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ABSTRACT 

Trapezoidal box girders are often used in straight and curved bridges due to the large torsional stiffness that 
results from the closed cross section. However, the torsional loading on the box girder can cause the cross section to distort 
from its original shape, which results in distortional stresses in the walls of the box section. This paper presents an 
analytical study on variation of these distortional stresses with the thinness of the walls of trapezoidal box girder sections. 
Typical torsional loads on box girder bridges were used to obtain the distortional components of these applied torsional 
loads. Expressions for the generalized governing equations of torsional and distortional equilibrium were obtained on the 
basis of Vlasov’s theory of thin-walled structures. Using the principle of minimum potential energy of a structure, the 
potential energy of the frame at equilibrium was obtained and minimized with respect to its functional variables to obtain 
the differential equations of equilibrium for torsional-distortional analysis of trapezoidal box girders structures. Strain 
modes diagram were generated for various cross sectional member thicknesses and used to obtain the coefficients for the 
differential equations of equilibrium. By keeping the wall thicknesses of various cross sectional members (deck slab, web, 
and bottom flange slab) uniform, a practical range of wall thickness for such girders was obtained. By keeping the 
thickness of the web and bottom flange slab constant, within the practical range of wall thickness, and varying the 
thickness of the deck slab alone, the effect of slab thickness on the torsional-distortional response of thin-walled mono-
symmetric box girder bridges was studied. 
 
Keywords: box girder, deck slab, distortion, thin-walled, torsion, wall thickness. 
 
1. INTRODUCTION 

Torsional effects created by eccentric loads (on 
straight bridge girders or by centrifugal forces on curved 
bridge girders tend to deflect and rotate the box girder 
structure and also distort the cross section in terms of 
displacement. These may give rise to significant transverse 
bending and longitudinal warping stresses which are 
usually not easy to evaluate. 

The torsional-distortional behaviour of such box 
girder structures may be exactly predicted by a closed-
form solution of the governing differential equations for 
the appropriate boundary restraints, interface conditions 
and torsional loadings. Alternately, the box girder may be 
descretized and a numerical or matrix method of analysis 
may be applied for an accurate approximation of the 
response. Finite element (matrix) formulations of the 
problem are numerous, Lonkar (1968), whereas closed-
form and numerical technique solutions are scarce, Lee 
and Szoba (1967), Osadebe and Mbajiogu (2006).   

In this work, a general procedure for obtaining 
and applying the governing differential equations of 
equilibrium for torsional-distortional analysis of mono-
symmetric box girder bridges based on Vlasov’s theory of 
thin-walled structures, Vlasov (1958), is presented. 

Eleven specific cross section examples involving 
various wall thicknesses and cross-sectional arrangements 
were considered. The results obtained were used to predict 
the effect of deck slab thickness on the torsional-
distortional behaviour of reinforced concrete box girder 
bridges. 
 
 

2. THEORY  
 
2.1. Background principles  

The elastic strains and stresses as well as their 
corresponding strain relations for a thin walled box girder 
can be obtained after the formulation of Vlasov’s 
displacement functions. In this study, generalized strain 
fields (modes) were employed in order to reduce the 
number of unknown displacement functions in the 
equations of equilibrium. Torsional- distortional analysis 
was accomplished by using energy principles on the basis 
of minimum potential energy to obtain the energy 
functional of thin walled box girder structures with 
arbitrary deformable cross sections. Using the principle of 
variational calculus the energy functional was minimized 
with respect to its functional variables which are 
displacement functionals and their first and second order 
derivatives, to obtain the equations of equilibrium in the 
form of a system of linear differential equations in 
displacement quantities. 

After obtaining the strain modes diagrams, the 
coefficients of these equations were determined using 
Morh’s integral for displacement computations. By 
solving these linear differential equations the displacement 
functions (longitudinal and transverse displacements) were 
obtained and the distortional bending moments evaluated. 
 
2.2. Potential energy of a thin-walled box structure 

The potential energy of a box structure in terms 
of the strain energy and the work done by external loads is 
as follows, Osadebe and Chidolue (2012): 
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'( ) '( )
2 ij i j
E a U x U x dxΠ = +∑

( ) ( ) ( ) '( )
2 ij i j kj k j
G b U x U x c U x V x dx+ ⎡ ⎤+∑ ∑⎣ ⎦ + 

 

+ [ ]( ) '( ) '( ) '( )
2 ih i h kh k h
G c U x V x r V x V x dx+∑ ∑ + 

 

+ ( ) ( )
2 hk k h
E s V x V x dx∑ - h hq V dx∑                          (1) 

 
where Π  = the total potential energy of the box structure, 
Ui(x) and Vk(x) are unknown functions which express the 
laws governing the variation of the displacements along 
the length of the box girder frame. 

hq = Line load per unit area applied in the plane of the    
       box girder plates                                                                                         
E = Modulus of elasticity 
G = Shear modulus 

, ,ij ij kja b c , rkh , shk  are Vlasov’s coefficients given 
by the  following expressions, Osadebe and Chidolue 
(2012). 
 

( ) ( )ij ji i ja a s s dAϕ ϕ= = ∫                                           (a) 

 
' '( ) ( )ij ji i jb b s s dAϕ ϕ= = ∫                                           (b) 

 
' ( ) ( )kj jk k jc c s s dAϕ ψ= = ∫                                         (c) 

 
' ( ) ( )ih hi i kc c s s dAϕ ψ= = ∫                                          (d) 

 
( ) ( ) ;kh hk k hr r s s dAψ ψ= = ∫                                       (e) 

 

( )

( ) ( )1 k h
kh hk

s

M s M ss s ds
E EI

= = ∫                                (f)  

 

h hq q dsψ= ∫                                                        (g) (2) 

 
These coefficients depend on a combination of 

elementary displacements or strain fields; three in the 
longitudinal direction and four in the transverse direction. 
The strain fields are: 
 

1ϕ  = out of plane displacement strain mode, due to 
vertical load normal to bridge longitudinal / horizontal 
plane  

2ϕ  = out of plane displacement strain mode, due to 
horizontal load normal to bridge longitudinal/vertical 
plane 

3ϕ = out of plane displacement strain mode, due to 
warping of the cross section 

1ψ = in-plane displacement strain mode, due to vertical 
load, normal to bridge longitudinal / horizontal plane  

2ψ  = in-plane displacement strain mode, due to horizontal 
load normal to bridge longitudinal / vertical plane 

3ψ  = in-plane displacement strain mode, due to distortion 
of the cross section 

4ψ  = in-plane displacement strain mode, due to pure 
rotation of the cross section. 

'iϕ and 'jϕ are first order derivatives of iϕ  and jϕ , 
respectively. 
 

Some or all of these strain modes may be present 
in a given frame depending on the geometry of the cross 
section and the nature of loading. 
 
2.3. Governing equations of equilibrium 

The governing equations of torsional-distortional 
equilibrium are obtained by minimizing the energy 
functional equation (1), with respect to its functional 
variables U(x) and V(x) using Euler Lagrange technique, 
Elsgolt (1980). 
Minimizing with respect to U(x) we obtain; 
 

1 1 1

''( ) - ( ) - '( ) 0
m m n

ij i ij i kj k
i i k

k a U x b U x c V x
= = =

=∑ ∑ ∑         (3)          

 
Minimizing with respect to V(x) we have; 
 

'( ) ( )ih i hk kc U x s V xκ−∑ ∑
1

''( ) 0kh k h
G

r V x q+ + =∑ ∑                                     (4)                   

 

 where, 2(1 )E

G
κ ν= = +                                              (5) 

 
ν = poisson ratio 
 

Equations (3) and (4) are Vlasov’s generalized 
differential equations of torsional-distortional equilibrium 
for a box girder. They are presented in matrix form as 
follows: 
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 The ija  coefficients depend on the interaction 

between strain modes 1,ϕ 2ϕ  and 3ϕ , giving rise to the 
elements in the first square bracket of equation (6). The 

ijb  coefficients depend on the interaction between the 

derivatives of strain modes 1,ϕ 2ϕ  and 3ϕ , i.e., 

1 2', ',ϕ ϕ and 3 'ϕ , giving rise to the elements in the 

second square bracket in equation (6). The kjc  and ihc  
coefficients depend on the interactions between the 
derivatives of strain modes iϕ and strain modes kψ , i.e., 

between 1 2 3', ', 'ϕ ϕ ϕ and 1 2 3 4, ,,ψ ψ ψψ , from where 
we obtain the elements in the third square bracket in 
equation (6) and the first square bracket in equation (7). 
The khr  coefficients depend on the interaction between 

strain modes 1 2 3, , ,ψ ψ ψ 4ψ , giving rise to the elements in 
the third square bracket in equation (7). The 

hks coefficients given by equation 2(f) depend on the 
bending deformation of the strip, characterized by the 
distortional bending moments 1 2 3, , ,M M M  and 4M  due 

to 1 2 3, , ,ψ ψ ψ  and 4ψ  strain modes.  To compute the 
coefficients we need to construct the diagram of the 
bending moments due to the strain modes, 

1 2 3 4, , andψ ψ ψ ψ     . Incidentally, 1ψ , 2ψ and 4ψ  strain 
modes do not generate distortional bending moments as 
they involve pure bending and pure rotation. Only 3ψ  
strain mode generates distortional bending moment which 

can be evaluated using the distortion diagram for the 
relevant cross section, Rekach (1978). Consequently the 
relevant expression for the hks coefficients becomes;  
 

3 3( ) ( )1
hk kh

s s

M s M s
s s

E EI
= = ∫ ,                                   

 
where 3 ( )M s  is the distortional bending moment of the 
relevant cross section. 
 
3. STRAIN MODE DIAGRAMS AND EVALUATION  
    OF VLASOV’S COEFFICIENTS 

Figure-1(a) shows the cross section of a single 
cell mono symmetric thin-walled box girder structure 
(regarded as a frame) for which the strain modes diagrams 
were obtained for various combinations of top flange, 
bottom flange  and web thicknesses, ranging from 100mm 
to 400mm. For each combination of cross section 
dimensions the strain modes diagrams were obtained and 
Vlasov’s coefficients computed for numerical analysis of 
the box girder structures. The procedures for evaluation of 
Vlasov’s coefficients are given in literatures, Chidolue 
(2012), Osadebe and Chidolue (2012), Rekach (1978). 
Figures 1(b) to 1(h) show typical generalized strain modes 
diagrams for a single cell mono-symmetric thin-walled 
box girder structure with wall thickness of 300mm for top 
flange and 350mm for web and bottom flange. The 
computed relevant Vlasov’s coefficients for torsional-
distortional analysis of this box girder structure and other 
box girder structures with various combinations of wall 
thicknesses are given in Tables 1(a) and 1(b).  
 

 
 

(a) Single cell box girder section for numerical 
analysis. 

 

 
 

(b) Longitudinal strain mode diagram: y-y axis bending 
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(c) Transverse strain mode in y-direction. 
 

 
 

(d) Longitudinal strain mode diagram 
(Bending about z-z axis). 

 

 
 

(e) Transverse strain mode in z-direction. 
 

 
 

(f) Warping function diagram. 
 

 
 

(g)  Distortion diagram. 
 

 
 

(h) Pure Rotation diagram. 
 

Figure-1. Generalized strain modes for single cell 
mono-symmetric box girder frame with 

300 ,tft mm= 350bft t mmw = = . 

 
Table-1(a). Values of relevant vlasov’s coefficients. 

 

Uniform thickness of 
cross section members 

tf bf wt t t= =   (mm) 
a 33 b33, c33, r33 c34, c43, r34 r43 r44 s33 x 10-4 

          100 0.373 0.693 0.623 7.20 0.217 
          150 0.560 1.040 0.935 10.80 0.734 
          200 0.746 1.386 1.246 14.40 1.740 
          250 0.933 1.733 1.558 18.00 3.398 
          300 1.119 2.079 1.869 21.60 5.872 
          350 1.306 2.246 2.181 25.20 9.325 
          400 1.492 2.772 2.492 28.80 13.92 
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Table-1(b). Values of relevant vlasov’s coefficients for varying wall thickness. 
 

,bf wt t = 350mm, 

varying tft (mm) 
see Figure-1(a) 

a 33 
b33, c33, r33 

 c34, c43, r34 r43 r44 s33 x 10 -3 

300 1.468 2.812 2.335 24.243 0.888 
350 1.306 2.246 2.181 25.20 0.932 
400 3.351 3.820 2.558 26.765 3.065 
500 10.603 7.654 2.964 27.35 10.610 
700 23.653 14.295 3.105 29.222 27.89 

 
4. FORMULATION OF DIFFERENTIAL  
    EQUATIONS OF EQUILIBRIUM FOR MONO  
    SYMMETRIC BOX GIRDER SECTIONS   

The relevant coefficients for torsional-distortional 
equilibrium (strain modes 3 and 4), are a33, b33, c33, c34, r33, 
r34, r44 and s33. All other coefficients are taken as zero. 
Substituting these into the matrix notation equations (6) 
and (7) and multiplying out, we obtain: 
 

33 3 33 3 33 3 34 4''- - '- ' 0ka U b U c V c V =                             (8) 
 

3
33 3 33 3 33 3 34 4'- '' '' - qc U ks V r V r V

G
+ + =                        (9) 

 

4
43 3 43 3 44 4' '' '' - qc U r V r V

G
+ + =                                    (10) 

 
Simplifying further by eliminating 3U , 3 'U  and 

3 ''U  we obtain the coupled differential equations of 
torsional-distortional equilibrium for the analysis of mono 
symmetric box girder sections as follow: 
 

1 4 1 3 1

1 3 2 4 2 4 2

''- ( )

- '' ( )iv iv

V V K a

V V V K b

β γ

α α β

=

+ =
                           (11) 

 
where, V3 and V4 are  the distortional displacement and 
the torsional displacement, respectively of the box girder 
structure. 
 

1 33 43ka cα = :     2 33 44ka rα = :        1 43 33c ksγ =     (12)  

1 34 43 33 44-r c c rβ = :     33 44 34 43
2

33 43

- ,b r c c
ka c

β =             (13)   

 

34
1 33 43- qqK c c

G G
= 33 4

2
33 43

b qK
ka c G

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

              (14) 

5. TORSIONAL-DISTORTIONAL ANALYSIS OF  
    THIN-WALLED MONO SYMMETRIC BOX  
    GIRDER STRUCTURES 

In this section the solutions of the differential 
equations of equilibrium, equations 11(a) and 11(b) are 
obtained for various combinations of wall thicknesses of 

the single cell mono symmetric box girder section shown 
in Figure-1 (a).  

Live loads were considered according to 
AASHTO-LRFD (1998), following the HL-93 loading: 
uniform lane load of 9.3N/mm distributed over a 3m width 
plus tandem load of two 110 KN axles. The loads were 
positioned at the outermost possible location to generate 
the maximum torsional effects on the box girder bridge. A 
three span simply supported bridge deck structure, 50m 
per span, was considered.  

The obtained torsional loads are as follows; 

3 4157.16 , 1808.13q KN q KN= = .  
The governing equations of equilibrium are  
 

1 4 1 3 1

1 3 2 4 2 4 2

''-

- ''iv iv

V V K

V V V K

β γ

α α β

=

+ =
                                         (15) 

 
Taking, for example, the basic cross section, 

Figure-1a, with tf bf wt t t= = = 200mm, the values of the 
relevant coefficients from Table-1(a) are; 
 

33 33 33 330.746; 1.386a b c r= = = =  

34 43 34 43 1.246;c c r r= = = =  

44 14.40r = , -4
33 1.740*10s =   

 
The parameters for the governing equations are, 
 

1 33 43 2.324ka cα = =  
 

2 33 44 26.857ka rα = =  
 

1 34 43 33 44- -18.406r c c rβ = =  
 

2 33 44 34 43- 18.406b r c cβ = =  
-4

1 43 33 5.420*10c ksγ = =  
 

-5
1 33 33 2.836*10/K b q G= =  
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-433 4 43 3
2 2.356*10

c q c q
K

G
−

= =  

 
9 2 9 224*10 / , 9.6*10 / , 2.5E N m G N m k= = =  

 
Substituting these parameters into equation (15) we obtain: 
 

4 3

3 4 4

-4 4

-3

--18.406 - 5.420*10 2.836*10

2.324 26.856 -18.406 '' 1.833*10

ivV V
iv ivV V V

=

+ =
  (16)                                                                                                                           

 
Integrating by method of trigonometric series 

with accelerated convergence, we have 
 

-3
3 ( ) 355.31*10 ( / 50)V x Sin xπ=    

 
-3

4 ( ) 3.047*10 ( / 50)V x Sin xπ=                            (17) 
 

The results for similar analysis of the thin-walled 
mono-symmetric box girder structures whose wall 
thicknesses and Vlasov’s coefficients are given in tables 
1(a) and 1(b) respectively are given in Tables 2(a) and 
2(b). 
 
6. RESULTS AND DISCUSSIONS  

The first set of results, Table-2(a) is for box 
girder sections with uniform wall thicknesses, while the 
second set of results, Table-2(b), is for varying deck 
thickness. In the later case, the thicknesses of the web and 
bottom flange materials were kept constant while varying 
the thickness of the deck (top flange) slab. 
 

Table-2(a). Variation of maximum distortional and 
torsional displacements with wall thickness. 

 

Uniform wall 
thickness 

(mm) 

Distortional 
displacement 

*3 50
x

V Sin
π  (mm) 

Torsional 
displacement 

*4 50
x

V Sin
π (mm) 

100 3155.45 6.652 
150 923.25 4.392 
200 355.33 3.047 
250 207.40 2.73 
300 109.32 2.095 
350 69.42 1.808 
400 46.74 1.586 

 
 
 
 
 
 
 

Table-2(b). Variation of maximum (mid span) distortional 
and torsional displacements with deck thickness. 

 

,bf wt t = 350mm, 

Varying tft (mm) 

Distortional 
displacement 

*3 50
x

V Sin
π  (mm) 

Torsional 
displacement 

*4 50
x

V Sin
π (mm) 

300 79.32 1.892 
400 29.22 1.723 
500 15.00 1.694 
700 10.48 1.587 

 
6.1. Practical range of wall thickness 

For a given box girder span and cross section 
dimensions, there are corresponding values of thickness of 
materials which enables the bridge structure to satisfy both 
strength and serviceability requirements. For the purpose 
of this study, it is desired to determine the practical range 
of material (wall) thicknesses that will satisfy both 
strength and deflection requirements of the box girder 
structure.  

Whereas provision of appropriate reinforcements 
obtained from design calculations takes care of strength 
requirement of the box girder, deflection is essentially 
controlled by allowable values, depending on the code of 
practice. Taking the allowable deflection on a bridge 
structure as span/800, Xanthakos (1994), the practical 
range of thickness of material for the box girder section 
depends on the minimum values of the thickness of top 
flange (deck), bottom flange, and web materials at which 
the maximum (mid-span) deflection does not exceed 
span/800. 

Taking the total deflection ∆ to be made up of 
the bending (theoretical) deflection δ  and the distortional 
load deformation 3V , it therefore follows that 3Vδ∆ = + . 
For deflection requirements to be 
satisfied 3( ) /180V Spanδ + ≤ , ∴ 3 /180V Span δ≤ − . 
Hence limiting (uniform) thickness for top flange (deck), 
bottom flange and web materials are those for which     

3 /180V Span δ≤ −                                                     (18) 
 

Once the practical range of the uniform thickness 
of materials of the box girder section is established, the 
influence of any member thickness (in this case the 
thickness of the deck slab) on the torsional-distortional 
behaviour of the thin-walled box girder structure can be 
studied further. 

Table-3 shows the theoretical deflections 
compared with the distortional displacements for various 
wall thicknesses of the box girder section. The Table 
suggests that the minimum wall thickness of the box from 
practical point of view lies between 250mm and 300mm. 
This is further amplified by plots of the variation of 
maximum deflection, maximum distortion and limiting 
deflection with box girder wall thickness shown in Figure-
2, from where it can be ascertained that equation (18) is 
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satisfied at all material thicknesses greater than 275mm. 
Thus, the practical range of wall thickness within the 
limits of this study is 275mm and above. Figure-2 also 
reveals that within this range of uniform wall thickness, 
the distortional displacement is less than the limiting 
deflection, and the wall thicknesses of the box girder 
structure satisfy deflection requirements. 

By keeping the thickness of the bottom flange 
and the web fixed at 300mm while varying that of the deck 

slab, the result obtained, Figure-3, shows the variation of 
torsional and distortional displacements with thickness of 
the deck slab of a reinforced concrete box girder structure. 
A point to note here which is not well defined in Figure-3, 
because of limitation of vertical axis scale is that the 
variation of distortional displacement with slab thickness 
is parabolic in shape and asymptotic to a vertical axis 
drawn through the minimum permissible wall thickness. 

  
Table-3. Comparison of theoretical deflection, limiting deflection and distortional displacement. 

 

Uniform 
thickness of  

walls 

Theoretical 
deflection δ  

(mm) 
800
span

δ−  Limiting 

deflection (mm)) 

Distortional 
displacement 3V  (mm) 

150 290 227.5 923 
200 250 187.5 355 
250 224 161.5 207 
300 211 148.5 109 
350 197 134.5 69 
400 187 124.5 47 
500 172 109.5 22 
600 162 99.5 12 
700 151 88.5 9 
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Figure-2. Variation of maximum deflection, maximum 
distortion and limiting deflection with uniform box 

girder wall thickness. 
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Figure-3. Variation of maximum distortional and 
maximum torsional displacements with thickness 

of deck slab. 
 

Generally it can be stated that outside the 
practical range of material thicknesses the distortional 
displacements are far greater than the theoretical 
deflections. Torsional displacements were found to be 
negligible, 15%≤  of the corresponding distortional 
deformations. 
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CONCLUSIONS   
As would be expected, increasing the thickness of 

the cross sectional member’s increases the torsional 
rigidity of the box girder frame and lowers the distortional 
deformation. Box girders with wall thicknesses within the 
practical range have moderate distortional displacements 
(lower than the theoretical deflection of the girder. The 
practical range of wall thickness for trapezoidal box 
girders depend on parameters such as span of girder, 
overall dept of girder, width of top flange, and the 
inclination of the web members. 

For every cross sectional dimensions of a mono 
symmetric box girder, there is a corresponding minimum 
thickness of the members for the structure to satisfy 
distortional deformation as well as bending deformation 
(deflection). Optimization design of trapezoidal box girder 
structures is necessary in order to obtain sections that 
simultaneously satisfy bending, deflection and torsional 
and distortional stresses.   
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