PRODUCTIVITY EQUATION FOR A HORIZONTAL WELL INSIDE A CLOSED-ANISOTROPIC BOX-SHAPED RESERVOIR UNDER PSEUDOSTEADY-STATE CONDITIONS

Jing Lu¹, Djebbar Tiab² and Freddy H. Escobar³ ¹Department of Petroleum Engineering, the Petroleum Institute, Abu Dhabi, United Arab Emirates ²The University of Oklahoma, Norman, OK, USA ³Universidad Surcolombiana/CENIGAA, Av. Pastrana-Cra 1, Neiva, Huila, Colombia E-Mail: fescobar@usco.edu.co

ABSTRACT

Beyond doubt, the productivity index is one of the most important key parameters in reservoir evaluation and characterization. It is a screening guide to establish the reservoir size, the presence on an aquifer and the connectivity degree. Thereby, its accurate determination is a challenge for engineers. This paper presents a productivity equation of a horizontal well in pseudo-steady state in a closed anisotropic box-shaped reservoir, using a uniform line sink model. A new equation for calculating pseudo skin factor due to partial penetration is also proposed. Compared with the equations for horizontal wells in pseudo-steady state in the literature, the new equations are more practical and easy to use in the field practice.

Keywords: horizontal well, productivity index, anisotropy, finite reservoir, flow rate, drainage area.

1. INTRODUCTION

Due to their great efficiency in producing higher flow rates per unit pressure drawdown, horizontal wells have currently become the most popular alternative for the development of hydrocarbon fields around the world. So far, most of the introduced correlations for the estimation of their productivity index have shown certain differences among their results. This does not allow us to properly establish which one of them provides the closest value to the actual one, since there is no evidence of a trustable enough reference point.

Throughout the years, several investigations for the determination of horizontal-well productivity index have been carried out. These researches have been focused on the determination of steady-state solutions for the above-mentioned parameter, therefore, a diverse number of correlations have been introduced. These correlations were introduced by such well-known researchers as, Giger (1983), Merkulov (Borisov, 1954), Renard and Dupuy (1990), and Joshi (Borisov, 1954; Joshi, 1988 and 1991; and Penmatcha, Arbab, and Azz., 1997). However, there are remarkable differences among their results which do not allow us to clearly establish which one matches closely the actual value since not accurate comparison point has been given. Much later, Escobar and Montealegre-M (2008) presented a more accurate correlation which behaves steadier for a wider range of application and presents the lowest deviation error among the others above mentioned. According to the proximity to the simulated results, they also found that Joshi's correlation is the second option to estimate the productivity index in horizontal wells.

To determine the economic feasibility of drilling a horizontal well, the engineers need reliable methods to estimate its expected productivity. There have been several attempts to describe and estimate horizontal well productivity indexes. Lu (2001), Lu (2003) and Lu *et al.* (2003) presented steady-state productivity equations for a horizontal well in an infinite extension, finite thickness reservoir and in a circular cylinder drainage volume reservoir.

Babu and Odeh (1989) introduced a complex equation to calculate productivity of horizontal wells which required that the drainage volume be approximately box-shaped, and all the boundaries of the drainage volume be sealed. They reduced their original infinite series solution into equations for shape factor and partial penetration skin.

2. MATHEMATICAL DEVELOPMENT

2.1. Horizontal well model

Figure-1 is a schematic of a horizontal well.

Figure-1. Horizontal well model.

www.arpnjournals.com

A horizontal well of length, *L*, drains a boxshaped reservoir with height, *H*, length (*x* direction), 2*a*, and width (*y* direction), 2*b*. The well is parallel to the *x* direction with a length $L \le 2a$.

The following assumptions are made:

- a) The reservoir is a horizontal, homogeneous, anisotropic, and has constant k_x , k_y , k_z permeabilities, thickness *H*, porosity ϕ . All the boundaries of the box-shaped drainage volume are sealed.
- b) The reservoir pressure is initially constant. At time t = 0 pressure is uniformly distributed in the reservoir, equal to the initial pressure P_i .
- c) The production occurs through a horizontal well of radius, r_w , represented in the model by a uniform line sink located at a distance z_w from the lower boundary, the length of the well is *L*.

As Figure-1 shows, the horizontal well is a uniform line sink in three dimensional space, the coordinates of the two ends are $(-L/2, 0, z_w)$ and $(L/2, 0, z_w)$.

Let,

$$\Omega = (-a, a) \times (-b, b) \times (0, H) \tag{1}$$

 Ω is the box-shaped drainage volume.

All the boundaries of the box-shaped drainage volume are sealed; i.e., the reservoir has the following outer boundary condition:

$$\frac{\partial P}{\partial N}\Big|_{\Gamma} = 0 \tag{2}$$

where $\partial P/\partial N|_{\Gamma}$ is the external normal derivative of pressure on the surface of box-shaped drainage volume $\Gamma=\partial \Omega$.

The reservoir pressure is at initial condition,

$$P|_{i=0} = P_i \tag{3}$$

The geometric average permeability, k_a , is:

$$k_a = \sqrt[3]{k_x k_y k_z} \tag{4}$$

The vertical and horizontal permeabilities are respectively

$$k_v = k_z$$

$$k_h = (k_x k_y)^{1/2}$$
(5)

Let β be the permeability anisotropic factor

$$\beta = \sqrt{k_h / k_v} \tag{6}$$

And η be the partially penetration factor

$$\eta = L/(2a) \tag{7}$$

2.2. Horizontal well productivity

A horizontal well flow rate in a sealed boxshaped reservoir in pseudo-steady state can be calculated from:

$$q_{w} = \frac{0.001127(k_{y}k_{z})^{1/2}L(P_{a}-P_{w})/(\mu B)}{\Lambda + s_{p}}$$
(8)

where P_a is average reservoir pressure throughout the boxshaped drainage volume, and,

$$\Lambda = \left(\frac{b_D}{6H_D}\right) - \left(\frac{1}{2\pi}\right) \ln \left\{4\sin(\pi z_{wD} / H_D)\sin[\pi r_{wD} / (2H_D)]\right\}$$
(9)

. 2

The pseudo skin factor due to partial penetration s_p is:

-2

$$s_{p} = \left(\frac{a_{D}L_{D}}{12b_{D}H_{D}}\right)\left(1 - \frac{L_{D}}{a_{D}} + \frac{L_{D}^{-}}{4a_{D}^{2}}\right) + \left(\frac{b_{D}^{-}}{H_{D}L_{D}\pi^{3}}\right)$$

$$\times \left\{\sum_{m=1}^{M} \left(\frac{1}{m^{3}}\right) \left\{\frac{\cosh[(a_{D}m\pi/b_{D})(1 - L_{D}/a_{D})]}{\sinh(a_{D}m\pi/b_{D})} - \coth(a_{D}m\pi/b_{D})\right\}\right\}$$

$$+ \left\{\left(\frac{a_{D}^{3}}{b_{D}H_{D}L_{D}\pi^{3}}\right)\sum_{n=1}^{M} \cos^{2}(n\pi z_{wD} / H_{D})$$

$$\times \sum_{m=0}^{M} \left(\frac{1}{d_{m}\mu_{mn}^{3}}\right) \left\{\frac{\cosh[(\mu_{mn}\pi)(1 - L_{D}/a_{D})]}{\sinh(\mu_{mn}\pi)} - \coth(\mu_{mn}\pi)\right\}\right\}$$
(10)

It has been shown that in Equation (10), the integer number M = 100 is sufficiently big enough to reach the engineering accuracy for all practical purpose, and,

$$m = 0, d_m = 1; m > 0, d_m = 1/2$$
(11)

$$\mu_{mn} = [(ma_D / b_D)^2 + (na_D / H_D)^2]^{1/2}$$
(12)

For a fully penetrating horizontal well, L = 2a, then

$$s_p = 0 \tag{13}$$

And Equation (8) reduces to,

$$q_{w} = \frac{0.001127(k_{y}k_{z})^{1/2}L(P_{a}-P_{w})/(\mu B)}{\Lambda}$$
(14)

where Λ has the same meaning as in Equation (9). For a given well in a closed box, the flow rate reaches the maximum value when it is located at the middle height of the payzone. In order to calculate s_p we may separate Equation (10) into three parts

$$s_{p} = \Psi_{1} + \Psi_{2} + \Psi_{3} \tag{15}$$

©2006-2013 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

where

$$\Psi_1 = \left(\frac{a_D L_D}{12b_D H_D}\right) \left(1 - \frac{L_D}{a_D} + \frac{L_D^2}{4a_D^2}\right)$$
(16)

$$\Psi_{2} = \left(\frac{b_{D}^{2}}{H_{D}L_{D}\pi^{3}}\right) \left\{ \sum_{m=1}^{M} \left(\frac{1}{m^{3}}\right) \left\{ \frac{\cosh[(a_{D}m\pi/b_{D})(1-L_{D}/a_{D})]}{\sinh(a_{D}m\pi/b_{D})} - \coth(a_{D}m\pi/b_{D}) \right\} \right\}$$
(17)

$$\Psi_{3} = \left(\frac{a_{D}^{3}}{b_{D}H_{D}L_{D}\pi^{3}}\right) \left\{\sum_{n=1}^{M} \cos^{2}\left(n\pi z_{wD} / H_{D}\right) \\ \times \sum_{m=0}^{M} \left(\frac{1}{d_{m}\mu_{mn}^{3}}\right) \left\{\frac{\cosh[(\mu_{mn}\pi)(1-L_{D}/a_{D})]}{\sinh(\mu_{mn}\pi)} - \coth(\mu_{mn}\pi)\right\}\right\}$$
(18)

3. EXAMPLES AND EFFECTS OF SOME CRITICAL PARAMETERS

Examples are given below to compare the proposed equation with the equations of Babu and Odeh (1989) and Helmy and Wattenberger (1998). These equations are also used to investigate the effects of some critical parameters on productivity index (PI).

3.1. Example-1

Equation (8) is used to calculate productivity index of a horizontal well in pseudo-steady state in a sealed box-shaped drainage volume. Using the reservoir and fluid properties data reported in Table-1, we have

a = 1000 ft, b = 2000 ft

Values of $k_a = 125.99$ md, $\beta = 2$ and $\eta = 0.5$ were obtained using Equations (4), (6) and (7), respectively.

Table-1. Reservoir and fluid properties for example-1.

Parameter	Value
Pay zone thickness, H, ft	100
Reservoir length, RESL, ft	4000
Reservoir width, RESW, ft	2000
Well vertical location, z_w , ft	50
Wellbore radius, r_w , ft	0.25
Permeability in X direction, k_x , md	200
Permeability in Y direction, k_y , md	200
Permeability in Z direction, k_z , md	50
Oil viscosity, μ , cp	1.0
Formation volume factor, <i>B</i> , rb/STB	1.0

With the definition of the dimensionless parameters given in the appendix, the following information is obtained:

 $L_D = a_D = 0.7937$ $b_D = 1.5874$ $z_{wD} = 0.07937$ $h_D = 0.15874$ $a_D = L_D, 1 - L_D / a_D = 0$ $a_D / L_D, = 0.5, z_{wD} / h_D = 0.5$

Application of Equation (12) yields:

$$\mu_{mn} = \sqrt{m^2 / 4 + 25n^2}$$

Equation (9) allows to estimate a value of $\Lambda = 2.392$. Also, Equations (16) through (18) are used to respectively calculate $\Psi_1=0.00521$, $\Psi_2=-0.54606$ and $\Psi_3=0.00495$. The partial penetration skin was calculated with Equation (10) to be -0.5458. Finally, the productivity index of this well, i.e., the flow rate per unit pressure drop, is calculated as 59.54 (STB/D/psi).

It is interesting to find that s_p is negative in the above calculations. The denominator of Equation (8) for a partially penetrating well is smaller than the denominator for a fully penetrating well, $(s_p=0)$). But the flow rate of the partially penetrating well still decreases due to smaller well length *L* in the numerator of Equation (8).

3.2. Example-2

In this example, only fluid properties, reservoir width and length are constants, other reservoir parameters are variables. The effects of some critical parameters on productivity index are investigated here.

Parameter	Value
Reservoir length, RESL, ft	4000
Reservoir width, RESW, ft	2000
Wellbore radius, r_w , ft	0.25
Oil viscosity, μ , cp	1.0
Formation volume factor, <i>B</i> , rb/STB	1.0

Table-2. Reservoir and fluid properties for example-2.

a) Effect of pay zone thickness on PI

Table-3 and Figure-2 presents the effect of payzone thickness on *PI* calculated by the proposed Equation (8) and Babu and Odeh (1989) and Helmy and the equations proposed by Babu and Odeh (1989) and Helmy and Wattenberger (1998), with the following constant parameters:

L = 1000 ft, $k_x = k_y = k_z = 200$ md, $k_z = k_v = 50$ md and the horizontal well is at mid-height of the payzone, $z_w = h/2$.

Table-3 and Figure-2 show the existence of no significant differences among the *PIs* calculated by the three equations. If the payzone thickness *h* is not very big (h<50 ft), *PI* increases rapidly with the increasing of *h*, but when h>50 ft, *PI* increases slowly with the increasing of *h*. From h = 10 to 50 ft, *PI* increases about 4 times; from h= 50 to 100 ft, *PI* increases about 1.5 times. For this reason, horizontal wells are believed to perform better than their vertical counterparts in thin reservoirs.

©2006-2013 Asian Research Publishing Network (ARPN). All rights reserved.

(Q)

www.arpnjournals.com

		Method	
PI, STB/psi	(1)	This work	(2)
<i>H</i> =10 ft	8.425	9.325	9.609
<i>H</i> =20 ft	16.161	17.799	17.358
<i>H</i> =30 ft	23.156	25.376	23.886
<i>H</i> =40 ft	29.448	32.115	29.527
<i>H</i> =50 ft	35.096	38.101	34.490
<i>H</i> =60 ft	40.165	43.421	38.971
<i>H</i> =70 ft	44.717	48.156	42.911
<i>H</i> =80 ft	48.811	52.379	46.546
<i>H</i> =90 ft	52.499	56.155	49.880
<i>H</i> =100 ft	55.828	59.538	52.958

 Table-3. Effect of payzone thickness on PI.

(1) Babu and Odeh

(2) Helmy and Wattenberger

Figure-2. Effect of payzone thickness on PI.

b) Effect of well location in vertical direction on PI

Table-4 and Figure-3 present the effect of well location in vertical direction on *PI*, with the following constant parameters:

L = 1000 ft, $k_x = k_y = k_z = 200$ md, $k_z = k_v = 50$ md, h = 100 ft.

Table-4. Effect of well location in vertical direction on PI.

		Method	
<i>PI</i> , STB/psi	(1)	This work	(2)
<i>H</i> =10 ft	51.097	54.453	50.807
<i>H</i> =20 ft	53.583	57.156	51.962
<i>H</i> =30 ft	54.910	58.573	52.556
<i>H</i> =40 ft	55.608	59.308	52.862
<i>H</i> =50 ft	55.828	59.538	52.958
<i>H</i> =60 ft	55.608	59.308	52.862
<i>H</i> =70 ft	54.910	58.573	52.556

<i>H</i> =80 ft	53.583	57.156	51.962
<i>H</i> =90 ft	51.097	54.453	50.807

(2) Helmy and Wattenberger

Figure-3. Effect of well location in vertical direction on *PI*.

Table-4 and Figure-3 show that the location of horizontal well in vertical direction does not have significant effect on *PI*. For maximum *PI*, the well should be located at the mid-height the pay zone.

c) Effect of Well Length on PI

Table-5 and Figure-4 present the effect of well length on *PI*, with the following constant parameters:

L = 1000 ft, $k_x = k_y = k_z = 200$ md, $k_z = k_v = 50$ md, h = 100 ft, $z_w = 50$ ft.

Table-5. Effect of well length on PI.

	Method		
PI, STB/psi	(1)	PI, STB/psi	(2)
<i>L</i> =250 ft, =0.125	21.222	22.342	17.994
<i>L</i> =500 ft, =0.250	34.306	36.214	30.472
<i>L</i> =750 ft, =0.375	45.444	48.277	41.800
L=1000 ft, =0.500	55.828	59.538	52.958
L=1250 ft, =0.625	65.870	70.183	64.189
<i>L</i> =1500 ft, =0.750	75.710	79.994	75.278
L=1750 ft, =0.875	85.337	88.428	85.608
L=2000 ft, =1.000	94.637	94.335	94.259

(1) Babu and Odeh

(2) Helmy and Wattenberger

Table-5 and Figure-4 show that no significant differences among the *PI* values calculated by the three equations. *PI* increases slowly with the increasing *L*. For every increase in *L* of 250 ft, *PI* only increases about 10 STB/D/psi. From 250 to 1000 ft, *PI* increases 4 times.

428

www.arpnjournals.com

From 1000 to 2000 ft, *PI* only increases about 1.6 times. So *PI* is not sensitive to *L* and η .

Figure-4. Effect of well length on PI.

Table-6 presents the pseudo skin factor s_p due to partial penetration calculated by the Equations (15) through (18). For a partially penetrating horizontal well, Ψ_1 is positive while Ψ_2 and Ψ_3 are negative.

From Table-6 we find that when η increases, Ψ_1 decrease, the absolute values of Ψ_2 and Ψ_3 also decreases. When $\eta \ge 0.25$, the absolute value of Ψ_3 is very small compared with Ψ_1 and the absolute value of Ψ_2 . So, in many cases, Ψ_3 are negligible when s_p is calculated.

	Ψ_1	Ψ_2	Ψ_3	Ψ_4
L=250 ft,	0 02000	-	-	-
=0.125	0.03988	1.15038	0.02031	1.13080
L=500 ft,	0.05950	-	-	-
=0.250	0.03839	0.88431	0.01015	0.83587
L=750 ft,	0.06104	-	-	-
=0.375	0.00104	0.69534	0.00677	0.64107
L=1000 ft,	0.05209	-	-	-
=0.500	0.05208	0.54607	0.00500	0.49898
L=1250 ft,	0.02662	-	-	-
=0.625	0.03002	0.41720	0.00406	0.38464
L=1500 ft,	0.01052	-	-	-
=0.750	0.01955	0.29477	0.00338	0.27862
L=1750 ft,	0.00570	-	-	-
=0.875	0.00370	0.16434	0.00291	0.16155
L=2000 ft,	0.00000	0.00000	0.00000	0.00000
=1.000	0.00000	0.00000	0.00000	0.00000

Table-6. Pseudo skin factor calculations.

d) Effect of horizontal permeability on PI

Table-7 and Figure-5 present the effect of horizontal permeability $(k_x = k_y = k_z)$ on *PI*, with the following constant parameters:

L = 1000 ft, k_x = k_y = k_h , k_z = k_v = 25 md, h = 100 ft, z_w = 50 ft.

Table-7 and Figure-5 show that *PI* is a strong function of horizontal permeability (assuming $k_x = k_y = k_h$). Horizontal permeability increases 8 times, while β only increases 2.8 times and PI calculated by the three equations increase about 5.5 times.

Table-7. Effect of horizontal permeability on PI.

	Method		
<i>PI</i> , STB/psi	(1)	PI, STB/psi	(1)
$k_h=25 \text{ md}, \beta=1.000$	8.626	9.379	8.562
$k_h=50 \text{ md}, \beta=1.414$	15.744	16.952	15.193
k_h =75 md, β =1.732	22.094	23.653	21.071
$k_h = 100 \text{ md}, \beta = 2.000$	27.914	29.769	26.479
$k_h=125 \text{ md}, \beta=2.236$	33.333	35.451	31.550
$k_h = 150 \text{ md}, \beta = 2.449$	38.431	40.790	36.361
$k_h=175 \text{ md}, \beta=2.646$	43.264	45.848	40.963
k_h =200 md, β =2.828	47.870	50.669	45.390

(1) Babu and Odeh
 (2) Helmy and Wattenberger

Figure-5. Effect of horizontal permeability on *PI*, $(k_x = k_y = k_b)$.

e) Effect of vertical permeability on PI

Table-8 and Figure-6 present the effect of vertical permeability on PI, with the following constant parameters:

L = 1000 ft, $k_x = k_y = k_z = 100$ md, $k_z = k_v = 50$ md, h = 100 ft, $z_w = 50$ ft.

Table-8 and Figure-6 show that PI is a weak function of vertical permeability, vertical permeability increases 10 times, (β decreases about 3 times) *PIs* calculated by the three equations increase about 1.6 times.

©2006-2013 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

Table-8. Effect of vertical permeability on PI.

	Method		
<i>PI</i> , STB/psi	(1)	PI, STB/psi	(2)
$k_v = 10 \text{ md}, \beta = 3.162$	22.609	23.890	21.528
$k_v=20 \text{ md}, \beta=2.236$	26.666	28.361	25.240
k_{v} =30 md, β =1.826	28.902	30.897	27.501
k_v =40 md, β =1.581	30.394	32.622	29.124
$k_v = 50 \text{ md}, \beta = 1.414$	31.489	33.905	30.385
$k_v = 60 \text{ md}, \beta = 1.291$	32.340	34.913	31.412
$k_v = 70 \text{ md}, \beta = 1.195$	33.028	35.733	32.276
k_{v} =80 md, β =1.118	33.599	36.420	33.020
k_{ν} =90 md, β =3.162	34.085	37.007	33.671
$k_v = 100 \text{ md}, \beta = 1.000$	34.504	37.516	34.248

(1) Babu and Odeh

(2) Helmy and Wattenberger

Figure-6. Effect of vertical permeability on PI.

f) Effect of permeability perpendicular to horizontal well on *PI*

Table-9 and Figure-7 present the effect of permeability perpendicular to the well in horizontal plane (k_v) on *PI*, with the following constant parameters:

L = 1000 ft, $k_x = 50$ md, $k_z = k_v = 25$ md, h = 100 ft, $z_w = 50$ ft.

Table-9 and Figure-7 show that *PI* is a strong function of k_y when $k_y \le 25$ md. From 5 to 25 md, k_y increases 5 times, and *PI* calculated by the three equations also increase about 5 times; but *PI* is a weak function of k_y when $k_y > 25$ md. From 25 to 250 md, k_y increases 10 times, but *PI* values calculated by the three equations only increase about 5 times.

	Method		
<i>PI</i> , STB/psi	(1)	PI, STB/psi	(2)
$k_y=5 \text{ md}, \beta=0.795$	2.527	2.609	2.425
$k_y = 15 \text{ md}, \beta = 1.047$	6.316	6.626	6.035
$k_y = 25 \text{ md}, \beta = 1.189$	9.420	9.979	9.021
$k_y = 50 \text{ md}, \beta = 1.414$	15.744	16.950	15.193
$k_y = 75 \text{ md}, \beta = 1.565$	20.938	22.787	20.339
$k_y = 100 \text{ md}, \beta = 1.682$	25.459	27.940	24.868
$k_y = 125 \text{ md}, \beta = 1.778$	29.518	32.614	28.966
$k_y = 150 \text{ md}, \beta = 1.861$	33.233	36.926	32.739
$k_y = 175 \text{ md}, \beta = 1.934$	36.678	40.950	36.255
$k_y = 200 \text{ md}, \beta = 2.000$	39.905	44.736	39.560
$k_y = 225 \text{ md}, \beta = 2.060$	42.949	48.322	42.687
$k_y = 250 \text{ md}, \beta = 2.115$	45.838	51.734	45.662

 Table-9. Effect of permeability perpendicular to horizontal well on PL.

(1) Babu and Odeh

(2) Helmy and Wattenberger

Figure-7. Effect of k_v on *PI*.

g) Effect of permeability parallel to horizontal well on *PI*

Table-10 and Figure-8 present the effect of permeability parallel to horizontal well (k_x) on *PI*, with the following constant parameters:

L = 1000 ft, $k_y = 50$ md, $k_z = 25$ md, h = 100 ft, $z_w = 50$ ft. Table-10 and Figure-8 show that *PI* is a weak function of k_x . When k_x increases 50 times, (β increases about 3 times) *PI* values calculated by the three equations increases about 1.6 times.

www.arpnjournals.com

	Method		
<i>PI</i> , STB/psi	(1)	PI, STB/psi	(2)
$k_y=5 \text{ md}, \beta=0.795$	9.606	11.773	10.009
$k_y = 15 \text{ md}, \beta = 1.047$	12.939	14.660	13.055
$k_y = 25 \text{ md}, \beta = 1.189$	14.200	15.736	14.122
$k_y = 50 \text{ md}, \beta = 1.414$	15.744	16.950	15.193
$k_y = 75 \text{ md}, \beta = 1.565$	16.542	17.531	15.641
$k_y = 100 \text{ md}, \beta = 1.682$	17.056	17.889	15.894
$k_y = 125 \text{ md}, \beta = 1.778$	17.426	18.136	16.057
$k_y = 150 \text{ md}, \beta = 1.861$	17.710	18.320	16.171
$k_y = 175 \text{ md}, \beta = 1.934$	17.937	18.463	16.256
$k_y = 200 \text{ md}, \beta = 2.000$	18.124	18.579	16.322
$k_y = 225 \text{ md}, \beta = 2.060$	18.282	18.674	16.374
$k_y = 250 \text{ md}, \beta = 2.115$	18.418	18.755	16.417

 Table-10. Effect of permeability parallel to horizontal well on PI.

(1) Babu and Odeh

(2) Helmy and Wattenberger

Figure-8. Effect of k_x on *PI*.

3.3. Example-3

In this example, the effect of reservoir size on productivity index (*PI*) is investigated. Fluid properties and other reservoir parameters are the same as in Table-1.

h) Effect of reservoir width on PI

Table-11 and Figure-9 present the effect of reservoir width (*RESW*, the size of reservoir parallel to horizontal well) on *PI*, with the following constant parameters:

L = 1000 ft, $k_x = k_z = k_h = 200$ md, $k_z = k_v = 50$ md h = 100 ft, $z_w = 50$ ft.

And reservoir length (*RESL*) is a constant, and it is equal to 4000 ft.

Table-11 and Figure-9 show that *PI* is a weak function of reservoir width (*RESW*), from *RESW*=1000 to 2200 ft, (the partially penetrating factor η drops from 1.0 to 0.455), *PIs* calculated by the three equations increase slowly; from *RESW* = 2200 to 4000 ft, (the partially penetrating factor η drops from 0.455 to 0.250) *PIs* calculated by the three equations decrease slowly.

Table-11. Effect of reservoir width on PI.

	Method		
PI, STB/psi	(1)	<i>PI</i> , STB/psi	(2)
RESW = 1000 ft, = 1.00	47.318	47.168	47.129
<i>RESW</i> =1300 ft, =0.769	52.205	54.073	50.792
<i>RESW</i> =1600 ft, =0.625	54.646	57.576	52.397
<i>RESW</i> =1900 ft, =0.526	55.682	59.246	52.926
<i>RESW</i> =2200 ft, =0.455	55.913	59.857	52.876
<i>RESW</i> =2500 ft, =0.400	55.682	59.853	52.504
<i>RESW</i> =2800 ft, =0.357	55.190	59.490	51.953
<i>RESW</i> =3100 ft, =0.323	54.553	58.921	51.301
<i>RESW</i> =3400 ft, =0.294	53.842	58.234	50.596
<i>RESW</i> =3700 ft, =0.270	53.099	57.486	49.865
$R\overline{ESW} = 4000 \text{ ft},$ $= 0.250$	52.349	56.707	49.125

Figure-9. Effect of reservoir width on PI.

Table-12 presents the pseudo skin factor s_p due to partial penetration caused by the different reservoir widths. We obtain the same conclusion as that in Table-6 in Example 2. For a partially penetrating horizontal well, Ψ_1 is positive while Ψ_2 and Ψ_3 are negative. When $\eta \ge$

www.arpnjournals.com

0.25, the absolute value of Ψ_3 is very small compared with Ψ_1 and the absolute value of $\Psi_2.$

 Table-12. Pseudo skin factor calculations.

PI, STB/psi	Ψ_1	Ψ ₂	Ψ3	S_p
<i>RESW</i> =1000 ft, =1.000	0.00000	0.00000	0.00000	0.00000
<i>RESW</i> =1300 ft, =0.769	0.00721	- 0.30983	- 0.00508	- 0.30769
<i>RESW</i> =1600 ft, =0.625	0.02344	- 0.45286	- 0.00508	- 0.43450
<i>RESW</i> =1900 ft, =0.526	0.04441	- 0.52898	- 0.00508	- 0.48966
<i>RESW</i> =2200 ft, =0.455	0.06818	- 0.57218	- 0.00508	- 0.50908
<i>RESW</i> =2500 ft, =0.400	0.09375	- 0.59761	- 0.00508	- 0.50894
<i>RESW</i> =2800 ft, =0.357	0.12054	- 0.61292	- 0.00508	- 0.49746
<i>RESW</i> =3100 ft, =0.323	0.14819	- 0.62226	- 0.00508	- 0.47916
<i>RESW</i> =3400 ft, =0.294	0.17647	- 0.62801	- 0.00498	- 0.45653
<i>RESW</i> =3700 ft, =0.270	0.20524	- 0.63157	- 0.00498	0.43132
<i>RESW</i> =4000 ft, =0.250	0.23438	- 0.63378	- 0.00498	- 0.40439

i) Effect of reservoir length on *PI*

Table-13 and Figure-10 present the effect of reservoir length (*RESL*, the size of reservoir perpendicular to horizontal well) on *PI*, with the following constant parameters:

L = 1000 ft, $k_x = k_z = k_h = 200$ md, $k_z = k_v = 50$ md H = 100 ft, $z_w = 50$ ft, RESW = 2000 ft.

	Method		
PI, STB/psi	(1)	<i>PI</i> , STB/psi	(1)
<i>RESL</i> =1000 ft,	78.011	86.885	81.143
<i>RESL</i> =1500 ft,	75.223	81.777	74.390
<i>RESL</i> =2000 ft,	70.336	76.269	68.654
<i>RESL</i> =2500 ft,	66.045	71.288	63.810
<i>RESL</i> =3000 ft,	62.248	66.889	59.671
<i>RESL</i> =3500 ft,	58.863	62.994	56.091
<i>RESL</i> =4000 ft,	55.828	59.528	52.958
<i>RESL</i> =4500 ft,	53.090	56.423	50.188
<i>RESL</i> =5000 ft,	50.608	53.625	47.720

Table-13. Effect of reservoir length on PI.

(1) Babu and Odeh

(2) Helmy and Wattenberger

Table-13 and Figure-10 show that *PI* is a weak function of reservoir length (*RESL*).

Figure-10. Effect of reservoir length on PI.

CONCLUSIONS

- a) The proposed productivity equation for a horizontal well in a sealed box-shaped drainage system in pseudo-steady state is based on solving three dimensional partial differential equations, and has a solid mathematical base in the theory of flow in porous media; it is reliable and easy to use in oil field.
- b) The horizontal well productivity is a weak function of well length, well location, vertical permeability, the permeability parallel to the well in the horizontal plane, and reservoir size. But it is a strong function of pay zone thickness, the permeability perpendicular to the well in the horizontal plane. For maximum productivity, the horizontal well should be located at the mid-height of the pay zone.

Nomenclature

В	Volumetric factor, RB/STB
c_f	Fluid compressibility, 1/psi
h	Formation thickness, ft
k	Permeability, md
L	Horizontal wellbore length, ft
Р	Pressure, psi
PI	Well productivity index, STB/D/psi
q_w	Well flow rate, STB/D
<i>r</i> _w	Wellbore radius, hr
RESL	Reservoir length, ft
RESW	Reservoir width, ft
Sp	Pseudoskin facfor due to partial penetration, dimensionless

www.arpnjournals.com

Greeks

β	Permeability anisotropic factor, fraction
η	Partially penetrating factor, fraction
μ	Fluid viscosity, cp
ϕ	Porosity, fraction
Λ	A function defined by Equation (8)
Ψ_1	A function defined by Equation (16)
Ψ_2	A function defined by Equation (17)
Ψ_3	A function defined by Equation (18)

Suffices

а	Average
D	Dimensionless
е	External
h	Horizontal
i	Initial
v	Vertical
w	Wellbore
<i>x,y,z</i>	Coordinate indicators

REFERENCES

Babu D.K and Odeh A.S. 1989. Productivity of a Horizontal Well. SPE Reservoir Engineering. 4(4): 417-421, November.

Borisov J. P. 1954. Oil production using horizontal and multiple deviation wells. R and D Library, Nedra, Moscu. Translated by J. Strauss and S. D. Joshi, Phillips Petroleum Co., Bartlesville, Oklahoma.

Economides M.J, Brand C.W and Frick T.P. 1994. Well Configuration in Anisotropic Reservoirs. Paper SPE 27980 presented at the 1994 University of Tulsa Centennial Petroleum Engineering Symposium, Tulsa, Oklahoma, August.

Escobar F.H. and Montealegre-M M. 2008. A More Accurate Correlation for the Productivity Index of Horizontal Wells. Journal of Engineering and Applied Sciences. 3(1).

Giger F. 1983. Reduction du Nombre de Puits par l'Utilisation de Foreges Horizontaux. Reveu de l'Institu Francais du Petrole. 38(3), May-June.

Helmy M. W. and Wattenbarger R. A. 1998. Simplified Productivity Equations for Horizontal Wells Producing at Constant Rate and Constant Pressure. Paper SPE 49090 presented at the 1998 Annual Technical Conference and Exhibition, New Orleans, Louisiana, September.

Joshi S. D. 1988. A Review of Horizontal Well and Drainhole Technology. 62^{nd} Annual Technical Conference and Exhibition of the Society of Petroleum Engineers, Dallas, TX. SPE 16868.

Joshi S. D. 1991. Horizontal Well Technology. Tulsa, Oklahoma. Penn Well Publishing.

Renard G.I and Dupuy J.M. 1990. Influence of Formation Damage on the Flow Efficiency of Horizontal wells. Paper SPE 19414 presented at the Formation Damage Control Symposium, Lafayette, LA, February. 22-23.

Lu J. 2001. New Productivity Formulae of Horizontal Wells. Journal of Canadian Petroleum Technology. 40(10): 55-67, October.

Lu J. 2003. Productivity Formulae for Horizontal Wells in a Circular Cylinder Drainage Volume. Journal of Canadian Petroleum Technology. 42(10): 28-31, October.

Lu J., Lin. T, Rogers. B and Lu. T. 2003. The Supplements and Discussions of Productivity Formulae of Horizontal Wells. Journal of Canadian Petroleum Technology. 42(10): 23-27, October.

Penmatcha V. R., Arbab S. and AZZ K. 1997. Effects of Pressure Drop in Horizontal Wells and Optimum Well Length. SPE Production Operations Symposium, Oklahoma City, Oklahoma. SPE 37494.

Thompson L.G, Manrique J.L and Jelmert T., A. 1991. Efficient Algorithms for Computing the Bounded Reservoir Horizontal Well Pressure Response. Paper SPE 21827 presented at the 1991 SPE Rock Mountain Regional Meeting and Low- Permeability Reservoir Symposium, Denver, Colorado, October.

APPENDIX

Definition of dimensionless variables

$$\begin{aligned} x_D &= \frac{x}{L} \sqrt{\frac{k_a}{k_x}} \\ y_D &= \frac{y}{L} \sqrt{\frac{k_a}{k_y}} \end{aligned} \tag{A.1} \\ z_D &= \frac{z}{L} \sqrt{\frac{k_a}{k_z}} \\ a_D &= \frac{a}{L} \sqrt{\frac{k_a}{k_x}} \\ b_D &= \frac{b}{L} \sqrt{\frac{k_a}{k_y}} \\ z_{wD} &= \frac{z_W}{L} \sqrt{\frac{k_a}{k_z}} \end{aligned}$$

©2006-2013 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

k_a	
$L_D = \sqrt{\frac{\pi}{k_x}}$	(A.3)
$H_D = \frac{H}{L} \sqrt{\frac{k_a}{k_z}}$	

$$t_D = \frac{k_a t}{\phi \mu c_t L^2} \tag{A.4}$$

$$P_D = \frac{k_a L(P_l - P)}{q \mu B} \tag{A.5}$$

$$r_{wD} = \left[\sqrt[4]{k_x / k_z} + \sqrt[4]{k_z / k_x} \right] r_w / (2L)$$
(A.6)

