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ABSTRACT 

Nowadays, the oil industry is focusing its effort and interest on gas shale reservoirs. Gas shale wells are normally 
tested by recording the flow rate values under constant pressure conditions. Therefore, time superposition is required in 
order to conduct transient-rate analysis which normally uses the radial solution of the constant-rate diffusivity equation. 
This superposition function is also applied indiscriminately to other flow regimes without considering the possibility of an 
existing error. The literature only reports a case where this situation is dealt with. However, the analysis is performed using 
curve-decline matching. This study presents the analysis of the effects generated by extending the superposition time 
function generated with the constant-rate radial solution of the diffusivity equation to other well-known flow regimes. The 
work consists of performing simulations for the following scenarios: variable rate under constant well-flowing pressure, 
uncontrolled changes in flow rate, isochronal uncontrolled changes in flow rate, isochronal increasingly changes in flow 
rate and isochronal decreasingly changes in flow rate. Superposition time functions were generated for each scenario to 
compare each flow regime (linear, bilinear, elliptical, spherical and pseudo steady state) superposition function to the radial 
flow superposition function. In general terms, it was found that the generated effects of using the radial time superposition 
function are negligible. Even, good values of the average reservoir pressure with the radial flow superposition function 
were obtained. However, it was noted a notorious deviation of the linear and bilinear flow regime tendencies for 
hydraulically-fractured wells. This leads to erroneous estimation of the fracture parameters. 
 
Keywords: superposition, flow regimes, transient-rate analysis, average reservoir pressure. 
 
1. INTRODUCTION 

Pressure drawdown testing (flow tests) has been 
widely used in the hydrocarbon industry for more than half 
a century. For such case, the well is set to a constant flow 
rate. However, in cases which are not possible to keep it 
constant, a multi-rate test applies and time superposition 
has to be applied. Multi-rate tests may range from 
uncontrolled variable rate - Matthews and Russell (1967), 
Odeh and Jones (1965), series of constant rates - Russell 
(1963) and Doyle and Sayegh (1970)-, pressure buildup 
testing and constant bottom-hole pressure with a 
continuous changing flow rate-Jacob and Lohman (1952). 
This last technique has been recently named as rate-
transient analysis which is very common for testing gas 
shale formations. In all of them, time superposition has to 
be applied for the application of the single-rate diffusivity 
equation solution. 

As pointed out by Agnia, Alkouh, and 
Wattenberger (2012), it has been costumary to use the 
superposition function obtained from radial flow regime in 
other flow regimes. Currently, the oil industry is focusing 
all its efforts on shale reservoirs in which rate-transient 
analysis is very applied. Therefore, it is important to 
investigate the impact of the application of the radial 
superposition function to others flow regimes such as 
linear and pseudosteady state. Thereby, this study 
concentrates mainly on the estimating of the superposition 
time function for linear flow regime and pseudosteady 
state flow period and estimating the appropriate pressure 
derivative functions for such cases, so that, comparison 
with the radial superposition function can be established. 
Analysis for other flow regimes are also considered. This 

work complements the investigation recently presented by 
Agnia et al. (2012) with more emphasis in well-test 
analysis. 

Moreover, Escobar, Ibagon and Montealegre-M 
(2007) presented a metholodogy for estimating the average 
reservoir pressure from multi-rate tests which is very 
useful to avoid economical losses due to shutting-in the 
well. In their development and calculations, they used an 
arbitrary point on the pseudosteady-state flow period 
obtained with the equivalent radial superposition time. In 
this paper, this methodology was also used but changing 
the the appropriate equivalent pseudosteady state period. 
Very small differences were found. 
 
2. MATHEMATICAL FORMULATION 

Superposition time functions are very useful 
mathematical tools to handle variable-rate data. The 
superposition time principle is used to simulate production 
histories using linear combinations of simple drawdown 
solutions with different starting times. Assuming no skin 
effects and only radial flow takes place in the variable rate 
plot shown in Figure-1, the well pressure at time, tN, is 
found by the application of the superposition principle so, 
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The exponential integral is used in the well-

known solution to the single-rate diffusivity equation. It is 
valid to replace the exponential integral by the natural log 
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approach after some small flowing times. Then, after some 
manipulations, Equation (1) becomes (here the skin factor 
is included), 
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Figure-1. Schematic description of a multi-rate test. 
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Then, Equation 2 now becomes: 
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In which the radial superposition time function is 

defined as: 
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And the radial equivalent time is set to be: 
 

_
_ 10 n radX

eq radt =                                                               (6) 
 

In a similar fashion the bilinear, linear, spherical, 
elliptical and pseudosteady state superposition functions 
are respectively derived, 
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With their respective equivalent time functions: 
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In this work, we mainly only concentrated on the 
radial, linear and pseudo steady state periods. Notice that 
the treatment for the spherical flow behavior is the same 
for hemispherical and parabolic flow regimes since the 
slope in the pressure derivative is negative 0, 5. 
 
3. COMPARISON OF TIME SUPERPOSITION  
    FUNCTIONS 

Alzate (2013) perfomed pressure test simulations 
to observe the above named flow regimes were run with 
the information provided in Table-1. Table-2 contains the 
flow rates for the simulation runs. Since the superposition 
function for radial flow has been extended to other flow 
regimes, then, it was used as reference point for the 
comparisons. 

The pressure and pressure derivative curve 
provided in Figure-1 was generated for a constant-flow 
rate of 300 BPD and information from the second column 
of Table-1. The analysis was performed first with variable 
time and uncontrolled variable rate which is referred as 
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case-1. Then, the rate variation was set isochronally for 
flow rate changes in an uncontrollable way referred as 
case-2. Isochronal variations of increasing flow rate 
changes corresponds to case-3, and the isochronal flow 
rate decreasing values was called case-4. Also, we 
extended case-2 for a horizontal well (case-5) and case 2 
for a hydraulically-fractured vertical well (case-6). The 
purpose of these two examples was to compare the radial 
equivalent time to those of bilinear, elliptical and spherical 
flow regimes.  

Figure-2 shows the normalized pressure 
derivative for radial, linear and pseudosteady equivalent 
times. If compared con Figure-1, as expected, the 
derivative is noisy. 
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Figure-1. Pressure and pressure derivative log-log plot for 
a constant production rate case in a rectangular-shaped 

reservoir. 
 

Table-1. Reservoir and fluid data for example and 
simulation runs. 

 

Parameter Cases 1-
4 

Hydraulic 
fracture, 

case-5 

Horizontal 
Well, case-6 

Pi, psi 3000 3000 3000 
B, bbl/STB 1, 3 1,3 1, 3 

h, ft 30 30 100 
rw, ft 0, 3 0,3 0,3 

ct, 1/psi 1, 9x10-5 1,9x10-5 1, 9x10-5 
k, md 200 200 43, 42 
µ , cp 3 3 3 

φ , % 0, 1 0,1 0,1 

XE, ft 3000 4000 4000 
YE, ft 30000 15000 15000 

C, bbl/psi 0, 005 0, 005 0, 005 
xf, md  200  

kfwf, md- ft  5000  
Zw, ft   50 
Lw, ft   700 

Table-2. Flow rate schedule for uncontrolled 
changing flow rate. 

 

t, hr q, BPD 
0, 5 300 
5, 5 430 
64 330 
130 380 
300 310 
800 270 

3700 350 
4000 425 
40000 360 
8000 315 
20000 225 
60000 306 

 
Table-3. Isochronal changing flow rate. 

 

 q, BPD 

t, hr Uncontrolled 
changing Increasing Decreasing 

0,5 209 300 440 
3 237 303 418 
6 341 318,15 397,1 
9 285 321,33 377,25 
30 201 337,4 358,39 
60 348 340,8 340,46 
90 233 357,8 323,44 
300 349 361,4 307,27 
600 373 379,46 291,9 
900 242 383,25 277,31 
3000 346 402,41 263,44 
6000 339 406,44 250,27 
9000 348 426,76 237,76 

30000 342 431,03 225,87 
60000 307 452,6 214,58 
90000 254 457,1 203,85 
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Figure-2. Normalized pressure and normalized pressure 
derivative log-log plot for radial, linear and equivalent 

time functions – case-1. 
 

Presents some noise, see Figure-3, the tendency 
among them is very close. Notice that the noise precedes 
from two sources: (1) due to the changing rate, and (2) at 
the end of each flow period, the pressure derivative takes 
points from other flow regime which increases the noise. 
Then, in the analysis we will not consider the points close 
to the time when the flow rate changes. 

Since, so far, the radial equivalent time has been 
used indiscriminately in other flow regime, the idea is to 
establish a comparison of its failure or acceptance in other 
flow regimes. Then, the radial equivalent time will be used 
as comparison point with the equivalent times of the other 
flow regimes named linear, pseudosteady state, spherical/ 
hemispherical/parabolic, bilinear and elliptical.  
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Figure-3. Normalized pressure derivative Cartesian plot 
for the radial, linear and pseudosteady state equivalent 

time derivatives – case-1. 
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Figure-4. Normalized and filtered pressure derivative 
cartesian plot for the radial, linear and pseudosteady 

state equivalent time derivatives – case-1. 
 

Notice in Figure-3 how the pressure becomes 
noisier in the neighborhood of the flow rate changes. Such 
points were removed and the clean plot was rebuilt in 
Figure-4. A better definition of the normalized pressure 
derivative is shown in such plot. Notice that the 
differences among them are not significant. An Average 
arithmetic difference between the radial and linear 
derivatives of 0.0014 psi/BPD was estimated while 
between the radial and pseudosteady derivatives were 
0.0024 psi/STB. Although, the two differences are 
significantly apart, see Figure-5, we will see later that the 
effect is negligible in the calculation of the average 
reservoir pressure. 

As indicated before, case-2 deals with isochronal 
changes in an uncontrollable flow rate. The normalized 
pressure derivative log-log plot is shown in Figure-6. As 
expected, the derivative is noisy due to the immoderate 
changes in flow rate. Figure-6 shows a Cartesian filtered 
derivative plot in which very small differences among the 
flow regimes are observed as illustrated in Figure-8. The 
average differences 0.0099 and 0.017 psi/BPD for radial-
linear and radial-pseudosteady state, respectively. 
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Figure-5. Differences between the radial-linear equivalent 
normalized derivatives and between the radial-pseudosteady 

normalized derivatives – case-1. 
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Figure-6. Normalized pressure and normalized pressure 
derivative log-log plot for radial, linear and equivalent 

time functions – case-2. 
 

For case-3, the isochronal flow rate change was 
set increasingly. The normalized pressure derivative curve 
is presented in Figure-9. Notice that the derivative is 
smoother than in the former cases due to gradually 
changes in flow rate. Even though, the filtered derivative 
values are reported in Figure-10 for comparison purposes 
and the differences in the derivative values is reported in 
Figure-11. 

The average differences for case-3 are 0.0078 and 
0.0011 psi/BPD for radial-linear and radial-pseudosteady 
state, respectively. 
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Figure-7. Normalized and filtered pressure derivative 
cartesian plot for the radial, linear and pseudosteady 

state equivalent time derivatives – case-2. 
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Figure-8. Differences between the radial-linear equivalent 
normalized derivatives and between the radial-pseudosteady 

normalized derivatives – case-2. 
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Figure-9. Normalized pressure and normalized pressure 
derivative log-log plot for radial, linear and equivalent 

time functions – case-3. 
 

The normalized pressure derivative log-log plot 
for case-4 - isochronal decreasing flow rate - is shown in 
Figure-12. Again, the noise is due to the changes in flow 
rate and the interaction of different flow periods in the 
estimation of the pressure derivative. As for the former 
cases a filter was performed and the filtered data are given 
in Figure-13. 
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Figure-10. Normalized and filtered pressure derivative 
cartesian plot for the radial, linear and pseudosteady 

state equivalent time derivatives – case-3. 
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Figure-11. Differences between the radial-linear 
equivalent normalized derivatives and between the 
radial-pseudosteady normalized derivatives-case-3. 
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Figure-12. Normalized pressure and normalized pressure 
derivative log-log plot for radial, linear and equivalent 

time functions - case 4. 
 

The average differences for case 4 are 0.023 and 
0.032 psi/BPD for radial-linear and radial-pseudosteady 
state, respectively. 
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Figure-13. Normalized and filtered pressure derivative 
cartesian plot for the radial, linear and pseudosteady 

state equivalent time derivatives – case-4. 
 

Case-5 considers a horizontal well in which the 
elliptical flow regime is observed. For this scenario only 

the isochronal changes of an uncontrolled flow rate were 
studied. Figure-15 presents the normalized pressure and 
pressure derivative log-log plot. Figure-16 is obtained 
after removing the noisy points due to the change of flow 
rate. The differences between the radial and elliptical 
equivalent time derivatives are shown in Figure-17. The 
average difference between the radial and elliptical 
normalized derivatives is 0.0043 psi/STB. 
 

0

0.1

0.2

0.3

0.4

0 10 20 30 40 50 60 70
Point number

N
or

m
al

iz
ed

 p
re

ss
ur

e 
de

riv
at

iv
e 

di
ffe

re
nc

es _ _* ' * 'eq rad q eq lin qt P t P∆ − ∆
_ _* ' * 'eq rad q eq pss qt P t P∆ − ∆

 
 

Figure-14. Differences between the radial-linear 
equivalent normalized derivatives and between the 
radial-pseudosteady normalized derivatives-case-4. 

 
Case-6 considers a hydraulically-fractured 

vertical. Both bilinear and parabolic flow regimes are 
seen. For the parabolic flow the reader is referred to 
Escobar, Munoz, Sepulveda, and Montealegre (2005). 
Since the pressure derivative displays a negative one-half 
slope during the parabolic, hemispherical and spherical 
flow regimes, in this work, the corresponding time 
function will be named as if it were the spherical flow. 
Again, for this situation only the isochronal change of an 
uncontrolled flow rate was studied. 

The average differences for case-6 are 0.0028 and 
0.0056 psi/BPD for radial-bilinear and radial-spherical 
flow regimes, respectively. All the average differences are 
summarized in Table-4. 
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Figure-15. Normalized pressure and normalized pressure 
derivative log-log plot for radial and elliptical equivalent 

time functions – case-5. 
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Figure-16. Normalized and filtered pressure derivative 
cartesian plot for the radial and elliptical equivalent 

time derivatives – case-5. 
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Figure-17. Differences between the radial-elliptical 
equivalent normalized derivatives- case-5. 

 
4. EXAMPLES 

Two examples are given to compare the results of 
an estimation of the average reservoir pressure and the 
half-length of the fracture, respectively, when the 
equivalent time functions are appropriately used instead of 
the radial equivalent time.  
 

Table-4. Summary of average normalized pressure 
derivative differences. 

 

Case Radial-linear Radial -pseudoestable 
1 0.00143238 0.00244249 
2 0.00999592 0.01701252 
3 0.00787595 0.01094802 
4 0.02292843 0.03215965 

 Radial - bilinear Radial-spherical 
5 0.002858 0.00563419 

 Radial - elliptical 
6 0.00428172 
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Figure-18. Normalized pressure and normalized pressure 
derivative log-log plot for radial, bilinear and spherical 

(parabolic) equivalent time functions – case-6. 
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Figure-19. Normalized and filtered pressure derivative 
Cartesian plot for the radial, bilinear and spherical 

equivalent time derivatives – case-6. 
 
4.1. EXAMPLE-1 

A multi-rate test was simulated with the 
information provided in the second column of Table-1. 
The normalized pressure and pressure derivative log-log 
plot along with some characteristic points are given in 
Figure-21. Estimate the average reservoir pressure using 
the radial equivalent time function and the pseudosteady-
state equivalent function. 
 

Solution. Escobar, Ibagon and Montealegre 
(2007) presented a methodology for the estimation of the 
average reservoir pressure using the TDS technique, Tiab 
(1993). The shape factor and the average reservoir 
pressure are estimated using an arbitrary point on the 
pseudosteady-state period, using the following 
expressions: 
 

1

2

0.001055 ( )2.2458= 1
( * ')

pss q pss
A

w t q pss

kt PAC exp
r c A t P

π
φµ

−
⎧ ⎫⎡ ⎤⎛ ⎞∆⎪ ⎪−⎢ ⎥⎜ ⎟⎨ ⎬⎜ ⎟∆⎢ ⎥⎪ ⎪⎝ ⎠⎣ ⎦⎩ ⎭

     (18) 

 

2

( * ')70.6 2.2458ln
( ) ( * ')

q pssn
i

q pss q pss A w

t Pq B AP P
kh P t P C r

µ ⎡ ⎤⎛ ⎞∆ ⎛ ⎞
= − ⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟∆ − ∆⎢ ⎥⎝ ⎠⎝ ⎠⎣ ⎦

         (19) 
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Figure-20. Differences between the radial-spherical 
equivalent normalized derivatives and between the 

radial-bilinear normalized derivatives – case-6. 
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Figure-21. Normalized pressure and normalized pressure 
derivative log-log plot for example-1. 

 
The following information was read from Figure-21. 
 
(teq_rad) pss = 20713.3 hr (teq_rad*∆Pq’)pss = 1.09 psi/BPD 
(teq_pss) pss = 20239.5 hr (teq_pss*∆Pq’)pss = 1.034 psi/BPD 
(∆Pq) pss = 1.767 psi/BPD 
 

The above parameters were used in Equations (1) 
and (2) to estimate the shape factor and the average 
reservoir pressure, as reported in Table-4. Although, the 
shape factors were different, an absolute error of only 0.1 
% was found in the estimation of the average reservoir 
pressure. As noted in Equation (2), the shape factor is 
inside a natural log which has a small impact in the 
estimation of the average reservoir pressure. 
 

Table-5. Results for Example-1. 
 

Equivalent time function 
Parameter 

Radial Pseudosteady 
CA 135.71 18.4 

P  2557.9 2566.1 
 
 
 

4.2. EXAMPLE-2 
Figure-22 presents synthetic normalized pressure 

and pressure derivative data for a hydraulically-fractured 
well. The simulation run was performed using information 
from the third column of Table-1 for the case of infinite-
conductivity fracture. Linear and radial equivalent times 
are compared in this example. However, the test was also 
run with a constant flow rate of 300 BPD to observe the 
deviation of the linear flow as a consequence of the flow 
rate changes, then, the example will be worked with 
characteristic derivative points before and after the first 
flow rate change. The following information was read 
from Figure-22. 
 
For constant flow rate: 
 
(teq)L = 0.032 hr     
(teq*∆Pq’)L = 0.007 psi/BPD 
 

A slight variation of an expression provided by 
Tiab, Azzougen, Escobar and Berumen (1999) to estimate 
the half-fracture length is given as follows: 
 

( )
2.032

* '
L

f
tq L

tBx
c kh t P
µ
φ

=
∆

                                             (20) 

 
A resulting fracture-half length of 199.94 ft was 

obtained. This agrees very well with the input value of 200 
ft. 
 
Reading points before first flow rate change: 
 
(teq_rad)L = (teq_lin) L = 0.02 hr     
(teq_rad*∆Pq’)L = (teq_lin*∆Pq’) L = 0.005 psi/BPD 
 

Which gives a half-fracture length of 221.3 ft. 
When reading the points after first flow rate change: 
 
(teq_rad)L = 2.381 hr     
(teq_lin)L = 2.387 hr    
(teq_rad*∆Pq’)L = 0.020786 psi/BPD 
(teq_rad*∆Pq’)L = 0.020675 psi/BPD 
 

Values of fracture half-length of 583.9 and 581.5 
ft were found using radial and linear equivalent time 
functions, respectively. In both cases the fracture is 
overestimated more than a 100% since the change of rate 
deviated the expected tendency of the linear flow regime. 
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Figure-22. Normalized pressure and normalized pressure 
derivative log-log plot for example-2. 

 
5. COMMENTS ON THE RESULTS 

It can be observed by inspecting the average 
differences among the normalized functions estimated 
with the different time functions that the smallest value 
corresponds to the radial-linear case of increasingly 
changing rate. However, a general small difference is seen 
in most of the normalized pressure derivatives. Besides, 
the plots showing the normalized pressure derivative 
differences show small differences among all the 
derivatives with the radial equivalent time function which 
was selected as reference point since this has been widely 
used without considering whether or not is valid. The main 
finding of this work is that the radial equivalent time 
function can be used in other flow regimes with a 
neglected difference.  

On the other hand, the estimation of the average 
reservoir pressure provided an absolute deviation error of 
0.1% when using the radial and pseudosteady-state time 
functions which confirms the above statement. 

We found, however, that changes in the flow rate 
deviates the normal behavior of the linear and bilinear 
flow regimes which leads to erroneous estimation of the 
fracture parameters. 

Decreasing variable rate is recommended to avoid 
falling below the bubble point pressure. 

The finite-difference algorithm for estimation the 
pressure derivative provides significant noise during the 
flow rate changes since points on both sides of the flow 
regime are used, even though, the belong to different 
tendencies. Then, an improved algorithm is recommended. 
 
6. CONCLUSIONS AND RECOMMENDATIONS 

The radial superposition function can be used in 
other flow regimes with negligible effects.  

The estimation of the average reservoir pressure 
using radial and pseudosteady-state superposition function 
provided an absolute error 0f 0.1% confirming that the 
radial superposition function can be used to estimate this 
parameter. However, the value of the shape factor gave 
significant differences. 

Care should be taken while dealing with 
hydraulic fractures. The flow rate changes deviate the 
normal tendency of either the linear and bilinear flow 

which leads to inaccurate estimation of fracture 
parameters. 
 
Nomenclature 
 

A Area, ft2 
B Volumetric factor,  rb/STB
CA Dietz shape factor 
ct System total compressibility, 1/psi
k Permeability, md 

kfwf Fracture conductivity, md- ft
Lw Horizontal well length, ft 
P Pressure, psi 
qn n-th flow rate , STB/D 
t Time, hr 
r Radius, ft 

t*∆P’ Pressure derivative, psi 
teq*∆Pq’ Normalized pressure derivative, psi/BPD
∆Pq (Pi  - Pwf)/qn 
XE Reservoir length, ft 
xf Hydraulic fracture half-length, ft
YE Reservoir width, ft 
Zw Distance from top to horizontal well, ft

 
Greeks 
 
∆ Change, drop
φ Porosity, fraction
µ   Viscosity, cp

 
Suffices 
 

bil Bilinear
ell Elliptical
eq Equivalent
eq bil Equivalent bilinear
eq lin Equivalent linear
eq ell Equivalent elliptical 
eq rad Equivalent radial
eq pss Equivalent pseudosteady 
eq sph Equivalent spherical 
i Initial
lin Linear
L Linear (any point on linear flow) 
r Radial (any point on radial flow) 
rad Radial
pss Pseudosteady (any point on pseudosteady state)
sph Spherical
w Wellbore
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