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ABSTRACT  

This work is concerned with the characteristics of incompressible viscous flow inside a two-sided lid-driven 
cavity with its two opposite walls moving with a constant velocity in parallel direction and in antiparallel direction by 
Lattice Boltzmann method (LBM). The model used in the present work is two-dimensional nine-velocity (D2Q9) square 
lattice as it gives more stable and accurate result when compared to two-dimensional seven-velocity (D2Q7) hexagonal 
lattice. The characteristics of flow problem are investigated for different Reynolds number and also for aspect ratio, K = 
2.0 and 5.0. The formation of different vortices with the variation of Reynolds number for parallel and antiparallel motion 
is studied in detail. To sum up, the present study reveals many interesting features of two-sided lid-driven deep cavity 
flows and demonstrates the capability of the Lattice Boltzmann method to capture these features.    
 
Keywords: lattice boltzmann method, D2Q9 model, two-sided cavity, parallel motion, antiparallel motion. 
 
INTRODUCTION  

The fluid motion inside a closed, rectangular 
container with rigid walls induced by the tangential 
motion of a lid constitutes a classical paradigm for internal 
vortex flows [1]. Another classic example is the case 
where a flow is induced by the tangential movement of 
two facing cavity boundaries with uniform velocities. If 
the two facing walls move in the same direction, it is 
termed parallel wall motion and if in the opposite 
direction, it is termed antiparallel wall motion. The single-
sided lid-driven cavity flow problem was extended to two-
sided lid-driven cavity by Kuhlmann and other 
investigators [2-5] and they have done several experiments 
on two-sided lid-driven cavity with various spanwise 
aspect ratios. 

They numerically simulated the rectangular 
cavity flow by parallel (or) antiparallel motion of walls. 
They showed that, the different vortex configurations can 
be generated depending on the direction of the lid motion 
of the walls. More recently, Perumal and Dass [6, 7] 
investigated the flow driven by parallel and antiparallel 
motion of two facing walls in a two-sided lid-driven 
square cavity at different Reynolds numbers using finite 
difference method and Lattice Boltzmann method. This 
two-sided lid-driven cavity problem is attractive because 
of its importance in industrial applications such as rolling 
bar in manufacturing, electronic system cooling and many 
others. 
 

 
 

Figure-1. The rolling operation of rectangular bar. 

Many physical phenomenons around us have the 
characteristics similar to the flow in two sided lid-driven 
cavities. To describe it, let us consider the manufacturing 
field, where the rectangular bars are rolled between two or 
many rollers to reduce the size of the bar to the required 
dimensions. Figure-1 shows the rolling operation of a 
rectangular bar. The flow between the two rollers can be 
assumed to a rectangular cavity and the flow inside the 
heated bar can resemble the flow inside a two sided lid 
driven cavity. This study can be employed to understand 
the effects of the roller velocity on the flow of the material 
of the bar. 
 It is known that, the lattice Boltzmann method 
has recently become a useful and alternative approach for 
computational fluid dynamics (CFD). Many researchers 
carried out simulations of single lid-driven cavity flow by 
Lattice Boltzmann method (LBM). As a computational 
tool, the lattice Boltzmann method differs from 
incompressible Navier-Stokes equations-based methods as 
follows [8]: 
 

1. Navier-Stokes equations are second-order partial 
differential equations (PDEs); the discrete velocity 
model from which LBM is derived consists of a set of 
first-order PDEs (kinetic equations). 

2. Navier-Stokes equations have nonlinear convection 
terms; the convection terms in LBM are linear. 

3. Lattice Boltzmann Equation (LBE) is a discretized 
kinetic equation; Navier-Stokes equations can take 
integral or differential forms. 

4. LBM depends on lattice structure; Navier-Stokes 
equations are in vector form that is independent on the 
coordinate and grids. 

5. The Navier-Stokes solver usually employs iterative 
procedures to obtain a converged solution; the LBM is 
explicit in form and do not need iterative procedures. 

6. Boundary conditions involving complicated 
geometries require careful treatments in both Navier-
Stokes equations-based and LBM solvers. In LBM, 
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the boundary condition is in the form of particle 
distribution functions.   

 
 Due to the kinetic nature of the Boltzmann 
equation, the physics associated with the molecular level 
interaction can be incorporated more easily in the LBE 
model. It is also known that, through a Chapman-Enskog 
analysis, one can recover the governing continuity and 
momentum equations in the low Mach number limit. 

Furthermore, in contrast to the fairly large 
number of studies conducted for single-sided lid-driven 
cavities, only a few investigations have been carried out 
for flows in two-sided lid-driven cavities by continuum-
based methods (FDM, FVM and FEM) and no attempt has 
been made to compute the flow in a two-sided lid-driven 
deep cavity with various Reynolds number by LBM. The 
present problem therefore merits careful investigation, 
which is attempted in this paper through the lattice 
Boltzmann method for various Reynolds numbers and 
aspect ratios for both the parallel and antiparallel motion 
of the walls. In this work, the aspect ratio (K) of the cavity 
is defined as a formula K = D/W, where D and W are the 
depth and width of the cavity respectively. A two-
dimensional steady incompressible viscous flow in a two-
sided lid-driven cavity with aspect ratio of 2.0 is 
calculated. 

The present paper is organized in four sections. In 
Section 2, lattice Boltzmann method with two-dimensional 
nine-velocity square velocity model is described in some 
detail. In Section 3, the two-sided lid-driven deep cavity 
problem is described and the results with parallel and 
antiparallel motion of the walls are presented. Concluding 
remarks are made in Section 4. 
 
NUMERICAL METHOD 
 
Lattice Boltzmann method  

The Lattice Boltzmann equation which can be 
linked to the Boltzmann equation in kinetic theory is 
written as [9]. 
 

( ) ( ), 1 ,i i if t f t+ + − =Ωx xic                            (1) 
 
where if  is the particle distribution function, ic is the 
particle velocity along the i th direction and 

iΩ  is the 
collision operator. The lattice BGK (LBGK) with single 
time relaxation model, which is a commonly used Lattice 
Boltzmann method, is given by [9]. 
 

( ) ( ) ( ) ( )1, 1 , , ,eq
i i i if t f t f t f t

τ
⎡ ⎤+ + − =− −⎣ ⎦x x x xic                     (2) 

 
Here ( ),eq

if tx  is the equilibrium particle 
distribution function at , tx  and τ  is the time relaxation 
parameter. For simulating two-dimensional flows, the two-

dimensional nine-velocity model (D2Q9, 0,1..,8)i =  is 
used in this work.  

In a D2Q9 square lattice each node has eight 
neighbours connected by eight links as shown in Figure-2. 
In the D2Q9 LBM model have a rest particle in the 
discrete velocity set { }ic , because the LBM model with a 
rest particle have better computational stability and 
reliability. For the D2Q9 model the discrete velocity set 
{ }ic  is written as [11]. 
 

(0,0),
( 1,0), (0, 1),
( 1, 1),

⎧
⎪= ± ±⎨
⎪ ± ±⎩

ic
= 0; group 0
= 1,2,3, 4; group I
= 5,6,7,8; group II

i
i
i

                       (3) 

 
In the above, group 0 indicates a rest particle, 

group I is for the links pointing to the nearest neighbours 
and group II is for the links pointing to the next-nearest 
neighbours. 
 

 
 

Figure-2. Two-dimensional nine-velocity 
square lattice model. 

 
The equilibrium distribution functions 

( ),eq
if tx , for the D2Q9 LBE model which can be 

expressed in the form as [4]. 
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where the lattice weights for D2Q9 Lattice Boltzmann  
model are given by 40 1 2 3w = 4/9,  w = w  = w = w  = 1/9 and 

5 76 8w = w  = w = w  = 1/36. 

The macroscopic quantities such as density ρ  
and momentum density ρu  are defined in terms of the 

particle distribution function if  as follows: 
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0
,

N

i
i

fρ
=

=∑                                                                      (5)  

0
.

N

i
i

fρ
=

=∑ iu c                                                                 (6) 

 
The relaxation time that fixes the rate of approach 

to equilibrium is related to the viscosity by [4]  
 

6 υ + 1τ =
2

                                                                (7) 

 
where υ  is the kinematic viscosity measured in lattice 
units. It is seen that  τ = 0.5 is the critical value for 
ensuring a non-negative kinematic viscosity. 

Boundary condition plays a crucial role in LBM 
simulations [8]. Implementation of boundary conditions in 
LBM is an important task owing to the fact that one has to 
translate given information from macroscopic variables to 
particle distribution function (fi), since it is the only 
variable to be evaluated in Lattice Boltzmann Method. The 
bounce-back boundary condition is a popular boundary 
condition in LBM. It is derived from Lattice Gas 
Automata (LGA) and has been extensively applied in 
LBM simulations. In this scheme, the particle distribution 
function at the wall lattice node is assigned to be the 
particle distribution function of its opposite direction. The 
easy implementation of the present no-slip velocity 
condition supports the LBM and it is ideal for simulating 
fluid flows. 
 
Code validation 

First, the developed LBM code is used to 
compute the single sided lid-driven square cavity flow for 
Re = 1000 on a 201 × 201 lattice size. The results 
computed by Ghia et al. [10] exist for the same problem 
on a similar grid, which are used for the present code-
validation exercise. Figures 3(a) and 3(b) shows the 
steady-state x-component of the velocity along the vertical 
centreline and the y-component of the velocity along the 
horizontal centreline of the cavity at Re = 1000. The 
agreement between present results and those of Ghia et al. 
[10] is excellent. The close agreement gives credibility to 
the result of present LBM code and it stands validated. 
 

 
 

Figure-3. Code validation: (a) u-velocity along vertical 
centreline and (b) v-velocity along horizontal centreline 

for single lid-driven square-cavity (Re = 1000). 

RESULTS AND DISCUSSIONS 
 
Problem definition 

An incompressible viscous flow in a two-sided 
deep cavity whose top and bottom walls move in the same 
(parallel motion) or opposite (antiparallel motion) 
direction with a uniform velocity is the problem 
investigated in the present work. The boundary conditions 
for two-sided lid-driven parallel and antiparallel wall 
motion cases are shown in the Figure-4(a) and Figure-4 
(b). 
 

 
 

Figure-4. Two-Sided Lid-Driven Cavity for (a) parallel 
wall motion (b) antiparallel wall motion with 

boundary conditions. 
 
Simulation procedure 

The configuration of the cavity flow consists of a 
two-dimensional deep cavity whose top and bottom plate 
moves with a uniform velocity, while the other walls are 
fixed. The velocity components u and v  are in x and 
y directions. Initially the velocities at all nodes, except at 

the top nodes, are set to zero. The x-velocity of the top and 
bottom plates is U = 0.1 and the y-velocity is zero. 
Uniform fluid density ρ = 1.0 is imposed initially. The 

equilibrium distribution function ( ),eq
if x t  is calculated 

using Equation (4) and if  is set to equal to (0)
if  for all 

node at 0t = . The distribution function can be found by a 
succession of propagation and collision processes. At the 
end of each process distribution function is set to the 
equilibrium state. Here, the top lid-velocity of U = 0.1 is 
considered. 
 
Parallel wall motion 
 
Case-I: Aspect ratio 2.0 

An incompressible viscous flow in a two-sided 
cavity, whose top and bottom wall moves to the right with 
a uniform velocity is computed through lattice Boltzmann 
method. The case of a two-sided lid-driven flow in a 
cavity with aspect ratio of 2.0 is considered. The range of 
Reynolds numbers 10 to 1500 is investigated here.
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        (a) Re = 10                  (b) Re = 500                 (c) Re = 1500 

 

Figure-5. Streamline pattern for parallel wall motion at (a) Re = 10, (b) Re = 500 
and (c) Re = 1500 by lattice Boltzmann method with aspect ratio 2.0. 

 
Figure-5 shows the streamline patterns for Re = 

10, 500 and 1500 by lattice Boltzmann method. It is 
known that, both walls move in same direction, it can 
generate their own primary vortex. At Re = 100 (Figure-
5a), two rotating primary vortices symmetrical to each 
other are seen to form with a `free’ shear layer in between. 
At Re = 500 (Figure-5b), a pair of counter-rotating 
secondary vortices are symmetrically placed about the 

horizontal centreline near the centre of the right wall. As 
the Reynolds number increases to 1500 (Figure-5c), the 
secondary vortices are seen to grow in size. It may be 
noted that the corresponding secondary vortices for a 
single-sided lid-driven square cavity does not appear at a 
Reynolds number as low as 1500. Expectedly, the 
streamlines are found to be symmetrical with respect to the 
horizontal centreline for all Reynolds numbers. 

 

 
                                                 (a) Re = 10                  (b) Re = 500                   (c) Re = 1500 
 

Figure-6. Vorticity contours for parallel wall motion at (a) Re = 10, (b) Re = 500 
and (c) Re = 1500 by lattice Boltzmann method with aspect ratio 2.0. 

 
The vorticity contours for various Reynolds 

numbers are shown in Figure-6. It is seen that several 
regions of high vorticity gradients indicated by the 
concentration of the vorticity contours appear within the 
cavity. Figure-7 presents the LBM isobars at Reynolds 
number ranging from 10 to 1500. By examining the closed 

contours it is seen that the inviscid core grows with 
increasing values of Reynolds number. These results are 
well known in the literature [6, 7] and exhibit no surprises 
thereby confirming the fact that our Lattice Boltzmann 
Method results yield qualitatively accurate solutions. 
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                                                      (a) Re = 10                  (b) Re = 500                (c) Re = 1500 
 

Figure-7. Pressure contours for parallel wall motion at (a) Re = 10, (b) Re = 500 
and (c) Re = 1500 by lattice Boltzmann method with aspect ratio 2.0. 

 
Case-II: Aspect ratio 5.0 

Next, the case of a parallel motion two-sided lid-
driven flow with aspect ratio of 5.0 is considered. Figures 
8 and 9 shows the streamline patterns and vorticity 
contours for Re = 100, 700 and 2000. It is known that as 
the aspect ratio increases, the number of primary vortices 
increases. From Figure-8 it is observed that, the induced 
primary and secondary vortices and the streamlines are 
symmetric with respect to the horizontal centreline of the 
cavity. At Re = 100 (K = 5), four primary vortices are 
generated due to motion of two facing walls. As the 
Reynolds number increases to 700, pairs of secondary 
vortices which is significantly different from those 
primary vortices appeared in the cavity. The sizes of the 
secondary vortices also grow in size as Re increases. It is 
observed that even numbers of primary vortices are 
formed at all Reynolds numbers. It is seen that, the direct 
effect of the moving lids does not percolate too much 
when the aspect ratio is high.  
 

 
(a)               (b)              (c) 

 

Figure-8. Streamline pattern for parallel wall motion at 
(a) Re = 100, (b) Re = 700 and (c) Re = 2000 by lattice 

Boltzmann method with aspect ratio 5.0 

  
(a)              (b)             (c) 

 

Figure-9. Vorticity contours for parallel wall motion at 
(a) Re = 100, (b) Re = 700 and (c) Re = 2000 by lattice 

Boltzmann method with aspect ratio 5.0. 
 
Antiparallel wall motion 
 
Case-I: Aspect ratio 2.0  

An incompressible viscous flow in a two-sided 
cavity, whose top wall moves to the right and bottom wall 
moves to the left with a uniform velocity is now computed 
through lattice Boltzmann method. The case of a two-
sided lid-driven flow in a deep cavity with aspect ratio of 
2.0 is considered. The range of Reynolds numbers 10 to 
1500 is investigated here. 
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Figure-10 shows the streamline patterns for Re = 
10, 500 and 1500. It is seen that as the aspect ratio 
increases, the number of primary vortices increases. At Re 
= 10 (Figure-10a), the appearence of two primary vortices 
and the centre of the two primary vortex cores are seen to 
be somewhat away from the centres of the top and bottom 
halves of the cavity towards the righthand top and lefthand 
bottom corners respectively. Because of symmetry, this 
pair of primary vortices has similar shapes. It may be 
noted that the corresponding primary vortices for a two-
sided lid-driven square cavity does not appear for 
Reynolds number as low as 100.  

At Re = 500 (Figure-10b), the appearence of two 
secondary vortices in the middle of primary vortices are 
symmetric in horizontal direction. As the Reynolds 
number increases, the primary vortex cores moves towards 
the centres of top and bottom halves of the cavity and are 
well-separated. It may be noted that in two-sided square 
cavity (Re = 500), the secondary vortices appeared near 
the top left and bottom right corners only. It is also 
observed that, the vortices and the streamlines are point 
symmetric with respect to the geometric centre of the 
cavity. 

 

        
(a) Re = 10                   (b) Re = 500                    (c) Re = 1500 

 

Figure-10. Streamline pattern for antiparallel wall motion at (a) Re = 10, (b) Re = 500 
and (c) Re = 1500 by lattice Boltzmann method with aspect ratio 2.0. 

 

 
(a) Re = 10              (b) Re = 500                     (c) Re = 1500 

 

Figure-11. Vorticity contours for antiparallel wall motion at (a) Re = 10, (b) Re = 500 
and (c) Re = 1500 by lattice Boltzmann method with aspect ratio 2.0. 
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(a) Re = 10                      (b) Re = 500                      (c) Re = 1500 

 

Figure-12. Pressure contours for antiparallel wall motion at (a) Re = 10, (b) Re = 500 
and (c) Re = 1500 by lattice Boltzmann method with aspect ratio 2.0. 

 
As the Reynolds number increases to 1500 

(Figure-10c), this pair of secondary vortices are merged 
into single vertex and two secondary vortices are formed 
in the top-left and bottom-right end of the cavity. The 
vorticity and pressure contours for various Reynolds 
numbers using lattice Boltzmann method are shown in 
Figure-11 and Figure-12. It is seen that several regions of 
high vorticity gradients indicated by the concentration of 
the vorticity contours appear within the cavity. The 
thinning of the wall boundary layers with increasing 
Reynolds number is evident from these plots. 

The vorticity and pressure contours for various 
Reynolds numbers using lattice Boltzmann method are 
shown in Figure-11 and Figure-12. It is seen that several 
regions of high vorticity gradients indicated by the 
concentration of the vorticity contours appear within the 
cavity. The thinning of the wall boundary layers with 
increasing Reynolds number is evident from these plots.  
 
Case-II: Aspect ratio 5.0 

Next, the case of an antiparallel motion two-sided 
lid-driven flow with aspect ratio of 5.0 is considered. 
Figures 13 and 14 shows the streamline patterns and 
vorticity contours for Re = 100, 700 and 2000. From 
Figure-13, it is found that the flow structure inside the 
cavity changes considerably with the aspect ratio. Here, 
the near-wall primary vortices have the same sense of 
rotation and are well-separated as the aspect ratio is large. 
At Re = 100 (K = 5), four primary vortices are generated 
due to antiparallel motion of two facing walls.  

As the Reynolds number increases to 700, the 
secondary vortex formed in the middle of the primary 
vortices. The weaker secondary vortex splits into two 
separate vortices as the Reynolds number increases to 
2000. The effect of aspect ratio and Reynolds number on 
the vortex structure is clearly seen. 
 

   
(a) (b) (c) 

 

Figure-13. Streamline pattern for antiparallel wall motion 
at (a) Re = 100, (b) Re = 700 and (c) Re = 2000 by lattice 

Boltzmann method with aspect ratio 5.0. 
 



                                         VOL. 9, NO. 4, APRIL 2014                                                                                                                       ISSN 1819-6608            

ARPN Journal of Engineering and Applied Sciences 
 

©2006-2014 Asian Research Publishing Network (ARPN). All rights reserved. 

 
www.arpnjournals.com 

 

 
478

  
(a)               (b)             (c) 

 

Figure-14. Vorticity contours for antiparallel wall motion 
at (a) Re = 100, (b) Re = 700 and (c) Re = 2000 by lattice 

Boltzmann method with aspect ratio 5.0. 
 
CONCLUSIONS 

In the present work, the two-sided lid-driven 
cavity is computed with the lattice Boltzmann method. 
The flow is investigated for both parallel and antiparallel 
motion of the two facing walls. The present code is 
validated through a careful comparison exercise with 
established results so that the results for the present 
configuration enjoy credibility. The present computations 
not only confirms the flow features of the problem, but 
also reveals the effects of Reynolds number and the aspect 
ratio on the flow structure in the two-sided lid-driven deep 
cavity in a systematic way. Consequently these results, 
like those of the single lid-driven deep cavity flow, may be 
used for validating the algorithms for computing steady 
flows governed by the two-dimensional incompressible 
Navier-Stokes equations. 
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