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ABSTRACT 

This paper proposes a new model for Giant Magnetoresistance (GMR) and calculates its typical graph 
qualitatively. The model’s foundation is the microscopic mechanism in GMR, where the GMR effect can be explained by 
intrinsic and extrinsic potential. The potentials are spin-dependent. The potentials determine the transmission probability 
then it will give conductance value. Here, the multiple barrier potential model is proposed as the new GMR model. The 
transmission probability is determined using transfer matrix method. It was found that this model is fit qualitatively with 
the typical GMR graph. 
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INTRODUCTION 

Giant Magnetoresistance (GMR) is a device in 
which the resistance is change by the influence of 
magnetic field. GMR structure is thin film composed by 
alternating ferromagnetic (F) and non-magnetic (N) layers. 
Since its discovery, the theoretical model of GMR 
becomes the subject of much attention (see [1] for 
comprehensive review). The most acceptable explanation 
of GMR is the spin dependent scattering. The scattering is 
between the electron and the potentials characteristic of 
the GMR materials. The scattering rates then contribute 
for the resistance of the GMR. 
 The electrons pass through the potential 
landscape of the GMR material. For simple F/N 
multilayers, the potential seen by the electrons includes the 
intrinsic potential of the multilayered structure and the 
extrinsic scattering potentials due to defects [2]. These 
potentials are described as the following and illustrated in 
Figure-1. 
 

a) The intrinsic potential is the potential of the perfect 
structure. It is defined as the bulk potential of 
ferromagnetic and non-magnetic bulk material. The 
intrinsic potential also occurs on the transition 
between ferromagnetic and non-magnetic potential, let 
called this potential is interface potential. 

b) The extrinsic potential is the potential of due to the 
material impurity, defect or roughness. These 
potentials are random which scatter around the 
ferromagnetic and non-magnetic material. 

 

 
 

Figure-1. Potential landscape of GMR material. 

Both of the potentials are spin-dependent. The 
bulk and interface potential that occur in ferromagnetic is 
due to anti-symmetry of its density of states and the 
transition with the non-magnetic material. The scattering 
potentials of impurities and defect within magnetic layers 
are also spin-dependent, as it is well known from 
experiments on bulk materials [3]. 

Taking account all of the potentials into the GMR 
model is not an easy task. The Mott model [4] explained 
how the conductivity is measured using two different 
transport channels. One channel for spin-up electron and 
the other is for spin-down electron. This model provides 
qualitative result for the GMR, but still not explain the 
microscopic mechanism inside the GMR. However, the 
principle of transport channel is used in this paper. 

The semi-classic model focuses on spin-
dependent scattering effects. Camley and Barnas [5] 
proposed this model and it was developed by several 
researchers [6, 7, 8]. The major success of this model was 
that is predicted the thickness dependence of the GMR. 
However, this model neglects the influence of the intrinsic 
potential of the multilayer. 

The first quantum mechanical model of the GMR 
was introduced by Levy at al. (1990) [9]. The model uses 
the Kubo formalism to calculate the conductivity of free 
electrons scattered by spin dependent potential. This 
model assumes free electrons and do not introduce the 
intrinsic potential of the multilayer.  

With the advance in computational material 
science, the ab-initio model [10, 11, 12, 13] is introduced 
to the field of GMR. This model starts with first-principle 
calculation of the electronic structure for a perfect super 
lattice. The major success of this model is the calculation 
of band structure which can be used to determine the bulk 
potential. However, this model is only applicable for 
perfect super lattice with the absence of impurity, defect 
and roughness. Consequently, this model overestimates 
the value of MR ratio. 

As a sum, to the best of our knowledge there is 
still no model which able to include all the intrinsic and 
extrinsic potential. Moreover, there is still no model that is 
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able to produce qualitatively the GMR graph (see Figure-
2). In this paper, we proposed the new model that take 
account of all the potentials inside the GMR and also 
produce the GMR graph qualitatively. 
 
MODEL CONSIDERATION 
 All of the potentials inside the GMR material can 
be described using barrier potential. In this paper, one-
dimensional multiple barrier potential is proposed as the 
new GMR model. This model is considered because of 
several reasons: 
 
a) The conductivity of GMR could be pictured by the 

amount of transmission probability of free electrons 
with various energy which pass barrier potential. 

b) Each potential of GMR is easily included to the model 
by adding the number of barrier potential. The shape 
of the barrier (height and width) is a function of 
potential kind of GMR. 

c) The magnetic field dependence of the GMR is 
represented by the change of potential’s shape either 
its height or its width. 

 
 In this paper, the model is built without any 
experimental parameters. The model is expected only to 
give qualitative picture of GMR as shown in Figure-2. If 
the model is verified qualitatively, then the model can be 
used for further developments. 
 

 
 

Figure-2. Typical GMR graph: Change in the resistance R 
of the magnetic multilayer as a function of applied 
magnetic field H. The magnetization is aligned antiparallel 
RAP at zero fields; the magnetization are aligned parallel 
RP when the external magnetic field is larger than the 
saturation field Hs. 
 
ONE DIMENSIONAL MULTIPLE BARRIER 
POTENTIAL 

Barrier potential is known as simple quantum 
mechanical problem where a free electron with incident 
wave will be transmitted and reflected by the barrier 
potential.  This model have been used to explain the 
interfaces between two conducting materials and verified 
by the scanning tunneling microscope (STM). Important 
parameters of this model are the transmission and 
reflection coefficient. The coefficient is varied and 

depends on the electron’s incident energy. In this model, 
the transmission coefficient is considered as the 
conductivity.  

The multiple barrier potential is more complex 
than the single barrier. The general problem is shown by 
Figure-3. One way to investigate the transport properties 
of the multiple barrier potential is by calculating the 
transfer matrix of the structure, another techniques have 
been given such as Green function methods, envelope 
function, etc. [14, 15, 16]. The transfer matrix is well 
explained by Rodriguez and Quintanilla [17] to calculate 
the transmission probability of Al0.45Ga0.55As/GaAs double 
barrier resonant tunneling (DBRT) structure. 
 

 
 

Figure-3. Multiple barrier potential problems with 
potential Vn is associated with xn. 

 
We consider the model with the potential 

discontinue is occur at xj until xN. The total transfer matrix 
for N number of discontinuities potential is formulated by: 
 

Mtotal = M (x j )M (x j+1,x j )
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where i is the complex number, term M(xj) is a transition 
matrix between regions with different values for the 
potential and the term M(xi)M(xj+1,xj) is a transporting 
matrix in a region which the potential remains constant. 
The term kj and rj are defined as: 
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where E is the electron energy, Vj is the potential between 
xj+1 and xj, mj is the effective mass, lxj is the distance 
between xj+1 and xi, and h is the Planck constant. The 
transmission coefficient is calculated using: 
 

T = 1
| Mtotal(11) |2

,                                               (6) 

 
where totalM (11) is the element (1,1) from the total 
transfer matrix from xj to xn.  

We define the conductance as the sum of 
transmission coefficient: 
 
σ= T (E)∑ ,                                                              (7) 

 
and the resistance is define as: 
 

R= 1
σ

.                                                              (8) 

 
MULTIPLE BARRIER POTENTIAL FOR GMR 
MODELING 

Figure-4 shows the model of the multiple barrier 
potential. The model took two layers of non-magnetic 
layers (N) which sandwiched with three layers of 
ferromagnetic (F). The height of each barrier potential 
represent the bulk potential Vbulk (N) and Vbulk (F) while the 
width of the potential is denotes by ∆wbulk (N) and ∆wbulk 
(F). One impurity potential Vdefect with width ∆wdefect is 
introduced in between the first two layers of 
ferromagnetic. The intrinsic potential is considered to be 
the boundary between the final layers of ferromagnetic 
and non-magnetic. The distances between barrier potential 
are denotes by ∆xbulk (F) and ∆xbulk (N). In this model, only 
the ferromagnetic bulk potential Vbulk (F) which is 
considered to be spin dependent. 
 

 
 

Figure-4. The multiple barrier potential model. 
 

Figure-5 shows the configuration for antiparallel 
(AP). Here, the incoming spin-up electrons will consider 
the first ferromagnetic layers as low potential (the same 
spin sign) while the last ferromagnetic layers as high 
potential (the different spin sign and vice versa with the 
incoming spin-down electrons. Figure-6 shows the 

configuration for parallel (P). Here, the incoming spin-up 
electrons will consider all of the ferromagnetic layers as 
high potential (the opposite spin sign) while the spin-down 
electrons will consider all of the ferromagnetic layers as 
low potential (the same spin sign). 

This model uses dimensionless parameters. 
Constant h/2π and effective mass m are taken to be 1. The 
bulk potential for ferromagnetic layers is taken to be 2 for 
minimum and 4 for the maximum. The bulk potential for 
non-magnetic or ferromagnetic layers is taken to be 2 
minimum and 4 for the maximum. The bulk potential for 
non-magnetic layers is taken to be 1 while the defect 
potential is taken to be 0.5. The distance between 
ferromagnetic and non- magnetic bulk potential is taken to 
be 2, while the distance between ferromagnetic and the 
defect is taken to be 0.5. The electron’s energy that passes 
through the potentials is taken to be 3.8 until 4.8 with 200 
increments. 
 

 
 

Figure-5. The antiparallel (AP) configuration. 
 

 
 

Figure-6. The parallel (P) configuration. 
 

To obtain the total resistance of the system, we 
use the Mott’s first argument [4]; the resistance is the sum 
of the independent resistance for the spin-up and spin-
down electrons: 
 
R = R ↑ + R ↓                                    (9) 
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RESULT AND DISCUSSIONS 
Figures 7, 8 show the magnetoresistance graph 

for normalized spin-up and spin-down channel. As shown 
on the Figures for each channel: the electrons which have 
the same sign of spin obtain low resistance, while when 
the electrons pass the different sign of spin obtain high 
resistance.  

The total magnetoresistance is shown in Figure-9. 
This model is compared with the first generation of GMR 
using Fe/Cr multilayers measured by Baibich et al. [18]. 
As shown from the comparison, the model is fit 
qualitatively with the experimental result. Some remarks 
from the model that the asymmetry is occurred because of 
the defect potential. Thus, it can be concluded that the 
defect has significant effect for the total resistance. There 
is also saturation condition which is also fit well with the 
typical GMR graph.  

As a sum, it can be concluded that all of the 
model’s result is fit qualitatively with the typical GMR 
graph. Thus, this model is promising for further 
development. In this case is to include the actual 
parameters from the experimental point of view.  
 

 
 

Figure-7. Spin down channel magnetoresistance graph 
(normalized). 

 

 
 

Figure-8. Spin up channel magnetoresistance graph 
(normalized). 

 
 

Figure-9. The total magnetoresistance (normalized) 
compared with variation of data of the Fe/Cr 
multilayer measured by Baibich et al. [18]. 

 
CONCLUSIONS 

This paper presents a new model for Giant. This 
model takes account of all influenced magnetoresistance 
potentials in the GMR. The model is using multiple barrier 
potential with its solution is determined by using transfer 
matrix.  

In this model, the variation of magnetic field is 
represented by the variation in the height of barrier 
potential. The result that shows the relation between the 
resistance and the variation on the potentials is fit 
qualitatively with the typical GMR graph and the 
experimental result.  

The result also shows the asymmetry graph due 
to the defect potential and also the saturation condition. 
Thus, this model is fit qualitatively with the typical GMR 
graph and promising for further development. 
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