
 VOL. 9, NO. 3, MARCH 2014 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2014 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

237

THREE DIMENSIONAL VISUALIZATION FOR FAST DISPLAY OF
VECTOR FIELDS USING ILLUMINATED STREAM LINES

Gunasekaran G. and Bimal Kumar Ray

1School of Information Technology and Engineering, VIT University, Vellore, India
E-Mail: ggunasekaran@vit.ac.in

ABSTRACT

A new technique for interactive vector field visualization using large numbers of properly illuminated stream lines
is presented. Taking into account ambient, diffuse, and specular reflection terms as well as transparency, we employ a
realistic shading model which significantly increases quality and realism of the resulting images. While many graphics
workstation offer hardware support for illuminating surface. Primitives, usually no means for an accurate shading of line
primitives are provided. However, we show that proper illumination of lines can be implemented by exploiting the texture
mapping capabilities of modern graphics hardware. In this way high rendering performance with interactive frame rates
can be achieved. We apply the technique to render large numbers of integral curves in a vector field. The impression of the
resulting images can be further improved by making the curves partially transparent. We also describe methods for
controlling the distribution of stream lines in space. These methods enable us to use illuminated stream lines within an
interactive visualization environment.

Keywords: streamlines, rendering, illuminations, color coding.

1. INTRODUCTION

The visual representation of time varying vector
fields is subject of ongoing research in scientific
visualization. A number of sophisticated methods have
been proposed to tackle this problem, ranging from
particle tracing [1, 2, 3] over icon based methods [3, 4] to
texture based approaches [2, 3, 5, 6]. A straightforward,
popular and still very powerful method is the concept of
depicting stream lines. However, when using stream lines
for visualization the user is confronted with a number of
problems. First, on a common graphics workstation
streamlines either have to be displayed using flat-shaded
line segments, impairing the spatial impression of the
image, or they have to be represented by polygonal tubes,
strongly limiting the number of stream lines that can be
displayed in a scene. Second, it is usually not quite
obvious how to distribute stream lines in space in order to
get expressive pictures without missing important details
of the field. In this paper we present ideas that can help to
overcome both problems. To achieve a fast and accurate
illumination of line segments we exploit the texture
mapping capabilities of modern graphics hardware. We
apply this new shading technique to render large numbers
of stream lines distributed throughout a vector field.
Taking into account light reflection on stream lines is of
great significance for scientific visualization because it
very much increases the spatial impression of the resulting
images. Image quality can be further improved by making
parts of a stream line semitransparent. This allows us to
get a better understanding of the inner structure of a field.
It also makes it possible to distinguish between forward
and backward direction. To facilitate the placement of a
large number of stream lines we employ statistical
methods. Given some scalar quantity that loosely
describes the degree of interest in the vector field at some
location, stream lines are placed automatically such that
the relative degree of interest is matched qualitatively. It

is a well-known fact that quality and realism of computer
generated images depend to a high degree on the accurate
modeling of light interacting with the objects in a scene.
Shading effects are perhaps the most important cue for
spatial perception. Consequently much research has been
performed to develop realistic illumination and reflection
models in computer graphics. A widely used compromise
between computational complexity and resulting realism is
Phong’s reflection model [6] which assumes point light
sources and approximates the most important reflection
terms by simple expressions. Traditionally the model is
applied to surface elements. Today many graphics
workstations offer hardware support for this kind of
illumination. However, the model can also be generalized
to line primitives, and in this paper we will make direct
use of such a generalization.

In scientific visualization the goal is not to render
natural scenes in a photo-realistic way, but to generate
images which provide maximal insight into numerical or
experimental data. Nevertheless, shading effects are at
least as important for the spatial interpretation of artificial
images as in traditional computer graphics. Shading
provides the observer with a minimum of realism in a
world of cutting planes, isosurfaces, and symbols.
Unfortunately there are a number of visualization
techniques which aren’t based on surface primitives, and
which therefore can’t make use of the hardware shading
capabilities of current graphics workstations. As an
example consider the various volume rendering
techniques. While interactive frame rates can be achieved
for simple emission-absorption models by exploiting
graphics hardware, in general this isn’t yet possible if
some sort of gradient dependent shading is included.
Although rendering of line primitives is not as complex as
volume rendering, the situation is similar. Traditionally,
either flat shading has to be used or significant parts of the
illumination calculation have to be computed without

 VOL. 9, NO. 3, MARCH 2014 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2014 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

238

support by dedicated hardware. After discussing
illumination of line primitives in more detail, in section 3
we show how it can be implemented using texture
mapping techniques. In section 4 we describe how to
distribute stream lines in space in order to enhance
interesting features within a vector field. In the final
sections we present results and conclusions.

2. ILLUMINATIONS OF LINES

Surfaces can be characterized locally by a distinct
outward normal vector N. This normal vector plays an
important role when describing the interaction of light
with surface elements [3, 6]. In the following we will
shortly review the popular reflection model of Phong. Let
L denote the light direction, V the viewing direction and R
the unit reflection vector (the vector in the L-N-plane with
the same angle to the surface normal as the incident light).
Then light intensity at a particular surface point is given
by

I = Ka + Kd (L.N) + Ks (V.R) ^ n (1)

The first term, a global one, represents the
ambient light intensity due to multiple reflections in the
environment. The second term describes diffuse reflection
due to Lambert’s law. Diffuse light intensity does not
depend on the viewing vector, i.e. diffuse reflecting
objects look equally bright from all directions. The last
term in Equation (1) describes specular reflections on a
surface. Specular reflections or highlights are centered on
the reflection vector R. The width of the highlights is
controlled by the exponent n, also called shininess.

Figure-1. For line primitives there are infinitely many
possible reflection vectors R lying on a cone around

T. For the actual lighting calculation we choose
the one contained in the L-T-plane.

Figure-2. The light vector L can be decomposed into two
orthogonal components LT and LN corresponding to the

projection on the line’s tangent and normal
space, respectively.

Let us now consider line primitives. In this case

we can no longer define unique normal and reflection
vectors. Instead there are two-dimensional manifolds
containing infinitely many possible normal and reflection
vectors. Mathematically lines in R3 are said to have
codimension 2. Fortunately common surface reflection
models can be generalized to higher co-dimensions in a
straight forward way. These generalizations have been
discussed in detail by Banks [3]. For lines in R3 the results
are quite obvious. From all possible normal vectors we
simply have to select the one which is coplanar to the light
vector L and the tangent vector T. Taking this particular
normal vector we compute the diffuse reflection term as
for surfaces using Equation (1). Likewise, from all
possible reflection vectors we choose the one coplanar to
L and T. Again, taking this particular reflection vector we
use Equation (1) to compute the specular reflection term.
The relevant vectors for line illumination are illustrated in
Figure-1. Instead of relying onto a specially selected
normal vector we would rather like to express diffuse light
intensity for line segments solely in terms of L and T.
Therefore we first project the light vector into the line’s
normal and tangent spaces, yielding an orthogonal
decomposition L = LN+LT. As illustrated in Figure-2, by
applying Pythagoras’s theorem we obtain

L.N=|L.N|= Sqrt (1-|LT|^2 = Sqrt (1-(L.T) ^2 (2)

Using similar arguments we can express the inner
product V.R responsible for specular reflection solely in
terms of L, V and T, i.e. without referring to N. First,
observe that RN = -LN and RT = LT. We therefore have

V.R = V. (LT –LN)
= V. ((L.T) T- (L.N) N)
(L.T)(V.T) - Sqrt(1 - (L.T)^2 Sqrt (1- (V.T)^2 (3)

Here we have replaced L.T by Equation (2). A
similar expression has been used to rewrite V.T.

 VOL. 9, NO. 3, MARCH 2014 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2014 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

239

3. RENDERING
Despite the fact that the illumination equation

looks the same for lines and surfaces, use of standard
hardware shading techniques is impaired because for each
new view or light direction a suitable normal vector has to
be computed without utilizing graphics hardware. In the
following we show how Equations (2) and (3) can be
effectively evaluated using texture mapping capabilities of
modern graphics hardware, avoiding the need of explicit
normal vector computation. The technique allows us to
achieve high frame rates even when large numbers of line
segments have to be rendered.

3.1. Texture mapping

We assume to have a graphics API available
similar to OpenGL. In this graphics library at each vertex a
homogeneous vector of texture coordinates can be
specified. Usually the first components of this vector are
taken as indices into a one, two, or three dimensional
texture maps. A texture map may contain colors and/or
transparencies which can be used to modify in various
ways the original color of a fragment in the graphics
pipeline. In addition it is possible to change texture
coordinates using a 4 x 4 texture transformation matrix.
This texture transformation is the key feature which makes
it possible to employ texture mapping hardware for
shading calculations.

3.2. Diffuse reflection

Looking at Equation(2) we note that the diffuse
light intensity of a line segment is a function of L.T only.
Specifying a texture vector t0 equal to the line’s tangent
vector T at each vertex, this inner product can be
computed in hardware using the following texture
transformation matrix:

The first component of the transformed
homogeneous texture vector t = t0.M then evaluates to
t1=1/2(L.T+1)

Note: that t1 always lies in the range 0…1.
Therefore this value can be used as an index into a one-
dimensional texture map P (t1). The value of the texture
map at location t1is chosen such that it resembles the
diffuse light intensity corresponding to L.T=2t1-1, namely

P (t1) = Idiffuse = Kd sqrt (1- (2t1-1) ^2 (4)

Using a texture mode which takes the color of a
line fragment to be equal to its texture color P (t1) we
obtain an image which accurately shows line segments
diffusely illuminated by a single point light source. If the

light direction changes us simply have to update the
texture transformation matrix. Vertices and texture
coordinates of the line segments remain constant. This
means that we can make use of OpenGL display lists to
further increase rendering speed. Display lists allow one to
specify multiple vertex and texture definitions using a
single graphics library call.

3.3. Specular reflection

The specular reflection term does not only
depend on V.T but also on L.T, as can be seen from
Equation (3). To compute this additional inner product we
initialize the second column of the texture transformation
matrix with the current viewing direction:

While the first transformed texture component
remains the same, for the second component we now get

 t2 = 1/2(V.T+1) (5)

In order to obtain the correct light intensity
corresponding to L.T = 2t1-1and V.T = 2t1-1we can use a
two-dimensional texture map P (t1, t2). Adding a constant
ambient term Ka as well as the diffuse contribution from
Equation (4) we can perform the whole shading
calculation for a single light source in texture hardware.
Figure-3 shows an example of a resulting two-dimensional
texture map. One can clearly identify the highlight
appearing at different angle positions on top of a diffuse
background. If no highlight was present color would not
depend on the viewing direction V, as stated by Lambert’s
law. It is worthwhile to note that there is an important
special case, which allows one to use a one-dimensional
texture even when specular reflection is present. This is
the case of a headlight, i.e. a point light source located at
the same position as the camera. In this case light vector
and viewing vector are identical. Equation (3) simplifies to
V.R = 2(L.T) ^2-1

Headlights are quite useful because they always
guarantee an adequate illumination of the scene,
irrespectively of the actual viewing direction. The user has
not to bother with a tedious setup of light conditions. In
fact, all of the color plates in this paper were rendered
using a headlight. Of course it is also possible to use the
third column of the texture transformation matrix to
compute an additional inner product. This would require
the use of a three-dimensional texture map. Three different
inner products would allow the illumination of lines by
two point light sources located at arbitrary positions
including specular reflection. Alternatively one might
discard specular reflection and instead introduce a third
purely diffuse illuminating light source.

 VOL. 9, NO. 3, MARCH 2014 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2014 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

240

Figure-3. Two-dimensional texture map used to
implement Phong reflection model for line segments.

Parameter values are Ka=0:1; Kd=0:3; Ks=0:6, and n=40.

3.4. Color coding

Color coding is a common method in
visualization. Applying color to individual field lines
would enable us to depict some scalar quantity in addition
to vector field structure [2]. Such a quantity could be field
magnitude or potential strength, or something more
unrelated like pressure in a fluid flow. Ideally we would
like to modify the curve’s ambient and diffuse color
components according to a given color lookup Table.
However, in our case color is directly taken from a texture
map. Since we use the same texture map for all field lines
it is not possible to set these components locally in a
straight-forward way. Nevertheless, by using an
alternative texture mapping mode it is possible to
modulate, i.e. multiply, texture color with the object’s base
color. The latter can be defined for each vertex separately.
This yields the desired effect with the restriction that also
the specular highlight gets colored instead of remaining
constant. It suggests that this is only a minor limitation.
Despite being differently colored the highlight can be
identified clearly throughout the whole image while still
improving spatial perception. At the same time color
accurately encodes an additional scalar variable.

3.5. Excess brightness

Banks [3] pointed out that there is a general
problem when illuminating objects with co-dimension >1.
1 The overall intensity of an image increases and becomes
more uniform, thus disturbing spatial perception. In case
of lines in R3 this can be understood by the following
consideration: We know that the normal vector is not a
constant one, but is given by the projection of the light
vector into the line’s normal space. Choosing such a
vector means minimizing the angle between light vector
and normal. Therefore in general the angle between these
two vectors is smaller compared to the case of a fixed
normal. This results in a more uniform brightness than we
are used to perceive in real world. As suggested by Banks,
we compensate the effect qualitatively by exponentiation
the diffuse intensity term

Idiffuse = Ka (L.N) P (6)

In [1] a value of p=4.8 was proposed. For the

images in this paper we have used a value of p=1.5, which
produced smoother results.

3.6. Transparency

Shading of line segments as described above
provides important cues for the spatial impression of
stream line images. However, image quality can be further
improved by use of transparency. Let us imagine the
image of a stream line is produced by a small particle
traversing the vector field and leaving a veil of haze.
Assuming that the haze disappears according to an
exponential law, opacity or alpha value for a point Sn at
the curve is given by

α (Sn) = α0qn-1 (7)

Here the factor q controls how much of the haze
disappears per unit step. A resulting semi-transparent
stream line and transparent objects are illustrated in the
Figures 4(a) and 4(b);

Figure-4(a). A resulting semi-transparent stream line.

Figure-4(b). A resulting transparent stream lines.

Use of transparency has two advantages: First,
stream lines near to the camera do not completely hide
those being more far away. This allows the observer to
gain deeper insight into the inner structure of the vector
field. Second, the sign of vector field direction becomes

 VOL. 9, NO. 3, MARCH 2014 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2014 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

241

visible in a static image. This is not the case when stream
lines are rendered symmetrically in forward and backward
direction. Drawing a transparent pixel of opacity α and
color C causes the current color in the frame buffer to be
updated according to

Cnew = (1- α) Cold + α C (8)

In general if multiple transparent objects are
present the final color depends on the ordering of the
individual objects in Figure-4(b). Correct results are
obtained using a back to front traversal. The situation is
simplified if all objects are of equal color C. In this case
all traversal orders yield the same result. Who applied
constant shaded line bundles for vector field visualization
tool? However, for illuminated lines color isn’t constant
anymore. Therefore individual lines have to be rendered in
a depth-sorted way.

In general it is impossible to achieve an exact
depth ordering for extended curves in 3D, because mutual
coverings may occur. Therefore we split each stream line
into many small line segments, which are sorted and
rendered individually. To avoid resorting line segments
each time the view direction changes we use the following
simplified algorithm; three lists of pointers to stream line
segments are created. The lists are sorted in order of
increasing x-, y-, and z- coordinates, respectively. During
rendering the list that most closely resembles the viewing
direction is traversed, either from back to front or from
front to back. Although this method is not exact, it
produces excellent results which cannot be distinguished
from the exact images visually. Experiments have shown,
that only about 1% of all pixels receive somewhat
incorrect color values.

3.7. Stream line animation

Animated particles provide a very intuitive mean
of visualization, especially when velocity fields are to be
visualized. Following the idea of particles leaving a veil of
haze, animation sequences can be obtained in the
following way. Stream lines are created at different time’s
ti with an initial length of 0. In each time step, all stream
lines are extended by one point, while opacity of all the
points already drawn is modified by the factor q (compare
Equation (7)). This gives the illusion of moving particles
producing a slowly disappearing veil of haze, like comets.
A periodic animation sequence can be created by assuring
that the period T is long enough so that points on a stream
line can disappear completely within this interval (i.e. qT ≈
0). Then a stream line that has been created at time ti can
be restarted at the same location at time ti +T, since it is no
longer visible then. This results in a continuous animation
loop of period T.

4. DISTRIBUTING STREAM LINES

When using stream lines for vector field
visualization a common problem is to select proper seed
points for path tracking. The fast texture based shading
technique described above allows us to render images

containing thousands of stream lines at interactive rates.
Working with a large number of stream lines has the
advantage, that the positioning of an individual line
becomes less important is illustrated in Figure-5. Instead
we can apply statistical methods to distribute seed points
throughout the field. In particular we would like the
distribution to resemble some sort of scalar quantity p,
which loosely corresponds to the degree of interest the
user wants to put in some region. For example a constant p
would result in a homogenous distribution of seed points,
while a value of p proportional to vector magnitude would
have the effect that more seed points are placed in regions
of large magnitude.

Figure-5. Distributed stream lines using visualization tool.

4.1. An equalization strategy

In general it is not a trivial task to find a good
scalar quantity p. For example, choosing p equal to vector
field magnitude may not have the desired effect when this
quantity varies over multiple orders of magnitude. Instead
of exactly being proportional to p, we would rather like to
have a density distribution which resembles vector field
magnitude qualitatively, but in general places seed points
more homogenously. Such an effect can be obtained using
a histogram equalization approach. This technique is well
known from the image processing literature [6], but in our
case may also be used to modify the degree of interest pin
a suitable way. Let us define a sum histogram in the
following way:

Based on the sum histogram we can assign each
cell a new equalized degree of interest,

pi’= S(pi) (10)

Of course other probability distributions can be
used to emphasize special features of the field. We have
implemented a symbolic interface which allows us to

 VOL. 9, NO. 3, MARCH 2014 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2014 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

242

specify p, as a function of vector field magnitude and other
optional scalar fields. Within this interface analytic
functions like logarithm or square root as well as threshold
operators can be used to modify p. Together with a three-
dimensional selection box, which may be positioned
interactively to spatially confine the region of interest, it is
possible to explore very quickly the overall characteristics
as well as the details of a vector field.

4.2. Divergence compensation

If the vector field has a divergence different from
zero, the stream line density will not remain constant even
if the seed points are distributed uniformly. For example in
Figure-6 displays the divergence of vector volume data as
slice planes, using color to indicate divergence in some
areas stream lines will run together, resulting in an
increased local density. In other areas they will expand,
resulting in a decreased local density. In our case stream
lines are computed with a fixed maximum length.
Experience shows that a sufficiently uniform stream line
density is obtained by placing seed points in the middle of
a stream line segment, and integrating equally far in
forward and backward direction. Of course, better results
could be obtained by adaptively terminating existing lines
or creating new ones based on local stream line density.

Figure-6. Displays the divergence of vector volume data
as slice planes, using color to indicate divergence.

4.3. Streamline computation

For numerical stream line integration we use a
fourth-order Runge-Kutta method with error monitoring
and adaptive step size control, as described in [2]. Use of
an adaptive method allows us to control the error of the
solution. Such methods are also necessary to detect
singularities. At these points stream line integration has to
be terminated. Singularities, i.e. sinks and sources,
commonly occur for example in electrostatic fields.

Figure-7. Streamline computation for flow vector.

5. RESULTS

The algorithms presented in this work have been
implemented in MAT Lab by visualization tool box. Using
visualization tool makes it easy to display shaded stream
lines in combination with other geometries. The shading
itself makes use of the OpenGL graphics library. On a SGI
Indigo2 desktop workstation with Maximum Impact
graphics and a 250 MHz R4400 CPU scenes containing
3000 stream lines each consisting of 120 transparent line
segments can be rendered at a rate of 30 frames per
second. These results can be improved by 20% to 30% if
OpenGL display lists are used. However, display lists
cause the rendering to be delayed when the scene is drawn
the first time. Therefore, in our implementation the user
can choose whether to use display lists or not. Also, the
integration of our algorithm into the OpenGL rendering
scheme may be further optimized. We have applied our
methods to visualize vector fields from various disciplines
like computational fluid dynamics, quantum chemistry,
graphical data and medical data sets. In most cases the
default values for seed point distribution (eventually
accompanied with the histogram equalization technique)
provide a good first impression of the vector field. The fast
rendering speed offers the possibility to interactively rotate
and enlarge the geometry objects. This is an important
feature for an improved spatial perception. In addition
stream lines have been color coded as described in
section3.4. In this example color depicts the electrostatic
potential. The field lines connect several positive point
charges (magenta) with a single negative charge (green to
orange). An example of a velocity field from a
computational fluid dynamics application is also used. The
data represents a fluid flow over a backward facing step.
The turbulent region emphasized by the visualization is
characterized by a very complex field structure. Finally,
illustrates the power of accurate line shading: While only a
poor three-dimensional impression is obtained from the
middle and right images, the spatial structure of the field is
clearly revealed in the left image.

 VOL. 9, NO. 3, MARCH 2014 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2014 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

243

6. CONCLUSIONS
The visual representation of 3D vector fields is

one of the current challenges in scientific visualization. Of
particular interest are methods that provide an overview of
the global field structure and that also depict fine details.
In this work we have presented a fast method for
visualizing 3D vector fields based on the faster display of
illuminated stream lines, i.e. integral curves of the field or
line segments. The method gives a good impression of the
field structure and enables us to resolve visually rather
good quality resolution, like small vortices. A texture
mapping technique is used to accurately illuminate the
stream lines. Light reflection on stream lines improves
spatial perception and thereby facilitates the understanding
of the inner structure of a field. We have shown how high
quality stream line images can be generated at interactive
speed using hardware supported texture mapping. This
offers new opportunities for interactive visualization.
Using a simple Monte-Carlo method lines are placed
automatically such that the relative degree of interest,
defined by some scalar field, is matched qualitatively.
Additional use of a histogram equalization approach
allows us to automatically place stream line segments
more homogenously. Some interesting topics of further
research are improvement of the seed point selection
strategies such that characteristic features of the field are
detected and enhanced automatically or the application of
the shading technique to time dependent vector fields. In
the latter case particle paths or streak lines should be used
in favour of stream lines. In this work not enough to
visualize specific shape of object. Our work also address
to stream tubes and stream ribbons for improve the
quality, more efficiently and effectively.

ACKNOWLEDGEMENT

We would like to thank Dr. Roger Crawfis and
Nelson Max for the valuable discussion on textured
mappings for 3D Scalar and Vector Field Visualization,
which initiated this work. We also thank Dr. Richard S.
Gallagher, for the valuable discussion on Computer
Visualization: Graphics Techniques for Engineering and
Scientific Analysis. I would like to appreciate the help by
Dr. Bimal Kumar Ray on proof reading of this paper.

REFERENCES

[1] Andrea J. S. Hin and Frits H. Post, “Visualization of

Turbulent Flow with Particles”, In Visualization’93,
IEEE Computer Society Press, pp. 46-52.

[2] D. Stalling, H.C. Hege, “Fast and Resolution

Independent Line Integral Convolution”, Proceedings
of SIGGRAPH ’95 (Los Angeles, California, August
6-11, 1995). In Computer Graphics Annual
Conference Series, 1995, ACM SIGGRAPH, pp. 249-
256.

[3] Richard S. Gallagher, “Computer Visualization:
Graphics Techniques for Engineering and Scientific
Analysis”, Solomon Press. CRC Press.

[4] Kwan-Liu Ma and Philip J. Smith, “Virtual Smoke:

An Interactive 3D Flow Visualization Technique”, In
Visualization ’92, IEEE Computer Society, pp. 46-52.

[5] Roger Crawfis, Nelson Max, “Textured Splats for 3D

Scalar and Vector Field Visualization”, Proceedings
of Visualization ’93, Nielson and Bergeron, Eds.,
IEEE Computer Society Press, 1993, pp. 261-272.

[6] Bui-T. Phong, “Illumination for Computer Generated

Pictures”, Communications of the ACM, June 1975,
pp. 311-317.

