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ABSTRACT 

In this research, a multilayer perceptron neural network model with multiactivation function called (MLP-MAF) 
model has been developed for municipal water demand forecasting. The developed model uses different activation 
functions in the hidden layer neurons. Different combinations of the linear, logistic, tangent hyperbolic, exponential, sine 
and cosine activation functions were used in the hidden layer neurons. In order to assess the credibility of developed model 
results, the model was run over the available data which include the time series of daily and monthly municipal water 
consumption for fourteen years (1/1/1992 - 31/12/2004) of Tampa city, USA. Each time series was divided into two 
subsets: the estimate subset for fitting the model and the holdout subset for evaluating the forecasting ability of the model. 
Additionally, three statistical measurements, namely the coefficient of determination (R2), the root mean square error 
(RMSE) and the mean absolute percent error (MAPE) and two hypothesis tests, namely the t-test and F-test have been 
reported for examining the forecasting accuracy of the developed model. The results show that the combination of linear, 
sine and cosine functions is better than other combinations. Furthermore, the effectiveness assessment of this model shows 
that this approach is considerably more accurate and performs better than the traditional multilayer perceptron (MLP) and 
radial basis function (RBF) neural networks. 
 
Keywords:  forecasting, ANN, water demand. 
 
INTRODUCTION 

The scarcity of water is considered the most 
challenging problem that is facing the countries in the 
world. The long term forecasting of municipal water 
demand in such countries is a critical and essential factor 
for water supply planning, which includes the determining 
of type, size, location and timing of the required 
improvements and developments of the water supply 
systems. On the other hand, short term forecasting of 
municipal water demand is required for water utilities to 
proactively optimize pumping and treatment operations to 
minimize energy, water supply and treatment costs while 
maintaining a reliable and high quality product for their 
customers. 

There are considerable amounts of published 
material dealing with water demand forecasting, all of 
which cannot be reviewed here. However, some principal 
contributions of historical interest will be cited. In the last 
few decades there has been a growing scientific interest in 
the development and use of water consumption forecasting 
models with monthly, weekly, daily and hourly time 
scales. Different mathematical models have been 
investigated and developed by a number of researchers, 
including regression models that estimate the water 
consumption as a function of economic and climatic 
variables and time series models. The autoregressive and 
autoregressive integrated moving average based models 
for forecasting of urban water consumption were also 
developed and compared. Several investigators proposed 
artificial neural networks as water consumption 
forecasting models with climatic variables and additional 
seasonal indices being the model inputs and these models 

have become prominent for water demand forecast as the 
neural network was found to outperform the regression 
and time-series models in some studies. Other models 
were proposed that explicitly take into account the 
seasonal, weekly and daily periodicity of urban water 
consumption. On the other hand, some studies can be 
found on the application of fuzzy logic, adaptive neuro-
fuzzy inference system and wavelet approach for water 
demand forecasting. 

Jain, et al. (2001) investigated a relatively new 
technique of Artificial Neural Networks (ANNs) for using 
in forecasting short term water demand. The ANN models 
consistently outperformed the regression and time series 
models developed in their study and complex ANN 
performs better than simple ANN. Zhang, et al. (2001) 
presented an experimental evaluation of neural networks 
for nonlinear time series forecasting. They focused on the 
feed forward multilayer networks which is known as the 
multilayer perceptrons (MLPs) and the effects of three 
important factors (the number of input nodes, the number 
of hidden nodes and the training sample size) on the neural 
network forecasting ability were examined by conducting 
a trail. They found that both the number of input nodes 
and the number of hidden nodes have significant effects 
and the number of observations (training sample size) has 
limited effects on ANN model building and predictive 
ability. Kim, et al. (2001) established an effective model 
for forecasting the daily urban water demand using feed 
forward neural networks with genetic algorithms. Alaa and 
Nisai (2004) presented an approach for short-term (daily) 
forecasting of municipal water use that utilizes a 
deterministic smoothing algorithm to predict monthly 
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water use. A two-step approach is employed whereby 
monthly forecasts are first developed using an adaptive 
exponential smoothing algorithm, then the daily forecasts 
is developed by forecasting daily deviations from the 
monthly average using a time-series regression model. 
Bougadis, et al. (2005) investigated a relative performance 
of regression, time series analysis and artificial neural 
network (ANN) models for short-term peak water demand 
forecasting. In their study, the Fourier analysis for 
detecting the seasonal and periodic components of time 
series was used. They found that the ANN technique 
substantially outperformed regression and time-series 
methods in terms of accuracy of forecasting. Zhang, et al. 
(2006) developed ANN models for short-term water 
demand forecasting with a detailed ANN modeling 
procedure, including identification and selection of input 
variables and training process. Two ANN models, one for 
the summer season, and another for the winter season, 
were developed independently, with different input 
variables. They found the concept of a division of summer 
and winter seasons were valid because it simplified the 
winter season model. Chang and Makkeasorn (2006) 
proposed and investigated a methodology to predict the 
water demand with respect to monthly scales in a major 
metropolitan area using population growth and land 
use/economic change estimations (i.e., real estate property 
tax variations) for two types of cities, (fast growth and 
slow growth) in the Great Orlando Metropolitan Area in 
Florida. The data (population, water consumption, land 
use, average incomes, etc.) are projected forward using 
ANNs models in the first stage analysis and the second 
stage analysis of their work aims at conducting a 
forecasting analysis using multilayer perceptron-based 
neural network models to forecast the future water 
demand. They concluded that the ANN model would 
create more accurate predictions if a better database was 
used.  Zhang, et al. (2007) employed an ensemble 
technique to integrate the uncertainty associated with 
weather variables in short-term water demand forecasting 
models to provide more reliable and reasonable forecasts. 
They found that the ensemble forecasting results, 
compared to the single final forecast computed from the 
usual deterministic models, improves the robustness of the 
prediction and the confidence band obtained from the 
ensemble model provides more reliable. Msiza, et al. 
(2007) compared the efficiency of Artificial Neural 
Networks (ANNs) and Support Vector Machines (SVMs) 
techniques in water demand forecasting. They found that 
the ANNs perform significantly better than SVMs. Also 
Msiza, et al. (2007) in another study investigated the 
multilayer perceptron (MLP) and the radial basis function 
(RBF) artificial neural networks for forecasting both short-
term and long-term water demand in the Gauteng 
Province, in the Republic of South Africa. They found that 
the most optimum approximation is the RBF with (r4logr) 
activation function. It was observed that the RBF 
converges to a solution faster than the MLP and it is the 
most accurate and the most reliable tool in terms of 
processing large amounts of non-linear, non-parametric 

data. Adamowski (2008) developed and compared 
multiple linear regressions, time series analysis, and 
artificial neural networks (ANNs) as techniques for peak 
daily summer water demand forecast modeling. The 
artificial neural network approach was shown to provide a 
better prediction of peak daily summer water demand than 
multiple linear regression and time series analysis. 
Ghiassi, et al. (2008) developed a dynamic artificial neural 
network model (DAN2) for comprehensive (long, 
medium, and short term) urban water demand forecasting. 
The DAN2 neural network model employs a different 
architecture than the traditional Feed Forward Back 
Propagation (FFBP) model and developed to forecast 
monthly demand values. Results have shown that DAN2 
models outperformed ARIMA and a FFBP-based ANN 
across all time horizons. Firat, et al. (2009) evaluated three 
artificial neural network techniques, Generalized 
Regression Neural Networks (GRNN), Feed Forward 
Neural Networks (FFNN) and Radial Basis Neural 
Networks (RBNN) based on their performance in 
forecasting monthly water consumptions from several 
socio-economic and climatic factors, which affect water 
use. They found that the model based on multiple input 
variables performances is better than the model based on a 
single input variable and Generalized Regression Neural 
Networks (GRNN) method is better than other ANNs and 
Multiple Linear Regression (MLR) models and can be 
successfully applied to establish accurate and reliable 
water consumption forecasting models. Leon F. and 
Zaharia M. H. (2010) proposed a stacked hybrid neural 
network model for time series forecasting. The model 
contains one normal multilayer perceptron with bipolar 
sigmoid activation functions and the other with an 
exponential activation function in the output layer. They 
found that the stacked hybrid neural network model 
performs well on a variety of benchmark problems for 
time series. 

The overall objective of this research is to 
develop an accurate model to forecast short and long term 
municipal water demand and apply it to the available data 
of water consumption. In order to meet this goal, a 
multilayer perceptron multi activation function neural 
network (MLP-MAF) model has been developed. The 
model differs from the traditional multilayer perceptron 
neural network that it uses neurons in the hidden layer 
with different types of activation functions. The model 
applied to the time series of daily and monthly water 
consumption of Tampa city, USA. 
 
The study area and available data 

Because the development of the water forecasting 
model is dependent on the availability of water 
consumption data, therefore, to illustrate the applicability 
and capability of the model developed in the present 
research is applied to area, which can access to the 
required data. The area that the required data have been 
obtained for and the developed model applied to it as a 
case study is Tampa in the USA. The available data 
includes the daily water consumption and climatological 
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data (minimum and maximum temperature, rainfall, mean 
relative humidity and mean wind speed) for a period of 
thirteen years from 1-January-1992 to 31-December-2004 
and the monthly data were derived from the daily data. 

The Tampa Bay Area is the region of west central 
Florida adjacent to Tampa Bay, USA. Tampa Bay Water is 
a regional wholesale drinking water utility that serves 
customers in the Tampa Bay, Florida region, USA as 
shown in Figure-1. The agency is special districts of the 
state created by inter local agreement among six member 
governments. Customers served in the area are 
predominantly residential users, with commercial, 
industrial and public consumption included (Asefa and 
Adams, 2007).  
 
 
 

Model performance and accuracy measurements 
The most important criterion for evaluating 

forecasting models or choosing between competing 
models is accuracy. Generally speaking, the closer the 
forecasts  to the observed values y, of the series, the 
more accurate the forecasting model is. Thus the quality of 
a model can be evaluated by examining the series of 
forecast errors ( ). The most commonly used 
measures of forecast accuracy are mean absolute error 
(MAE), mean squared error (MSE), root mean squared 
error (RMSE) and mean absolute percentage error 
(MAPE) (Rumantir, 1995). In addition to these measures, 
the most commonly used error measures in water 
resources modeling include the mean squared relative 
error (MSRE), the coefficient of determination (R2) and 
the coefficient of efficiency (CE) (Kingston, 2006). 

 

 
 

Figure-1. Tampa Bay area map which is used as a study area in the research (Asefa and Adams, 2007). 
 

A more realistic way of assessing a model’s 
accuracy is to use a holdout set, that is, some of the data at 
the end of the series are omitted before the models are 
estimated. Then the models are compared on the basis of 
how well they forecast the data, which have been withheld 
rather than how well they forecast the same data which has 

been used for modeling (Makridakis, et al., 1998). 
Therefore, in the present research for the purpose of 
selecting and comparison of forecasting models, the time 
series data were split into two sets. The first set of the data 
is used to estimate the parameters of the particular model 
(estimate set). Then with these estimates, the model is 
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used to forecast ahead the remaining data points (holdout 
set). To obtain information about the model’s ahead 
forecasting performance; the resulting out of sample 
forecasts is compared to the actual holdout series values. 
Some of the above measures are used for holdout data and 
the model that yields best values for these statistics on 
holdout set would be chosen as a good model. For monthly 
water consumption data, the last 24 months of the data 

were to be held out, and then the model were fitted on the 
remaining data and used to forecast 24 months ahead. On 
the other hand, for daily water consumption data the last 5, 
10 and 15 days of the data were held out. According to this 
partitioning of data, the number of estimation and holdout 
sets for the data considered in this research will be as 
shown in Table-1. 

 
Table-1. Duration and estimation with holdout water consumption data sets for Tampa area. 

 

Data Years Duration Estimation data 
No. 

Holdout data 
No. 

Monthly data 1992 - 2004 156 months 132 24 
Daily data 1992 - 2004 4745 days 4740, 4735, 4730 5, 10, 15 

 
In order to provide an indication for the 

performance of the developed models in the present 
research and goodness of fit between the observed and 
each of predicted values for estimating set (fit) and 
holdout set (forecast), R2, RMSE and MAPE were used for 
the models investigated in this research as shown in the 
following equations: 
 

   (1) 
 

   (2) 
 

   (3) 
 

In which N is the number of data points, ,  are 

the observed data with its mean, respectively and ,  are 
the corresponding predicted data with its mean, 
respectively. Also two additional statistical tests, t-test and 
F-test were used in this research to compare the mean and 
variance of observed and predicted series for estimating 
and holdout sets.  Among the most frequently used t-tests 
are a two sample location test of the null hypothesis that 
the means of two normally distributed populations are 
equal. The t-test statistic is: 
 

   (4) 
 

   (5) 
 
Where N1 and N2 are the subseries sizes, Xi is the sample 
values in the N1 series and Xj in the N2 series. The variable 
t of Equation (4) follows the Student -distribution with 
(N1 + N2 – 2) degrees of freedom. The critical value tc for 
the 95% significance probability level is taken from the 
Student t-tables. If , then there is a difference in 
the mean of two series. 

In statistics, an F-test for the null hypothesis that 
two normal populations have the same variance is 
sometimes used. The expected values for two populations 
can be different, and the hypothesis to be tested is that the 
variances are equal. The F-test statistic is: 
 

                                     (6) 
 
Where ,  are the variance of observed and predicted 

data, respectively. The observed and predicted sets have 
an F-distribution with N-2 degrees of freedom if the null 
hypothesis of equality of variances is true. The null 
hypothesis is rejected if F is either too large or too small. 
 
Multilayer perceptron neural network (MLP) 

The basic architecture of artificial neural network 
consists of three types of neuron layers: input layer, 
hidden layers and an output layer. Artificial neurons in one 
layer are connected, fully or partially, to the artificial 
neurons in the next layer. Feedback connections to 
previous layers are also possible (Engelbrecht, 2007). 

A multilayer perceptron is feed forward neural 
network architecture with unidirectional full connections 
between successive layers. Figure-2 shows the structure of 
a multilayer perceptron artificial neural network which has 
an input layer, a hidden layer, and an output layer of 
neurons. These three layers are linked by connections 
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whose strength is called weight. Thus there are two sets of 
weights: the input-hidden layer weights and the hidden-
output layer weights. These weights provide the network 
with tremendous flexibility to freely adapt to the data; they 
are the free parameters, and their number is equivalent to 
the degrees of freedom of a network (Samarasinghe, 
2006). 

The output of typical MLP neural networks with 
a single layer of hidden neurons, as shown in Figure-2, is 
given by: 
 

   (7) 
 

Where x is the input variable,  is the output, n 
is the number of neurons in input layer which is equal to 
the number of input variables, m is the number of neurons 
in hidden layer, w is the weights of input-hidden and 
hidden-output layers, b is the bias of hidden and output 
layers, fh is the activation function of hidden layer and fo is 
the activation function of output layer (Dreyfus, 2005). 

Training of multilayer perceptron artificial neural 
network basically involves feeding training samples as 
input vectors through a neural network, calculating the 
error of the output layer, and then adjusting the weights of 
the network to minimize the error. The average of all the 
squared errors for the outputs is computed to make the 
derivative easier. Once the error is computed, the weights 
can be updated one by one (Engelbrecht, 2007). The sum 
of squares error is simply given by the sum of differences 
between the target and prediction outputs defined over the 
entire training set. Thus: 
 

   (8) 
 

Where n is the number of training cases. It is 
clear that the bigger the difference between predictions of 
the network and the targets, the higher the error value, 
which means more weight adjustment, is needed by the 
training algorithm (Hill and Lewicki, 2007). 
 There are three main types of learning: 
supervised, unsupervised and reinforcement learning. The 
primary interests are the supervised learning algorithms, 
the most frequently used in real applications, such as the 
back propagation training algorithm, also known as the 
generalized delta rule. Two types of supervised learning 
algorithms exist based on when weights are updated: 
 
 Stochastic/online learning, where weights are adjusted 

after each pattern presentation. In this case the next 
input pattern is selected randomly from the training 
set, to prevent any bias that may occur due to the order 
in which patterns occur in the training set. 

 Batch/offline learning, where weight changes are 
accumulated and used to adjust weights only after all 
training patterns have been presented. 

 
 Learning iterations which are referred to as 
epochs, consists of two phases: 
 
a) Feed forward pass, which simply calculates the output 

value(s) of the neural network for each training 
pattern. 

b) Backward propagation, which propagates an error 
signal back from the output layer toward the input 
layer. Weights are adjusted as functions of the back 
propagated error signal (Engelbrecht, 2007). 

 
 It has been proven that back propagation learning 
with sufficient hidden layers can approximate any 
nonlinear function to arbitrary accuracy. This makes back 
propagation learning neural network a good candidate for 
signal prediction and system modeling (Abraham, 2005).
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Figure-2. Structure of typical multilayer perceptron artificial neural network. 
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Radial basis function neural networks (RBF) 
A radial basis function neural network is a feed 

forward neural network where hidden units do not 
implement an activation function, but represents a radial 
basis function (Engelbrecht, 2007). The common 
architecture of a radial basis function neural network 
firmly consists of three layers: the input layer, the hidden 
layer, and the output layer. In the neurons of the hidden 
layer, the activation functions are placed. The input layer 
of the network does no processing and it is directly 
connected with the hidden layer of the network, so that 
only the connections between the hidden layer and the 
output layer are weighted (Palit and Popovic, 2005). 
Therefore, the radial basis function neural network can be 
considered as a two-layer network in which the hidden 
layer performs a fixed nonlinear transformation with no 
adjustable parameters, so that the input space is mapped 
into a new space. The hidden layer in a radial basis 
function neural network consists of an array of nodes and 
contains a parameter vector called a center. A distance 
measure, to determine how an input vector is far from the 
center, is typically the standard Euclidean distance 
measure. The node calculates the Euclidean distance 
between the center and the input vector of the network and 
the result is passed through a nonlinear function. A 
transfer function, which is a function of a single variable, 
determines the output of the distance function. The output 
layer then combines outputs in the latter space linearly 
(Taylor, 1996). 

 Radial basis function neural networks may 
require more neurons than standard feed forward back 
propagation networks, but often they can be designed with 
less time (Abraham, 2005). Figure-3 illustrates a general 
architecture of the radial basis function neural network. 
The architecture is very similar to that of a standard 
multilayer perceptron neural network, with the following 
differences: 
 
 Hidden units implement a radial basis function. 
 Weights from the input neuron to a hidden neuron, 

referred to as µ which represents the center of the 
radial basis function. 

 Some radial basis functions are characterized by a 
width σ. For such basis functions, the weight from the 
basis neuron in the input layer to each hidden neuron 
represents the width of the basis function. Note that 
input neuron b refers to an input signal of +1 (bias). 

 
 Each hidden unit implements a radial basis 
function. These functions, also referred to as kernel 
functions, are strictly positive, radially symmetric 
functions. A radial basis function has a unique maximum 
at its center µ, and the function usually drops off to zero 
rapidly further away from the center. The output of a 
hidden unit indicates the closeness of the input vector x, to 
the center of the basis function. 
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ŷ

Target

b bx1Bias x1

bj

bk

wkj

ji

(x i -     ji)
2

n

i=1

2
2
j

 f  j =exp    -

y =ˆ   (wkj f  j) +bk

m

j=1

ŷ
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Figure-3. Structure of typical radial basis function artificial neural network. 
 

A number of radial basis functions have been 
proposed: linear, cubic, thin plate spline, multi-quadratic, 
Inverse multi-quadratic, Gaussian and logistic functions 
(Engelbrecht, 2007). The input data are presented the 
network in input layer and these data are transferred to 
hidden layer by radial basis function. The response of the 
network is obtained in the output layer. The various types 
of radial basis functions can be used for transferring of the 

input data to the hidden layer (Firat and Gungor, 2007). 
However, in this research, the Gaussian activation 
function, the most commonly used, is selected as the 
activation function for training data set. The mathematical 
structure of Gaussian activation function is demonstrated 
as follows: 
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   (9) 
 

Where x is the input, n is the number of inputs, µ 
is the parameter which is the position of the center of the 
Gaussian and  is its standard deviation. The  has an 
appreciable value only in the neighborhood of the center 
(Taylor, 1996). The standard deviation and center 
determine the properties of each function during the 
training process. The response of each hidden neuron is 
scaled by its connecting weights to the output neurons and 
then summed to produce the overall network output. 
Therefore, the output  of the neural network for 
Gaussian radial basis functions is given by: 
 

 (10) 
 

Where w is the weight of connection between the 
hidden neuron j and the output neuron k, b is the bias and 
m is the number of neurons in the hidden layer (Dreyfus, 
2005). 
 The methods used to train radial basis function 
neural networks are fundamentally different from those 
employed for multilayer perceptron neural networks (Hill 
and Lewicki, 2007). The most important issue here for 
each neuron in the hidden layers is the selection of the 
center u, the spread around the center σ and the weights 
between the hidden and output neurons. Training of a 
radial basis function neural network should therefore 
consider methods to find the best values for the parameters 
µ, σ and w. The network training process mainly includes 
two training phases: 
 
 Initialization of radial basis function centers u, for 

instance using unsupervised clustering methods, linear 
vector quantization, or decision trees. 

 Output weight training of the radial basis function 
network using an adaptive algorithm to estimate its 
appropriate values. 

 In some cases, it is recommended to add a third 
training phase, in which the entire network architecture is 
adjusted using an optimization method (Palit and Popovic, 
2005). 
 
Artificial neural networks generalization and 
performance 

The performance of neural networks is measured 
by how well they can predict unseen data (an unseen data 
set is one that was not used during training). This is known 
as generalization. There is a relation between over fitting 
the training data and poor generalization (Hill and 
Lewicki, 2007). That is, neural networks that over fit 
cannot predict correct output for data patterns not seen 

during training. Therefore, generalization is a very 
important aspect of neural network learning (Engelbrecht, 
2007). 

To avoid over fitting, the flexibility of a neural 
network must be reduced. Flexibility comes from the 
hidden neurons and as the number of hidden neurons 
increases, the number of network parameters (weights) 
increases as well. On the other hand, there must be enough 
neurons to avoid bias or under fitting (Samarasinghe, 
2006). There are several techniques to combat the problem 
of over fitting and tackling the generalization issue. The 
most popular is cross validation which is a traditional 
statistical procedure for random partitioning of collected 
data into a training set and a test set (Palit and Popovic, 
2005). Test data is a holdout sample that will never be 
used in training. Instead, it will be used to halt training to 
mitigate over fitting. The process of halting neural 
network training to prevent over fitting and improving the 
generalization ability is known as early stopping. 

Sometimes the test data alone may not be 
sufficient proof of a good generalization ability of a 
trained neural network. For example, a good performance 
on the test sample may actually be just a coincidence. To 
make sure that this is not the case, another set of data 
known as the validation sample is often used. Just like the 
test sample, a validation sample is never used for training 
the neural network. Instead, it is used at the end of training 
as an extra check on the performance of the model. If the 
performance of the network was found to be consistently 
good on both the test and validation samples, then it is 
reasonable to assume that the network generalizes well on 
unseen data. 

There are a number of main steps in the artificial 
neural network development process as shown in Figure-4 
and there are also a number of options available at each 
step and, while this provides great flexibility in artificial 
neural network modeling, it also leaves the modeler faced 
with the difficult task of selecting the most suitable 
methods. One of the most important steps in using a neural 
network to solve real world problems is to collect and 
transform data into a form acceptable to the neural 
network. In practice, the simplest and linear 
transformation are most frequently used and obtained by 
rescaling or by standardization as follows: 
 

 (11) 
 

 (12) 
 

 (13) 
 

Where  is the untransformed data,  is the 

transformed data, ,  are the minimum and 
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maximum of untransformed data and ,  are the 
mean and standard deviation of untransformed data (Palit 
and Popovic, 2005).  
 

 
 

Figure-4. Main steps in the development of an artificial 
neural network (Kingston, 2006). 

 
For an explanatory or causal forecasting problem, 

the inputs to an ANN are usually the independent or 
predictor variables. The functional relationship estimated 
by the ANN can be written as: 
 

 (14) 
 

Where  are s independent variables 

and  is a dependent variable. In this sense, the neural 
network is functionally equivalent to a nonlinear 
regression model. On the other hand, for an extrapolative 
or time series forecasting problem, the inputs are typically 
the past observations of the data series and the output is 
the future value. The ANN performs the following 
function mapping: 
 

 (15) 
 

Where  is the observation at time t. Thus the 
ANN is equivalent to the nonlinear autoregressive model 
for time series forecasting problems. It is also easy to 
incorporate both predictor variables and time lagged 
observations into one ANN model, which amounts to the 
general transfer function model (Zhang, et al., 1998).  
 
The developed MLP-MAF ANN model 

Generally, a neural network may have different 
activation functions for different nodes in the same or 
different layers. Yet, almost all the networks use the same 
activation function, particularly for the nodes in the same 

layer. Therefore, this research deals with a developed 
multilayer perceptron neural network with different 
activation functions for different nodes in the hidden layer 
named multilayer perceptron multiactivation function 
neural network (MLP-MAF). The neural network 
developed here consists of three layers: input, hidden and 
output layer as shown in Figure-5. Equal numbers of 
nodes in the hidden layer have been used for activation 
functions. A several combinations of the linear, logistic, 
tangent hyperbolic, exponential, sine and cosine functions 
in the hidden nodes were investigated. On the other hand, 
only the linear function was used in the output node. 

In order to form and train the model, a code has 
been written using the MATLAB version 7.0 package 
software named MLP-MAF code. The training of the 
neural networks is performed with the traditional 
backward propagation algorithm. The lagged observations 
of water consumption were used as inputs to the input 
layer nodes. The results of the developed model were 
compared with the results of different traditional MLP and 
RBF neural networks developed using STATISTICA 
version 8.0 package software. The neurons of the hidden 
layer are equally divided into  groups with a different 
activation function for each one. 
 

 
 

Figure-5. Architecture of multilayer perceptron-
multiactivation function (MLP-MAF) artificial neural 

network.Building of MLP-MAF model. 
 

Basically, the MLP-MAF model predicts the 
value of the time series  at the time step  depending on 

the past values. The output of the neuron  in the output 
layer of the network can be expressed as follows: 
 

 (16) 
 

Where x is the input variable,  is the output, n 
is the number of neurons in input layer which is equal to 
the number of input variables, m is the number of neurons 
in each group in the hidden layer, g is the number of 
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groups, w is the weights of input-hidden and hidden-output 
layers, b is the bias of hidden and output layers, fp is the 
activation function of group p in the hidden layer and fo is 
the activation function of output layer. 

Following the steps of artificial neural network 
building, described earlier, the methods adopted here for 
carrying out each step of the MLP-MAF development 
processes are summarized below: 
 

MLP-MAF network architecture: the input 
variables in the present study’s case are the past values of 
water consumption time series used to determine the 
underlying pattern in the time series and to make forecasts 
for future values. On the other hand, the output layer 
includes one node corresponding to the present water 
consumption value in the output vector. Selection of the 

input variables is one of the most important steps in 
developing a satisfactory forecasting model, because these 
variables determine the structure of the forecasting model 
and affect the weighted coefficient and the results of the 
model. For forecasting urban water consumption, a 
number of time lagged values were selected as input 
variables based on the lag correlations between the present 
value and lagged values in order to determine the best 
input structure. The lag correlations between the present 
value of water consumption and the lagged values of 
Tampa water consumption time series are shown in Table-
2. The time lags that have been used as inputs to the 
developed MLP-MAF model for Tampa water 
consumption data are shown in the mentioned table in bold 
style. 

 
Table-2. Lag correlations between the present water consumption value and time lagged values for Tampa data. 

 

Lag 
Tampa 

monthly water 
consumption (m3) 

Tampa 
daily water 

consumption (m3) 
Lag 

Tampa 
monthly water 

consumption (m3) 

Tampa 
daily water 

consumption (m3) 
0 1.00 1.00 7 0.01 0.77 
1 0.57 0.82 8 -0.09 - 
2 0.26 0.68 9 -0.03 - 
3 -0.10 0.71 10 0.20 - 
4 -0.21 0.69 11 0.34 - 
5 -0.08 0.60 12 0.52 - 
6 -0.08 0.67 365 - 0.34 

 
In the developed model, only one hidden layer 

was used, and the trial-and-error procedure was used to 
select the optimum number of hidden neurons in the 
hidden layer based on the best generalizability. For each 
group in the hidden layer, a number of hidden neurons 
from one to two-time input variables (2N) have been 
investigated in order to find the optimal neuron numbers. 
 
 Activation function: the activation functions, 
which have been used in the hidden layer of the MLP-
MAF developed model, include several combinations of 
functions. For daily and monthly water consumption time 
series of Tampa, four combinations of the activation 
functions were used in the hidden layer. These 
combinations are as below: 
 
a) Linear, logistic, tangent hyperbolic, exponential and 

sine (five groups of neurons). 
b) Logistic, tangent hyperbolic, exponential and sine 

(four groups of neurons). 
c) Tangent hyperbolic, exponential and sine (three 

groups of neurons). 
d) Linear, sine and cosine (three groups of neurons). 
 
 In all the above models, the linear activation 
function was used in the output neuron of the output layer. 
The results of the developed models were compared with 

the results of different traditional MLP and RBF neural 
networks produced using STATISTICA version 8.0 
package software.  
 

Training algorithm: the training of the 
developed MLP-MAF network is performed with the 
traditional backward propagation algorithm. The following 
equation describes the weights adjusting of input-hidden 
and hidden-output of multilayer perceptron-
multiactivation function neural network. 
The inputs to the hidden layer neurons are: 
 

 (17) 
 

 (18) 
The output of the hidden neurons: 
 

 (19) 
 
The inputs to the output layer neurons are: 
 

 (20) 
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The output of the output layer neurons is: 
 

 (21) 
 

Where O is the output vector, I is the input 
vector, WI is the input-hidden weights, WO is the hidden-
output weights and are the activation 
functions of hidden and output layer neurons respectively. 
The weight updates of hidden-output become: 
 

 (22) 
 

Note that in case of the present research, by using 
linear function for , the term  will be equal 

to 1 and the  is the difference between the outputs 
and targets. 
The weight updates of input-hidden become: 
 

 (23) 
 
The term  is calculated as below: 

 (24) 
 

In which ηa and ηb are the learning rates for input-
hidden and hidden-output weights respectively. Initializing 
the weights was made randomly in the range (-0.1, +0.1) 
and choosing the learning rate will be done by trial and 
error. 
 

Data preprocessing: data preprocessing for the 
developed MLP-MAF model was achieved by 
normalization using Equation (12). The time series of 
water consumption were transformed into the range (-1, 
+1), before the training process began by the model. On 
the other hand, the traditional models developed using 
STATISTICA version 8.0 package software for 
comparison were used a transformed data in the range (0, 
1) which is applied by the software automatically before 
the training process.   
 

Training and test sets: as mentioned earlier, the 
entire available data set was divided into estimate and 
holdout subsets. The estimate subset was divided into 
training and test samples randomly to be used in MLP-
MAF, classic MLP and RBF modeling. The estimating 
sets of data were divided with 80% of the data allocated to 
training subset and 20% allocated to the testing subset. 
 

Performance criteria: the performance of the 
developed MLP-MAF models for estimate and holdout 
subsets was evaluated according to statistical criteria 
described earlier. For stopping the training process of the 
model for estimate subset, three statistical criteria will be 
entered to the MATLAB code. These statistical criteria 
are: coefficient of determination (R2), root mean square 

error (RMSE) and mean absolute percentage error 
(MAPE). The stopping of the training process was based 
on the performance of testing sample of the estimate 
subset. 
 

MLP-MAF MATLAB code: Because the 
capability of all available software packages for building 
neural networks are limited to build neural networks use 
the same activation function in the same layer, therefore, a 
MATLAB code has been written using MATLAB version 
7.0 package software to build and train the developed 
multilayer perceptron multiactivation function neural 
network called MLP-MAF code. Figure-6 illustrates the 
back propagation algorithm and the main training steps in 
MLP-MAF MATLAB code. 
 

Start

Epoch=1

Initialize the
weights and bias

Pattern=1

Calculate the output and the
error between the model
output and model target

All patterns
trained?

Pattern=Pattern+1

Compute the statistical
criteria for model

performance evaluation

No

Yes

Stopping
criteria met?

No

Yes

Epoch=Epoch+1

Stop

Update weights from the
output layer backwards

 

Figure-6. The schema of the back propagation algorithm, 
outlining the main training steps in MLP-MAF 

MATLAB code. 
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MLP-MAF model application 
To demonstrate the effectiveness of the proposed 

MLP-MAF neural network model, it has been applied to 
two classes of forecasting problems. The first class 
includes long term forecasting of monthly water 
consumption time series of Tampa area. The second class 
of the problem is a short term forecasting of daily water 
consumption time series of Tampa area. For each class of 
the problems, the performance of MLP-MAF models have 
been measured and compared using three criteria: the 
coefficient of determination (R2), the root mean squared 
error (RMSE) and the mean absolute percentage error 
(MAPE). The MLP-MAF results were compared against 
the best traditional MLP and RBF models. The same exact 
set of input data is used in all comparisons and the same 
percentage of data partitioning was used for all models. 
 
Monthly water consumption time series 

As mentioned earlier, the developed MLP-MAF 
neural network model has been applied to monthly water 
consumption time series. The input variables to the model 
are the past values of the time series. To investigate the 
dependency between past values and present water 
demand and to determine the lagged values to be used as 
inputs to the model, lag correlation coefficients between 
the present monthly demand and past monthly values were 
calculated and are shown in Table-2. This information was 
used to aid in selecting input variables for MLP-MAF and 
traditional MLP and RBF neural networks. This Table 
shows the strong correlations of present monthly water 
demand with the lagged values. The lagged values used as 
inputs to the models are: lags 1, 2, 10, 11 and 12. 

Four MLP-MAF models with different 
combinations of activation functions in the hidden layer, 
as described earlier, were developed for monthly water 
consumption time series. On the other hand, the 
STATISTICA version 8.0 package software was used to 
develop the traditional MLP and RBF neural network 
models. For comparison purpose with MLP-MAF models 
twenty five separate traditional MLP models and one RBF 
model were developed. Different activation functions were 
used in the hidden and output layer of traditional MLP 
models, and Gaussian function was used in the hidden 
layer of RBF model with linear function in the output 
layer. All developed ANNs were consisting of an input 
layer, one single hidden layer and one output layer 
consisting of one node denoting the predicted water 
demand. 

All the MLP-MAF and traditional MLP and RBF 
models used the same input variables (lagged values) and 
first, trained using the data in the estimate subset to obtain 
the optimized set of connection strengths and then 
evaluated using the data in the holdout subset and 
compared using the statistical measures of goodness of fit 
that were described earlier. The architecture of the 

developed models and the performance measures of the 
results for monthly water consumption time series are 
shown in Table-3. As seen in this table, the models are 
evaluated based on their performance in estimate and 
holdout sets. The models have shown variations in the 
performance evaluation. Comparing the results of MLP 
models with RBF model, generally, the performance of 
MLP models is better than RBF model. The correlations of 
determination values (R2) for MLP models are higher than 
that for RBF model and MAPE with RMSE values for 
MLP models are lower than that for RBF model for both 
estimate and holdout sets.  

Comparing the results of MLP models for the 
estimate set, it is seen that the performance of the models 
with tangent hyperbolic activation function in the hidden 
layer is better than other models, while for the holdout set, 
the results of the models with logistic activation function 
in the hidden layer, in general, are better than other MLP 
models. On the other hand, generally, the performance of 
MLP-MAF models is better than other models for the 
estimate set. In addition, for the holdout set, the MLP-
MAF models performances are better than the traditional 
ANN models. The performance of model M30, which 
consists of three activation functions (linear, sine, cosine) 
in the hidden layer, is better than other MLP-MAF models 
for the holdout set of data. Furthermore, it is seen that the 
performance of M27 model is close to M28 model. In 
addition to R2, MAPE and RMSE measurements, the t 
value was also used to test the hypothesis that MLP-MAF 
and traditional ANN models forecasts have the same 
means of the observed values. Comparing the t-test values 
for MLP-MAF models with critical t values indicate that 
the hypotheses are not statistically significant. The results 
of the models demonstrate that MLP-MAF can be applied 
to forecast urban water consumption. Comparisons of 
results of four MLP-MAF models for monthly water 
consumption with the observation data records are shown 
in Figure-7. 

An overall conclusion of MLP-MAF and 
traditional MLP and RBF applied to Tampa monthly water 
consumption data indicates that none of the methods was 
performed very well in forecasting monthly urban water 
demand. This seems to indicate that there were problems 
with the data used or the wrong deriving input variables 
were used. The present research focused on the modelling 
of monthly water demand forecasts using past water 
consumptions as inputs to the developed models. The 
models could potentially be improved if other variables 
such as socioeconomic and climatic that affect water 
demand were used. Therefore, a further study 
recommended to be carried out in the future on the same 
and other data using socioeconomic and climatic variables 
in addition to past water demands as input variables in the 
MLP-MAF models. 
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Table-3. Structure and statistical performance measurements of MLP-MAF, traditional MLP and RBF models of monthly 
water consumption time series for Tampa. 

 

Estimate set (Observed - Fit) Holdout set (Observed - Forecast) 
Model 

Hidden 
layer 

activation 
function/s 

Output 
layer 

activation 
function/s 

R2 MAPE 
(%) RMSE t-value F-

value R2 MAPE 
(%) RMSE t-

value 
F-

value 

M1: MLP (5-5-1) Linear Linear 0.422 6.993 1789807 0.400 2.995 0.353 4.728 1078685 0.586 3.623 

M2: MLP (5-10-1) Linear Logistic 0.467 6.916 1719513 0.199 2.724 0.319 4.814 1088278 0.033 2.695 

M3: MLP (5-3-1) Linear Tanh 0.440 6.854 1768002 0.478 3.014 0.364 4.649 1064610 0.550 2.845 

M4: MLP (5-7-1) Linear Exponential 0.443 6.845 1750239 -0.029 2.633 0.380 4.363 1043436 -0.060 3.558 

M5: MLP (5-3-1) Linear Sine 0.455 6.671 1741698 0.732 2.555 0.373 4.842 1077116 0.755 2.141 

M6: MLP (5-5-1) Logistic Linear 0.450 6.930 1746433 -0.185 2.862 0.402 4.231 1020800 -0.220 2.370 

M7: MLP (5-3-1) Logistic Logistic 0.455 6.896 1732843 0.005 2.624 0.320 4.925 1091549 0.306 2.773 

M8: MLP (5-4-1) Logistic Tanh 0.452 7.137 1774698 -0.243 3.826 0.351 4.634 1068632 -0.402 3.112 

M9: MLP (5-10-1) Logistic Exponential 0.437 6.916 1771360 0.168 3.134 0.351 4.655 1070552 0.105 4.254 

M10: MLP (5-11-1) Logistic Sine 0.457 6.734 1750815 0.630 3.136 0.388 4.440 1038758 0.407 2.671 

M11: MLP (5-3-1) Tanh Linear 0.433 7.037 1768800 0.174 1.920 0.304 5.320 1165426 1.081 2.221 

M12: MLP (5-8-1) Tanh Logistic 0.464 7.059 1733740 -0.064 3.087 0.263 5.003 1132521 -0.195 3.553 

M13: MLP (5-3-1) Tanh Tanh 0.522 6.293 1619946 0.219 1.876 0.304 4.822 1124179 0.511 2.175 

M14: MLP (5-3-1) Tanh Exponential 0.441 7.846 1902359 -2.073 1.352 0.330 4.860 1104011 -0.730 2.686 

M15: MLP (5-3-1) Tanh Sine 0.513 6.396 1635276 0.280 1.867 0.347 4.570 1086822 0.571 2.205 

M16: MLP (5-6-1) Exponential Linear 0.444 6.720 1748322 0.186 1.979 0.383 4.374 1046564 0.485 2.904 

M17: MLP (5-12-1) Exponential Logistic 0.429 7.402 1855749 -0.120 5.806 0.335 5.200 1164488 -0.809 12.309 

M18: MLP (5-5-1) Exponential Tanh 0.516 6.546 1631085 0.226 1.820 0.276 5.381 1153103 0.699 2.450 

M19: MLP (5-4-1) Exponential Exponential 0.457 6.847 1725124 -0.022 2.350 0.326 5.001 1095769 0.477 2.464 

M20: MLP (5-4-1) Exponential Sine 0.394 6.961 1838387 0.446 1.948 0.366 4.527 1095276 0.650 5.819 

M21: MLP (5-5-1) Sine Linear 0.422 6.995 1789716 0.394 2.992 0.353 4.727 1078469 0.582 3.622 

M22: MLP (5-11-1) Sine Logistic 0.452 6.831 1761150 0.437 3.365 0.358 4.601 1062896 0.267 3.621 

M23: MLP (5-3-1) Sine Tanh 0.435 7.087 1766395 0.010 1.873 0.354 4.983 1111610 0.807 1.802 

M24: MLP (5-9-1) Sine Exponential 0.452 6.849 1740990 -0.078 2.776 0.370 4.473 1053199 -0.128 3.760 

M25: MLP (5-4-1) Sine Sine 0.452 6.864 1758973 1.187 2.204 0.347 5.331 1170580 1.413 2.110 

M26: RBF (5-12-1) Gaussian Linear 0.402 7.188 1811467 0.245 2.306 0.197 5.098 1306811 0.395 1.361 

M27: MLP-MAF 
(5-15-1) 

Linear, 
logistic, tanh, 

exp, sine 
Linear 0.443 7.207 1823100 1.753 1.723 0.389 5.403 1261845 2.120 1.911 

M28: MLP-MAF 
(5-12-1) 

Logistic, 
tanh, exp, 

sine 
Linear 0.450 6.747 1736520 0.187 2.171 0.395 4.347 1032719 0.340 2.170 

M29: MLP-MAF 
(5-12-1) 

Logistic, 
tanh, exp Linear 0.465 6.967 1742633 -0.746 3.119 0.357 4.460 1112156 -0.838 1.785 

M30: MLP-MAF 
(5-12-1) 

Linear, sine, 
cosine Linear 0.520 6.738 1678592 1.590 1.770 0.481 4.389 961969 -0.310 1.627 

   Critical values of t and F 2.256 1.435 Critical values of t and F 2.317 2.312 
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Figure-7. Observed, fit and forecast of MLP-MAF models for monthly water 
consumption time series of Tampa. 

 
Daily water consumption time series 

The second problem that MLP-MAF and 
traditional MLP and RBF were applied is short term 
forecasting of daily water consumption time series. The 
available daily water consumption time series in Tampa is 
from 1 January 1992 to 31 December 2004 (4745 
observations). February 29 in the leap years has been 
dropped in order to maintain 365 days in each year. The 
first 4740, 4735 and 4730 observations from 1 January 
1992 were used as a training sample for model estimation, 
and the remaining 5, 10 and 15 observations as holdout 
sample for forecast evaluation, respectively. Lag 
correlation coefficients between the present daily demand 
and past daily values were calculated as shown in Table-2. 
This information was used to aid in selecting the lagged 
values as input variables for the developed MLP-MAF and 
traditional MLP and RBF neural network models. The 
lagged (past) values used as inputs to the models are the 
lags 1 through 7 and lag 365, i.e., the past values of water 
consumption for seven days ago and the consumption of 
same day for the previous year were used as inputs. 

Four MLP-MAF models with different 
combinations of activation functions in the hidden layer, 
as described earlier, were developed for daily water 
consumption time series of Tampa. For comparison 
purpose, additional forecasts by traditional ANN methods 
were carried out on the same data. The STATISTICA 
version 8.0 package software was used to develop twenty 
five separate traditional MLP models and one RBF model. 
After applying the models to forecasting daily urban water 
consumption in the area of Tampa in the USA, the 
performance of the models were evaluated from the aspect 
of comparison between the forecasted values and the 
observed values. The performances of the developed 
models were evaluated by computing R2, MAPE and 
RMSE statistics to estimate set and 5, 10 and 15 days 
forecasts ahead set. Tables (4) through (6) give the 
forecasts results for the in-sample (estimate set) and out-
sample (holdout set) periods of 5, 10 and 15 days 
forecasts. 

It can be observed that the traditional MLP 
models performed best than RBF model for the estimate 
and holdout sets for forecasting 5, 10 and 15 days ahead, 
with the highest R2 values of 0.777, 0.769 and 0.685 for 
models M12, M7 and M21 respectively, and lowest 
MAPE and MRSE statistics. Comparing traditional MLP 
models with the developed MLP-MAF models, it is clear 
that for forecasting 5 days ahead for estimate set there is 
no significant difference between them. For forecasting 10 
and 15 days ahead, the developed MLP-MAF models are 
better than traditional MLP model with highest R2 values 
of 0.775 and 0.758 and lowest MAPE and MRSE values 
for models M28 and M30 respectively. On the other hand, 
the statistical analysis on the results of traditional ANN 
and developed MLP-MAF of 5, 10 and 15 days 
forecasting ahead models for holdout sets reveals that the 
MLP-MAF models perform better than traditional MLP 
and RBF models. Among the four MLP-MAF models 
developed for each forecasting 5, 10, 15 days ahead, the 
model M30 which consists of linear, sine and cosine 
activation functions in the hidden layer and linear 
activation function in the output layer appears to be the 
best one with highest R2 values of 0.814, 0.556, 0.411, 
lowest MAPE values of 2.224%, 4.301%, 3.698% and 
lowest RMSE values of 15868, 32479, 31571, 
respectively. Furthermore, the models M27 and M28 of 
MLP-MAF appear to have the same forecast performance 
and be very close to each other for all the daily forecasting 
(5, 10, 15 days ahead) models. Moreover, it is seen from t-
test that there is no difference between the means of the 
observed and forecasted values of estimate and holdout 
sets. 

The accuracy of the models is particularly better 
for short term forecasting 5 days ahead than 10 days ahead 
and forecasting 10 days ahead is better than 15 days ahead 
and this is convenient, because by increasing the 
forecasting periods ahead the accuracy will decrease. 
Figures 8 through 10 show the observed and forecasted 
series of estimate and holdout sets of the four developed 
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MLP-MAF models for forecasting 5, 10 and 15 days 
ahead. 

As mentioned earlier in monthly water demand 
forecasting, none of traditional MLP and RBF and MLP-
MAF models applied to Tampa daily water consumption 
time series none of the methods performed very well in 
forecasting short term urban water demand. This seems to 
indicate that there were problems with the data used or 
data pre-processing or the wrong deriving input variables 
were used. The present models of daily water demand 

forecasts are nonlinear autoregressive models for time 
series forecasting by using past water consumptions as 
inputs to the developed ANN models. The models could 
potentially be improved if other variables such as 
socioeconomic and climatic that affect water demand were 
used. Therefore, a further study recommended to be 
carried out in the future on the daily water consumption by 
incorporating both climatic variables and time lagged 
observations in the input variables of the model. 

 
Table-4. Structure and statistical performance measurements of MLP-MAF, traditional MLP and RBF models of daily 

water consumption time series for Tampa - forecasting 5 days ahead. 
 

Estimate set (Observed - Fit) Holdout set (Observed - Forecast) 
Model 

Hidden layer 
activation 
function/s 

Output 
layer 

activation 
function/s 

R2 MAPE 
(%) RMSE t-value F-

value R2 MAPE 
(%) RMSE t-

value 
F-

value 

M1: MLP (8-9-1) Linear Linear 0.677 4.037 33441 -0.406 1.381 0.614 2.970 19290 0.466 1.238 

M2: MLP (8-2-1) Linear Logistic 0.741 3.713 29896 -0.173 1.348 0.779 3.485 23576 0.603 2.294 

M3: MLP (8-7-1) Linear Tanh 0.724 3.789 30986 -0.557 1.447 0.789 3.248 22995 0.679 2.083 

M4: MLP (8-10-1) Linear Exponential 0.728 3.824 30698 -0.286 1.444 0.810 2.413 18352 0.689 1.407 

M5: MLP (8-16-1) Linear Sine 0.745 3.681 29742 -0.017 1.250 0.775 3.444 24502 0.751 2.114 

M6: MLP (8-11-1) Logistic Linear 0.751 3.642 29320 -0.297 1.290 0.643 2.831 22054 0.804 1.214 

M7: MLP (8-9-1) Logistic Logistic 0.772 3.515 28210 -0.632 1.229 0.653 3.605 23344 0.445 2.081 

M8: MLP (8-2-1) Logistic Tanh 0.764 3.564 28591 -0.219 1.222 0.578 3.483 24652 0.713 1.596 

M9: MLP (8-4-1) Logistic Exponential 0.763 3.557 28625 -0.251 1.249 0.758 2.879 20856 0.801 1.387 

M10: MLP (8-3-1) Logistic Sine 0.752 3.637 29324 -0.282 1.252 0.644 2.848 22727 0.843 1.248 

M11: MLP (8-2-1) Tanh Linear 0.742 3.698 29863 -0.041 1.282 0.802 3.527 24222 0.595 2.485 

M12: MLP (8-7-1) Tanh Logistic 0.777 3.478 27847 -0.294 1.195 0.559 4.120 28158 1.013 1.502 

M13: MLP (8-2-1) Tanh Tanh 0.761 3.581 28880 -0.330 1.179 0.594 3.415 23924 0.636 1.667 

M14: MLP (8-2-1) Tanh Exponential 0.756 3.647 29129 -0.492 1.263 0.780 2.766 19573 0.642 1.602 

M15: MLP (8-13-1) Tanh Sine 0.745 3.683 29793 -0.647 1.354 0.780 2.926 19423 0.489 1.865 

M16: MLP (8-11-1) Exponential Linear 0.749 3.644 29451 0.109 1.381 0.812 2.957 20898 0.661 1.876 

M17: MLP (8-5-1) Exponential Logistic 0.765 3.573 28594 -0.150 1.178 0.615 3.429 24267 0.866 1.363 

M18: MLP (8-13-1) Exponential Tanh 0.742 3.693 29924 -0.440 1.419 0.798 3.099 21432 0.610 2.015 

M19: MLP (8-6-1) Exponential Exponential 0.767 3.519 28403 -0.318 1.257 0.637 3.351 21562 0.768 1.185 

M20: MLP (8-17-1) Exponential Sine 0.748 3.672 29575 -0.475 1.328 0.785 2.956 19724 0.540 1.843 

M21: MLP (8-6-1) Sine Linear 0.746 3.684 29699 -0.547 1.347 0.758 2.882 20287 0.649 1.623 

M22: MLP (8-9-1) Sine Logistic 0.733 3.739 30481 -0.251 1.503 0.753 3.378 24120 0.696 2.104 

M23: MLP (8-13-1) Sine Tanh 0.725 3.757 30833 0.468 1.395 0.784 3.585 25928 0.734 2.395 

M24: MLP (8-2-1) Sine Exponential 0.726 3.871 30861 -0.333 1.513 0.812 2.604 18825 0.606 1.671 

M25: MLP (8-7-1) Sine Sine 0.746 3.675 29683 -0.390 1.389 0.765 2.915 20418 0.640 1.685 

M26: RBF (8-17-1) Gaussian Linear 0.665 4.221 34092 0.574 1.454 0.772 3.264 22083 0.983 1.200 
M27: MLP-MAF 
(8-20-1) 

Linear, logistic, 
Tanh, Exp, Sine Linear 0.770 3.519 28243 0.196 1.377 0.625 3.293 23004 0.671 1.565 

M28: MLP-MAF 
(8-16-1) 

Logistic, Tanh, 
Exp, Sine Linear 0.756 3.614 29085 0.239 1.401 0.729 2.987 21972 0.772 1.541 

M29: MLP-MAF 
(8-12-1) 

Logistic, tanh, 
exp Linear 0.756 3.612 29071 0.190 1.438 0.803 2.809 19341 0.597 1.738 

M30: MLP-MAF 
(8-12-1) 

Linear, Sine, 
Cosine Linear 0.758 3.590 29046 -0.634 1.371 0.814 2.224 15868 0.542 1.316 

   Critical values of t and F 2.242 1.061 Critical values of t and F 2.752 9.605 



                                         VOL. 8, NO. 12, DECEMBER 2013                                                                                                             ISSN 1819-6608            

ARPN Journal of Engineering and Applied Sciences 
 

©2006-2013 Asian Research Publishing Network (ARPN). All rights reserved. 

 
www.arpnjournals.com 

 

 
1033

Table-5. Structure and statistical performance measurements of MLP-MAF, traditional MLP and RBF models of daily 
water consumption time series for Tampa - forecasting 10 days ahead. 

 

Estimate set (Observed - Fit) Holdout set (Observed - Forecast) 

Model 
Hidden layer 

activation 
function/s 

Output 
layer 

activation 
function/s 

R2 MAPE 
(%) RMSE t-value F-

value R2 MAPE 
(%) RMSE t-

value 
F-

value 

M1: MLP (8-4-1) Linear Linear 0.753 3.636 29169 0.307 1.367 0.370 4.812 39098 -
0.134 1.689 

M2: MLP (8-12-1) Linear Logistic 0.750 3.647 29376 0.391 1.315 0.377 4.952 39150 -
0.128 1.551 

M3: MLP (8-4-1) Linear Tanh 0.735 3.737 30525 0.397 1.624 0.368 4.948 39438 -
0.184 1.606 

M4: MLP (8-4-1) Linear Exponential 0.733 3.778 30569 0.907 1.306 0.395 4.766 37431 0.019 2.526 

M5: MLP (8-4-1) Linear Sine 0.751 3.646 29434 0.744 1.408 0.396 4.794 38204 -
0.071 1.620 

M6: MLP (8-4-1) Logistic Linear 0.769 3.539 28205 0.407 1.308 0.393 4.509 38732 -
0.153 1.502 

M7: MLP (8-16-1) Logistic Logistic 0.769 3.555 28228 0.468 1.318 0.369 4.893 39862 -
0.173 1.451 

M8: MLP (8-6-1) Logistic Tanh 0.769 3.574 28247 0.552 1.313 0.343 4.895 40186 -
0.082 1.631 

M9: MLP (8-16-1) Logistic Exponential 0.780 3.470 27509 0.377 1.297 0.379 4.795 39315 -
0.224 1.532 

M10: MLP (8-8-1) Logistic Sine 0.768 3.551 28284 0.363 1.280 0.360 4.769 39889 -
0.142 1.534 

M11: MLP (8-9-1) Tanh Linear 0.757 3.613 28987 0.508 1.360 0.383 4.621 38785 -
0.133 1.611 

M12: MLP (8-12-1) Tanh Logistic 0.766 3.593 28450 0.550 1.310 0.361 4.821 39614 -
0.130 1.610 

M13: MLP (8-8-1) Tanh Tanh 0.771 3.542 28084 0.380 1.339 0.341 4.967 40301 -
0.133 1.637 

M14: MLP (8-4-1) Tanh Exponential 0.777 3.491 27711 0.351 1.262 0.371 4.934 39522 -
0.137 1.507 

M15: MLP (8-9-1) Tanh Sine 0.769 3.545 28175 0.261 1.284 0.360 4.809 39901 -
0.193 1.562 

M16: MLP (8-7-1) Exponential Linear 0.765 3.563 28498 0.500 1.299 0.384 4.593 38754 -
0.076 1.579 

M17: MLP (8-10-1) Exponential Logistic 0.759 3.615 28861 0.443 1.329 0.368 4.802 39216 -
0.169 1.684 

M18: MLP (8-11-1) Exponential Tanh 0.767 3.561 28318 0.336 1.303 0.372 4.529 39317 -
0.135 1.570 

M19: MLP (8-12-1) Exponential Exponential 0.768 3.551 28312 0.423 1.291 0.371 4.825 39462 -
0.111 1.526 

M20: MLP (8-10-1) Exponential Sine 0.768 3.538 28261 0.315 1.283 0.381 4.663 38917 -
0.151 1.589 

M21: MLP (8-6-1) Sine Linear 0.750 3.655 29368 0.482 1.369 0.383 4.645 38686 -
0.068 1.613 

M22: MLP (8-4-1) Sine Logistic 0.747 3.637 29508 0.267 1.275 0.386 5.027 38912 -
0.159 1.536 

M23: MLP (8-9-1) Sine Tanh 0.733 3.697 30517 0.620 1.514 0.407 4.597 38441 -
0.178 1.437 

M24: MLP (8-12-1) Sine Exponential 0.722 3.831 31111 0.527 1.256 0.415 4.697 37019 -
0.108 1.966 

M25: MLP (8-13-1) Sine Sine 0.751 3.640 29458 0.671 1.432 0.398 4.664 37811 -
0.093 1.798 

M26: RBF (8-3-1) Gaussian Linear 0.632 4.425 35628 0.550 1.560 0.125 6.047 45107 0.010 5.994 
M27: MLP-MAF 
(8-20-1) 

Linear, Logistic, 
Tanh, Exp, Sine Linear 0.772 3.519 28084 0.462 1.312 0.384 4.629 38864 -

0.126 1.558 

M28: MLP-MAF 
(8-16-1) 

Logistic, Tanh, 
Exp, Sine Linear 0.775 3.492 27893 0.490 1.280 0.383 4.608 38825 -

0.079 1.565 

M29: MLP-MAF 
(8-12-1) 

Logistic, Tanh, 
Exp Linear 0.753 3.636 29169 0.307 1.367 0.370 4.812 39098 -

0.134 1.689 

M30: MLP-MAF 
(8-12-1) 

Linear, Sine, 
Cosine Linear 0.744 3.795 29699 -0.042 1.252 0.556 4.301 32479 -

0.253 1.786 

   Critical values of t and F 2.242 1.061 Critical values of t and F 2.445 4.026 
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Table-6. Structure and statistical performance measurements of MLP-MAF, traditional MLP and RBF models of daily 
water consumption time series for Tampa - forecasting 15 days ahead. 

 

Estimate set (Observed - Fit) Holdout set (Observed - Forecast) 

Model 
Hidden layer 

activation 
function/s 

Output 
layer 

activation 
function/s 

R2 MAPE 
(%) RMSE t-value F-

value R2 MAPE 
(%) RMSE t-

value 
F-

value 

M1: MLP (8-5-1) Linear Linear 0.673 4.135 33886 -0.464 1.375 0.305 4.110 34427 -
0.511 3.278 

M2: MLP (8-4-1) Linear Logistic 0.671 4.152 33920 0.331 1.398 0.297 4.120 34084 -
0.069 4.008 

M3: MLP (8-4-1) Linear Tanh 0.671 4.164 34047 -0.693 1.355 0.312 4.120 34747 -
0.684 2.900 

M4: MLP (8-6-1) Linear Exponential 0.658 4.456 35786 0.988 2.275 0.293 4.133 34966 0.101 7.964 

M5: MLP (8-4-1) Linear Sine 0.672 4.140 33898 -0.464 1.397 0.305 4.102 34438 -
0.518 3.347 

M6: MLP (8-12-1) Logistic Linear 0.680 4.048 33428 -0.303 1.414 0.327 4.076 33708 -
0.373 2.509 

M7: MLP (8-6-1) Logistic Logistic 0.670 4.184 34163 -0.799 1.332 0.301 4.224 35220 -
0.689 2.509 

M8: MLP (8-7-1) Logistic Tanh 0.674 4.148 33992 -0.667 1.301 0.307 4.160 34801 -
0.628 2.650 

M9: MLP (8-9-1) Logistic Exponential 0.680 4.068 33427 -0.180 1.372 0.318 4.098 33992 -
0.435 2.818 

M10: MLP (8-11-1) Logistic Sine 0.669 4.159 34221 -0.669 1.325 0.315 4.112 34478 -
0.583 2.615 

M11: MLP (8-8-1) Tanh Linear 0.672 4.127 34000 -0.598 1.334 0.314 4.112 34377 -
0.554 2.790 

M12: MLP (8-7-1) Tanh Logistic 0.677 4.114 33792 -0.604 1.305 0.303 4.175 34806 -
0.598 2.675 

M13: MLP (8-5-1) Tanh Tanh 0.674 4.135 33840 -0.647 1.419 0.320 4.037 34259 -
0.581 2.933 

M14: MLP (8-9-1) Tanh Exponential 0.673 4.145 34096 -0.785 1.301 0.310 4.162 34978 -
0.698 2.571 

M15: MLP (8-7-1) Tanh Sine 0.676 4.114 33818 -0.681 1.332 0.310 4.142 34654 -
0.615 2.734 

M16: MLP (8-9-1) Exponential Linear 0.679 4.063 33533 -0.446 1.401 0.314 4.090 34029 -
0.415 2.858 

M17: MLP (8-13-1) Exponential Logistic 0.673 4.126 34018 -0.593 1.300 0.315 4.133 34331 -
0.523 2.582 

M18: MLP (8-10-1) Exponential Tanh 0.675 4.086 33768 -0.242 1.326 0.309 4.135 34068 -
0.356 2.812 

M19: MLP (8-7-1) Exponential Exponential 0.678 4.072 33696 -0.512 1.318 0.319 4.120 34084 -
0.457 2.536 

M20: MLP (8-6-1) Exponential Sine 0.678 4.068 33584 -0.546 1.426 0.327 4.056 33855 -
0.448 2.558 

M21: MLP (8-6-1) Sine Linear 0.685 4.038 33160 -0.169 1.356 0.317 4.107 33885 -
0.389 2.991 

M22: MLP (8-9-1) Sine Logistic 0.682 4.160 33662 0.718 1.742 0.312 4.057 33874 -
0.007 4.658 

M23: MLP (8-5-1) Sine Tanh 0.671 4.191 34193 -1.100 1.406 0.308 4.104 35233 -
0.801 2.999 

M24: MLP (8-11-1) Sine Exponential 0.664 4.413 35460 0.750 2.259 0.295 4.056 34863 0.040 7.696 

M25: MLP (8-7-1) Sine Sine 0.680 4.085 33498 -0.480 1.390 0.312 4.095 34248 -
0.508 3.179 

M26: RBF (8-13-1) Gaussian Linear 0.677 4.181 34358 -0.855 1.153 0.267 4.336 35454 -
0.462 2.672 

M27: MLP-MAF (8-20-1) Linear, Logistic, 
Tanh, Exp, Sine Linear 0.674 4.099 33830 -0.395 1.339 0.314 4.114 34138 -

0.457 2.772 

M28: MLP-MAF (8-16-1) Logistic, Tanh, 
Exp, Sine Linear 0.675 4.096 33811 -0.430 1.337 0.315 4.113 34139 -

0.468 2.738 

M29: MLP-MAF (8-12-1) Logistic, Tanh, 
Exp Linear 0.674 4.166 34358 -0.901 1.194 0.307 4.224 35172 -

0.705 2.410 

M30: MLP-MAF (8-12-1) Linear, Sine, 
Cosine Linear 0.758 3.612 29029 -0.034 1.294 0.411 3.698 31571 -

0.247 1.842 

   Critical values of t and F 2.242 1.061 Critical values of t and F 2.368 2.979 
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Figure-8. Observed, fit and forecast (5 days ahead) of MLP-MAF models for daily water 
consumption time series of Tampa. 
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Figure-9. Observed, fit and forecast (10 days ahead) of MLP-MAF models for daily water 
consumption time series of Tampa. 
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Figure-10. Observed, fit and forecast (15 days ahead) of MLP-MAF models for daily water 
consumption time series of Tampa. 

 
CONCLUSIONS 

The model developed in this research for daily 
and monthly municipal water demand forecasting is a 
Multilayer Perceptron - Multiactivation Function (MLP-
MAF) neural network that contains different activation 
functions in the nodes of the hidden layer. Even though the 
developed MLP-MAF time series models for water 
consumption time series of Tampa had not performed 
well, the models are better than traditional MLP and RBF 
neural network models in terms of statistical 
measurements, R2, MAPE and RMSE. Among the 
different activation functions in the hidden layer of MLP-
MAF, the combination of linear, sine and cosine functions 
is performing better than other combinations for daily and 
monthly water consumption time series of Tampa. 
Comparing the results of the traditional MLP and RBF 
neural network models for both daily and monthly water 
demand forecasting indicates that the forecasting accuracy 
of traditional MLP model is more accurate than the 
traditional RBF model. 
 
Appendix-I: Notations 
 

Symbol Description 

b The bias to the neuron in a layer of 
neural network 

 The classical F statistic 

fh(.) 
The activation function of hidden 
layer in neural network 

fk 
The activation function of neuron in 
a layer of neural network 

fo(.) 
The activation function of output 
layer 

fp 
The activation function of group p in 
the hidden layer of MLP-MAF 

g The number of neuron groups in the 
hidden layer of MLP-MAF  

HIN The inputs to the hidden layer of 
MLP-MAF 

I The inputs to the input layer of 
MLP-MAF 

N The number of data points 

 
The number of neurons in a neural 
network 

O The outputs of the output layer of 
MLP-MAF 

 The standard deviation 

,  The variance of observed and 
forecasted data, respectively 

t The time (day, month) 

tc 
The critical t-statistic at a 
significance level 

 The classical t-statistic 

w The weight between the layers of 
MLP network 

WI The input-hidden layers weights of 
MLP-MAF 

WO The hidden-output layers weights of 
MLP-MAF 

x The independent variable 

 The mean of time series  

 
The linear regression value for 
annual means 

 The maximum value of series x 

 The mean value of series x 

 The minimum value of series x 
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 The scaled value of variable xi 

 The standard deviation of series x 

y The dependent variable 

yk 
The output of neuron k in a layer of 
neural network 

 Output of a neural network model 

yt The observation at time t 

,  
The forecasted data with its mean for 
observed data  

,  The observed data with its mean, 
respectively 

 The random error 

µ The parameters in the Gaussian 
function 

ηa 
The learning rate for input-hidden 
weights of MLP-MAF 

ηb 
The learning rate for hidden-output 
weights of MLP-MAF 

 
The standard deviations in the 
Gaussian function 

 
Appendix-II: Abbreviations 
 

Abbreviation Description 

ANN Artificial neural network 

CE Coefficient of efficiency 

DAN2 Dynamic artificial neural network 
model 

FFBP Feed forward back propagation 

MAE Mean absolute error 

MAPE Mean absolute percentage error 

MLP Multilayer perceptron 

MSE Mean squared error 

R2 Coefficient of determination 

RBF Radial basis function 

RMSE Root mean squared error 

SSE Sum of square error 

SVM Support vector machines 

USA The United State of America 

MLP-MAF Multilayer perceptron multiactivation 
function neural network 
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