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ABSTRACT 

A new technique for interactive vector field visualization using large numbers of properly illuminated stream lines 
is presented. Taking into account ambient, diffuse, and specular reflection terms as well as transparency, we employ a 
realistic shading model which significantly increases quality and realism of the resulting images. While many graphics 
workstation offer hardware support for illuminating surface. Primitives, usually no means for an accurate shading of line 
primitives are provided. However, we show that proper illumination of lines can be implemented by exploiting the texture 
mapping capabilities of modern graphics hardware. In this way high rendering performance with interactive frame rates 
can be achieved. We apply the technique to render large numbers of integral curves in a vector field. The impression of the 
resulting images can be further improved by making the curves partially transparent. We also describe methods for 
controlling the distribution of stream lines in space. These methods enable us to use illuminated stream lines within an 
interactive visualization environment. 
 
Keywords: streamlines, rendering, illuminations, color coding. 
 
1. INTRODUCTION 

The visual representation of time varying vector 
fields is subject of ongoing research in scientific 
visualization. A number of sophisticated methods have 
been proposed to tackle this problem, ranging from 
particle tracing [1, 2, 3] over icon based methods [3, 4] to 
texture based approaches [2, 3, 5, 6]. A straightforward, 
popular and still very powerful method is the concept of 
depicting stream lines. However, when using stream lines 
for visualization the user is confronted with a number of 
problems. First, on a common graphics workstation 
streamlines either have to be displayed using flat-shaded 
line segments, impairing the spatial impression of the 
image, or they have to be represented by polygonal tubes, 
strongly limiting the number of stream lines that can be 
displayed in a scene. Second, it is usually not quite 
obvious how to distribute stream lines in space in order to 
get expressive pictures without missing important details 
of the field. In this paper we present ideas that can help to 
overcome both problems. To achieve a fast and accurate 
illumination of line segments we exploit the texture 
mapping capabilities of modern graphics hardware. We 
apply this new shading technique to render large numbers 
of stream lines distributed throughout a vector field. 
Taking into account light reflection on stream lines is of 
great significance for scientific visualization because it 
very much increases the spatial impression of the resulting 
images. Image quality can be further improved by making 
parts of a stream line semitransparent. This allows us to 
get a better understanding of the inner structure of a field. 
It also makes it possible to distinguish between forward 
and backward direction. To facilitate the placement of a 
large number of stream lines we employ statistical 
methods. Given some scalar quantity that loosely 
describes the degree of interest in the vector field at some 
location, stream lines are placed automatically such that 
the relative degree of interest is matched qualitatively.  It 

is a well-known fact that quality and realism of computer 
generated images depend to a high degree on the accurate 
modeling of light interacting with the objects in a scene. 
Shading effects are perhaps the most important cue for 
spatial perception. Consequently much research has been 
performed to develop realistic illumination and reflection 
models in computer graphics. A widely used compromise 
between computational complexity and resulting realism is 
Phong’s reflection model [6] which assumes point light 
sources and approximates the most important reflection 
terms by simple expressions. Traditionally the model is 
applied to surface elements. Today many graphics 
workstations offer hardware support for this kind of 
illumination. However, the model can also be generalized 
to line primitives, and in this paper we will make direct 
use of such a generalization. 

In scientific visualization the goal is not to render 
natural scenes in a photo-realistic way, but to generate 
images which provide maximal insight into numerical or 
experimental data. Nevertheless, shading effects are at 
least as important for the spatial interpretation of artificial 
images as in traditional computer graphics. Shading 
provides the observer with a minimum of realism in a 
world of cutting planes, isosurfaces, and symbols. 
Unfortunately there are a number of visualization 
techniques which aren’t based on surface primitives, and 
which therefore can’t make use of the hardware shading 
capabilities of current graphics workstations. As an 
example consider the various volume rendering 
techniques. While interactive frame rates can be achieved 
for simple emission-absorption models by exploiting 
graphics hardware, in general this isn’t yet possible if 
some sort of gradient dependent shading is included. 
Although rendering of line primitives is not as complex as 
volume rendering, the situation is similar. Traditionally, 
either flat shading has to be used or significant parts of the 
illumination calculation have to be computed without 
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support by dedicated hardware. After discussing 
illumination of line primitives in more detail, in section 3 
we show how it can be implemented using texture 
mapping techniques. In section 4 we describe how to 
distribute stream lines in space in order to enhance 
interesting features within a vector field. In the final 
sections we present results and conclusions. 
 
2. ILLUMINATIONS OF LINES 

Surfaces can be characterized locally by a distinct 
outward normal vector N. This normal vector plays an 
important role when describing the interaction of light 
with surface elements [3, 6]. In the following we will 
shortly review the popular reflection model of Phong. Let 
L denote the light direction, V the viewing direction and R 
the unit reflection vector (the vector in the L-N-plane with 
the same angle to the surface normal as the incident light). 
Then light intensity at a particular surface point is given 
by  
 
I = Ka + Kd (L.N) + Ks (V.R) ^ n            (1) 
 

The first term, a global one, represents the 
ambient light intensity due to multiple reflections in the 
environment. The second term describes diffuse reflection 
due to Lambert’s law. Diffuse light intensity does not 
depend on the viewing vector, i.e. diffuse reflecting 
objects look equally bright from all directions. The last 
term in Equation (1) describes specular reflections on a 
surface. Specular reflections or highlights are centered on 
the reflection vector R. The width of the highlights is 
controlled by the exponent n, also called shininess. 
 

 
 

Figure-1. For line primitives there are infinitely many 
possible reflection vectors R lying on a cone around 

T. For the actual lighting calculation we choose 
the one contained in the L-T-plane. 

 

 
 

Figure-2. The light vector L can be decomposed into two 
orthogonal components LT and LN corresponding to the 

projection on the line’s tangent and normal 
space, respectively. 

 
Let us now consider line primitives. In this case 

we can no longer define unique normal and reflection 
vectors. Instead there are two-dimensional manifolds 
containing infinitely many possible normal and reflection 
vectors. Mathematically lines in R3 are said to have 
codimension 2. Fortunately common surface reflection 
models can be generalized to higher co-dimensions in a 
straight forward way. These generalizations have been 
discussed in detail by Banks [3]. For lines in R3 the results 
are quite obvious. From all possible normal vectors we 
simply have to select the one which is coplanar to the light 
vector L and the tangent vector T. Taking this particular 
normal vector we compute the diffuse reflection term as 
for surfaces using Equation (1). Likewise, from all 
possible reflection vectors we choose the one coplanar to 
L and T. Again, taking this particular reflection vector we 
use Equation (1) to compute the specular reflection term. 
The relevant vectors for line illumination are illustrated in 
Figure-1. Instead of relying onto a specially selected 
normal vector we would rather like to express diffuse light 
intensity for line segments solely in terms of L and T. 
Therefore we first project the light vector into the line’s 
normal and tangent spaces, yielding an orthogonal 
decomposition L = LN+LT. As illustrated in Figure-2, by 
applying Pythagoras’s theorem we obtain 
  
L.N=|L.N|= Sqrt (1-|LT|^2 = Sqrt (1-(L.T) ^2     (2) 
 

Using similar arguments we can express the inner 
product V.R responsible for specular reflection solely in 
terms of L, V and T, i.e. without referring to N. First, 
observe that RN = -LN and RT = LT. We therefore have  
 
V.R = V. (LT –LN) 
= V. ((L.T) T- (L.N) N) 
(L.T)(V.T) - Sqrt(1 - (L.T)^2 Sqrt (1- (V.T)^2    (3) 
 

Here we have replaced L.T by Equation (2). A 
similar expression has been used to rewrite V.T. 
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3. RENDERING 
Despite the fact that the illumination equation 

looks the same for lines and surfaces, use of standard 
hardware shading techniques is impaired because for each 
new view or light direction a suitable normal vector has to 
be computed without utilizing graphics hardware. In the 
following we show how Equations (2) and (3) can be 
effectively evaluated using texture mapping capabilities of 
modern graphics hardware, avoiding the need of explicit 
normal vector computation. The technique allows us to 
achieve high frame rates even when large numbers of line 
segments have to be rendered.  
 
3.1. Texture mapping 

We assume to have a graphics API available 
similar to OpenGL. In this graphics library at each vertex a 
homogeneous vector of texture coordinates can be 
specified. Usually the first components of this vector are 
taken as indices into a one, two, or three dimensional 
texture maps. A texture map may contain colors and/or 
transparencies which can be used to modify in various 
ways the original color of a fragment in the graphics 
pipeline. In addition it is possible to change texture 
coordinates using a 4 x 4 texture transformation matrix. 
This texture transformation is the key feature which makes 
it possible to employ texture mapping hardware for 
shading calculations. 
 
3.2. Diffuse reflection 

Looking at Equation(2) we note that the diffuse 
light intensity of a line segment is a function of L.T only. 
Specifying a texture vector t0 equal to the line’s tangent 
vector T at each vertex, this inner product can be 
computed in hardware using the following texture 
transformation matrix: 
 

 
 

The first component of the transformed 
homogeneous texture vector t = t0.M then evaluates to 
t1=1/2(L.T+1)  

Note: that t1 always lies in the range 0…1. 
Therefore this value can be used as an index into a one-
dimensional texture map P (t1). The value of the texture 
map at location t1is chosen such that it resembles the 
diffuse light intensity corresponding to L.T=2t1-1, namely  
 
P (t1) = Idiffuse = Kd sqrt (1- (2t1-1) ^2                  (4) 
 

Using a texture mode which takes the color of a 
line fragment to be equal to its texture color P (t1) we 
obtain an image which accurately shows line segments 
diffusely illuminated by a single point light source. If the 

light direction changes us simply have to update the 
texture transformation matrix. Vertices and texture 
coordinates of the line segments remain constant. This 
means that we can make use of OpenGL display lists to 
further increase rendering speed. Display lists allow one to 
specify multiple vertex and texture definitions using a 
single graphics library call. 
 
3.3. Specular reflection 

The specular reflection term does not only 
depend on V.T but also on L.T, as can be seen from 
Equation (3). To compute this additional inner product we 
initialize the second column of the texture transformation 
matrix with the current viewing direction: 
 

 
 

While the first transformed texture component 
remains the same, for the second component we now get 
 
 t2 = 1/2(V.T+1)                                                                (5) 
 

In order to obtain the correct light intensity 
corresponding to L.T = 2t1-1and V.T = 2t1-1we can use a 
two-dimensional texture map P (t1, t2). Adding a constant 
ambient term Ka as well as the diffuse contribution from 
Equation (4) we can perform the whole shading 
calculation for a single light source in texture hardware. 
Figure-3 shows an example of a resulting two-dimensional 
texture map. One can clearly identify the highlight 
appearing at different angle positions on top of a diffuse 
background. If no highlight was present color would not 
depend on the viewing direction V, as stated by Lambert’s 
law.  It is worthwhile to note that there is an important 
special case, which allows one to use a one-dimensional 
texture even when specular reflection is present. This is 
the case of a headlight, i.e. a point light source located at 
the same position as the camera. In this case light vector 
and viewing vector are identical. Equation (3) simplifies to 
V.R = 2(L.T) ^2-1  

Headlights are quite useful because they always 
guarantee an adequate illumination of the scene, 
irrespectively of the actual viewing direction. The user has 
not to bother with a tedious setup of light conditions. In 
fact, all of the color plates in this paper were rendered 
using a headlight. Of course it is also possible to use the 
third column of the texture transformation matrix to 
compute an additional inner product. This would require 
the use of a three-dimensional texture map. Three different 
inner products would allow the illumination of lines by 
two point light sources located at arbitrary positions 
including specular reflection. Alternatively one might 
discard specular reflection and instead introduce a third 
purely diffuse illuminating light source.  
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Figure-3. Two-dimensional texture map used to 
implement Phong reflection model for line segments. 

Parameter values are Ka=0:1; Kd=0:3; Ks=0:6, and n=40. 
 
3.4. Color coding 

Color coding is a common method in 
visualization. Applying color to individual field lines 
would enable us to depict some scalar quantity in addition 
to vector field structure [2]. Such a quantity could be field 
magnitude or potential strength, or something more 
unrelated like pressure in a fluid flow. Ideally we would 
like to modify the curve’s ambient and diffuse color 
components according to a given color lookup Table. 
However, in our case color is directly taken from a texture 
map. Since we use the same texture map for all field lines 
it is not possible to set these components locally in a 
straight-forward way. Nevertheless, by using an 
alternative texture mapping mode it is possible to 
modulate, i.e. multiply, texture color with the object’s base 
color. The latter can be defined for each vertex separately. 
This yields the desired effect with the restriction that also 
the specular highlight gets colored instead of remaining 
constant. It suggests that this is only a minor limitation. 
Despite being differently colored the highlight can be 
identified clearly throughout the whole image while still 
improving spatial perception. At the same time color 
accurately encodes an additional scalar variable. 
 
3.5. Excess brightness 

Banks [3] pointed out that there is a general 
problem when illuminating objects with co-dimension >1. 
1 The overall intensity of an image increases and becomes 
more uniform, thus disturbing spatial perception. In case 
of lines in R3 this can be understood by the following 
consideration: We know that the normal vector is not a 
constant one, but is given by the projection of the light 
vector into the line’s normal space. Choosing such a 
vector means minimizing the angle between light vector 
and normal. Therefore in general the angle between these 
two vectors is smaller compared to the case of a fixed 
normal. This results in a more uniform brightness than we 
are used to perceive in real world. As suggested by Banks, 
we compensate the effect qualitatively by exponentiation 
the diffuse intensity term 
 
Idiffuse = Ka (L.N) P                 (6) 

 
In [1] a value of p=4.8 was proposed. For the 

images in this paper we have used a value of p=1.5, which 
produced smoother results. 
 
3.6. Transparency 

Shading of line segments as described above 
provides important cues for the spatial impression of 
stream line images. However, image quality can be further 
improved by use of transparency. Let us imagine the 
image of a stream line is produced by a small particle 
traversing the vector field and leaving a veil of haze. 
Assuming that the haze disappears according to an 
exponential law, opacity or alpha value for a point Sn at 
the curve is given by  
 
α (Sn) = α0qn-1                                             (7) 
 

Here the factor q controls how much of the haze 
disappears per unit step. A resulting semi-transparent 
stream line and transparent objects are illustrated in the 
Figures 4(a) and 4(b); 
 

 
 

Figure-4(a). A resulting semi-transparent stream line. 
 

 
 

Figure-4(b). A resulting transparent stream lines. 
 

Use of transparency has two advantages: First, 
stream lines near to the camera do not completely hide 
those being more far away. This allows the observer to 
gain deeper insight into the inner structure of the vector 
field. Second, the sign of vector field direction becomes 
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visible in a static image. This is not the case when stream 
lines are rendered symmetrically in forward and backward 
direction. Drawing a transparent pixel of opacity α and 
color C causes the current color in the frame buffer to be 
updated according to 
 
Cnew = (1- α) Cold + α C                    (8) 
 

In general if multiple transparent objects are 
present the final color depends on the ordering of the 
individual objects in Figure-4(b). Correct results are 
obtained using a back to front traversal. The situation is 
simplified if all objects are of equal color C. In this case 
all traversal orders yield the same result. Who applied 
constant shaded line bundles for vector field visualization 
tool? However, for illuminated lines color isn’t constant 
anymore. Therefore individual lines have to be rendered in 
a depth-sorted way. 

In general it is impossible to achieve an exact 
depth ordering for extended curves in 3D, because mutual 
coverings may occur. Therefore we split each stream line 
into many small line segments, which are sorted and 
rendered individually. To avoid resorting line segments 
each time the view direction changes we use the following 
simplified algorithm; three lists of pointers to stream line 
segments are created. The lists are sorted in order of 
increasing x-, y-, and z- coordinates, respectively. During 
rendering the list that most closely resembles the viewing 
direction is traversed, either from back to front or from 
front to back. Although this method is not exact, it 
produces excellent results which cannot be distinguished 
from the exact images visually. Experiments have shown, 
that only about 1% of all pixels receive somewhat 
incorrect color values. 
 
3.7. Stream line animation 

Animated particles provide a very intuitive mean 
of visualization, especially when velocity fields are to be 
visualized. Following the idea of particles leaving a veil of 
haze, animation sequences can be obtained in the 
following way. Stream lines are created at different time’s 
ti with an initial length of 0. In each time step, all stream 
lines are extended by one point, while opacity of all the 
points already drawn is modified by the factor q (compare 
Equation (7)). This gives the illusion of moving particles 
producing a slowly disappearing veil of haze, like comets. 
A periodic animation sequence can be created by assuring 
that the period T is long enough so that points on a stream 
line can disappear completely within this interval (i.e. qT ≈ 
0). Then a stream line that has been created at time ti can 
be restarted at the same location at time ti +T, since it is no 
longer visible then. This results in a continuous animation 
loop of period T.  
 
4. DISTRIBUTING STREAM LINES 

When using stream lines for vector field 
visualization a common problem is to select proper seed 
points for path tracking. The fast texture based shading 
technique described above allows us to render images 

containing thousands of stream lines at interactive rates. 
Working with a large number of stream lines has the 
advantage, that the positioning of an individual line 
becomes less important is illustrated in Figure-5. Instead 
we can apply statistical methods to distribute seed points 
throughout the field. In particular we would like the 
distribution to resemble some sort of scalar quantity p, 
which loosely corresponds to the degree of interest the 
user wants to put in some region. For example a constant p 
would result in a homogenous distribution of seed points, 
while a value of p proportional to vector magnitude would 
have the effect that more seed points are placed in regions 
of large magnitude. 
 

 
 

Figure-5. Distributed stream lines using visualization tool. 
 
4.1. An equalization strategy 

In general it is not a trivial task to find a good 
scalar quantity p. For example, choosing p equal to vector 
field magnitude may not have the desired effect when this 
quantity varies over multiple orders of magnitude. Instead 
of exactly being proportional to p, we would rather like to 
have a density distribution which resembles vector field 
magnitude qualitatively, but in general places seed points 
more homogenously. Such an effect can be obtained using 
a histogram equalization approach. This technique is well 
known from the image processing literature [6], but in our 
case may also be used to modify the degree of interest pin 
a suitable way. Let us define a sum histogram in the 
following way:  
 

 
 

Based on the sum histogram we can assign each 
cell a new equalized degree of interest,  
 
pi’= S(pi)                                  (10)  
 

Of course other probability distributions can be 
used to emphasize special features of the field. We have 
implemented a symbolic interface which allows us to 
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specify p, as a function of vector field magnitude and other 
optional scalar fields. Within this interface analytic 
functions like logarithm or square root as well as threshold 
operators can be used to modify p. Together with a three-
dimensional selection box, which may be positioned 
interactively to spatially confine the region of interest, it is 
possible to explore very quickly the overall characteristics 
as well as the details of a vector field.  
 
4.2. Divergence compensation 

If the vector field has a divergence different from 
zero, the stream line density will not remain constant even 
if the seed points are distributed uniformly. For example in 
Figure-6 displays the divergence of vector volume data as 
slice planes, using color to indicate divergence in some 
areas stream lines will run together, resulting in an 
increased local density. In other areas they will expand, 
resulting in a decreased local density. In our case stream 
lines are computed with a fixed maximum length. 
Experience shows that a sufficiently uniform stream line 
density is obtained by placing seed points in the middle of 
a stream line segment, and integrating equally far in 
forward and backward direction. Of course, better results 
could be obtained by adaptively terminating existing lines 
or creating new ones based on local stream line density. 
 

 
 

Figure-6. Displays the divergence of vector volume data 
as slice planes, using color to indicate divergence. 

 
4.3. Streamline computation 

For numerical stream line integration we use a 
fourth-order Runge-Kutta method with error monitoring 
and adaptive step size control, as described in [2]. Use of 
an adaptive method allows us to control the error of the 
solution. Such methods are also necessary to detect 
singularities. At these points stream line integration has to 
be terminated. Singularities, i.e. sinks and sources, 
commonly occur for example in electrostatic fields.  
 

 
 

Figure-7. Streamline computation for flow vector. 
 
5. RESULTS 

The algorithms presented in this work have been 
implemented in MAT Lab by visualization tool box. Using 
visualization tool makes it easy to display shaded stream 
lines in combination with other geometries. The shading 
itself makes use of the OpenGL graphics library. On a SGI 
Indigo2 desktop workstation with Maximum Impact 
graphics and a 250 MHz R4400 CPU scenes containing 
3000 stream lines each consisting of 120 transparent line 
segments can be rendered at a rate of 30 frames per 
second. These results can be improved by 20% to 30% if 
OpenGL display lists are used. However, display lists 
cause the rendering to be delayed when the scene is drawn 
the first time. Therefore, in our implementation the user 
can choose whether to use display lists or not. Also, the 
integration of our algorithm into the OpenGL rendering 
scheme may be further optimized. We have applied our 
methods to visualize vector fields from various disciplines 
like computational fluid dynamics, quantum chemistry, 
graphical data and medical data sets. In most cases the 
default values for seed point distribution (eventually 
accompanied with the histogram equalization technique) 
provide a good first impression of the vector field. The fast 
rendering speed offers the possibility to interactively rotate 
and enlarge the geometry objects. This is an important 
feature for an improved spatial perception. In addition 
stream lines have been color coded as described in 
section3.4. In this example color depicts the electrostatic 
potential. The field lines connect several positive point 
charges (magenta) with a single negative charge (green to 
orange). An example of a velocity field from a 
computational fluid dynamics application is also used. The 
data represents a fluid flow over a backward facing step. 
The turbulent region emphasized by the visualization is 
characterized by a very complex field structure. Finally, 
illustrates the power of accurate line shading: While only a 
poor three-dimensional impression is obtained from the 
middle and right images, the spatial structure of the field is 
clearly revealed in the left image. 
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6. CONCLUSIONS 
The visual representation of 3D vector fields is 

one of the current challenges in scientific visualization. Of 
particular interest are methods that provide an overview of 
the global field structure and that also depict fine details. 
In this work we have presented a fast method for 
visualizing 3D vector fields based on the faster display of 
illuminated stream lines, i.e. integral curves of the field or 
line segments. The method gives a good impression of the 
field structure and enables us to resolve visually rather 
good quality resolution, like small vortices. A texture 
mapping technique is used to accurately illuminate the 
stream lines. Light reflection on stream lines improves 
spatial perception and thereby facilitates the understanding 
of the inner structure of a field. We have shown how high 
quality stream line images can be generated at interactive 
speed using hardware supported texture mapping. This 
offers new opportunities for interactive visualization. 
Using a simple Monte-Carlo method lines are placed 
automatically such that the relative degree of interest, 
defined by some scalar field, is matched qualitatively. 
Additional use of a histogram equalization approach 
allows us to automatically place stream line segments 
more homogenously. Some interesting topics of further 
research are improvement of the seed point selection 
strategies such that characteristic features of the field are 
detected and enhanced automatically or the application of 
the shading technique to time dependent vector fields. In 
the latter case particle paths or streak lines should be used 
in favour of stream lines. In this work not enough to 
visualize specific shape of object. Our work also address 
to stream tubes and stream ribbons for improve the 
quality, more efficiently and effectively. 
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