

ISSN 1819-6608

www.arpnjournals.com

# OPTIMIZING THE TOTAL COMPLETION TIME IN PROCESS PLANNING USING THE RANDOM SIMULATION ALGORITHM

Baskar A. and Anthony Xavior M. School of Mechanical and Building Sciences, VIT University, Vellore, India E-Mail: a.baaskar@gmail.com

# ABSTRACT

In a shop floor, minimization of makespan (Total Completion Time) has been an interesting area for many researchers for over six decades. The problem for the process planning engineer is to find a processing order of the 'n' jobs, the same for each machine, such that the make span is minimized, that is, the 'n' jobs are finished as soon as possible. In this paper, one attempt has been made to develop and use one 'Random Simulation Algorithm', with the objective of improving the makespan. Benchmark problems proposed by Taillard are used here for the validation purpose. These values have been compared with the makespans obtained from the original NEH algorithm and the 'NEF family' of algorithms proposed by the authors. For the 120 number of problem instances analyzed, the new algorithm reports better makespans, than the original NEH algorithm, in 114 cases. The ANOVA indicates that, the Random Simulation Algorithm performs slightly better.

Keywords: NEH heuristic, process planning, permutation flow shop scheduling, makespan, random simulation algorithm.

### INTRODUCTION

Reduction in the total completion time of processing any job helps in the speedy realization of the product which is the main objective of any business. If the order is not to be changed, this can be referred as a permutation flow shop scheduling problem, in short, PFSP. For a two machines and 'n' jobs problem, Johnson's algorithm produces the optimum makespan. The problem is NP complete [1] for more than two machines, n jobs. In view of the complexity of these problems, most of the researches concentrate on the heuristic procedures to get near optimum solutions

After the advent of the computers and the increased computing capabilities over the years; many algorithms have been developed, coded in high level languages and run for computing the makespans, and the corresponding sequences. It has been generally accepted that the NEH heuristic algorithm [2], proposed by Nawaz *et al.* performs reasonably better among the simple heuristics for the general permutation flow shop scheduling problems.

The authors have already proposed a 'family of NEH heuristics' with different starting sequences for the minimization of the makespan. The performance has been analyzed using the well known benchmark problems proposed by Taillard [3] and Ruben Ruiz [4], and observed to be satisfactory.

In the proposed 'Random Simulation Algorithm', the initial partial sequence is constructed by randomly selecting two jobs. These two jobs will be initially scheduled for the optimum makespan, and then the remaining jobs will be inserted one by one in the partial sequence. At each step, the new job will be inserted at a place, which minimizes the partial makespan among the possible ones. Codes were generated in MATLAB and run in an i5 PC with 4 GB RAM. For each problem instance, ten trials have been made and the least makespan obtained has been selected. These values have been compared with the makespans obtained from the original NEH algorithm and the 'NEF family' of algorithms.

The proposed new algorithm produces better makespans in most of the cases. For the 120 number of problem instances analyzed, the new algorithm reports better makespans, than the original NEH algorithm, in 114 cases. Also, the average number of sequences per problem instance, having makespans better than the original NEH, is 4.2333 (a maximum of 10 is possible, as 10 trials have been made per simulation). The ANOVA indicates that, all the three algorithms considered have almost the same values of the standard deviations; the Random Simulation Algorithm performs slightly better. In the analysis, the F value is small (0.57) and the P value is > 0.05 (0.566) and hence, the Null Hypothesis (all means are the same) is accepted.

### **BRIEF LITERATURE REVIEW**

Most of the researches in this field of flow shop scheduling, are directed towards minimizing the makespan. The difficulties in obtaining the exact solutions, especially for larger problems, influenced the researchers to go for heuristics and meta heuristics. Starting from Johnson for two machines and 'n' jobs [5], many heuristic and meta heuristic algorithms have been proposed over the years. Out of the several heuristic approaches developed during earlier periods, those proposed by Palmer [6], Campbell et al. [7], Gupta [8], Dannenbring [9] are note worthy. These early constructive heuristic algorithms have been inspirations for the researchers to develop many other well-known scheduling techniques. Most of the studies, like by Terner and Booth [10] and Rad et al. [11] conclude that, the NEH heuristic algorithm developed by Nawaz, Enscore and Ham is the most efficient so far, among the existing simple heuristics. Framinan et al. [12] considered twenty two different approaches for the indicator value and eight different sorting criteria, totaling 176 approaches for every objective function. Additionally,



### www.arpnjournals.com

for every objective function, the RANDOM choice of a sequence was considered. It was concluded that, for the makespan criterion, the job insertion technique and ordering the jobs by non increasing sums of processing times on the machines, used by the NEH algorithm, outperform others. Many meta heuristics use NEH algorithm for obtaining the seed solutions. A simple probabilistic methodology for solving the Permutation Flowshop Sequencing Problem has been presented by Juan *et al.* [13]. Monte Carlo Simulation was used with 15 iterations, for each problem instance.

### **RANDOM SIMULATION ALGORITHM**

The proposed algorithm is an extension of the well known NEH heuristic algorithm. Hence, it will be appropriate to review the NEH procedure first before describing the algorithm. NEH Algorithm for the make span minimization can be stated as follows:

**Step-1:** Ordering the jobs by non increasing sums of processing times on the machines

**Step-2:** Taking the first two jobs and scheduling them in order to minimize the partial make span as if there were only these two jobs

**Step-3:** For k= 3 to n, Step 4 to be repeated

**Step-4:** Inserting the k th job at the place, which minimizes the partial make span among the possible ones. Total No. of sequences to be enumerated = n(n+1)/2 - 1.

The authors [14] have also proposed a family of NEH heuristics, NEH1, NEH2 and NEH3. The brief description is as follows:

All the jobs are ordered in the decreasing order of total processing times, the initial sequences vary.

In the original NEH algorithm, first two jobs are considered as the initial sequence; remaining jobs are inserted one by one, starting form the third job.

In NEH1, the first and the last jobs are taken as the initial sequence; remaining jobs are inserted one by one, starting form the second job.

Similarly, in the third case of NEH2 algorithm, the middle two jobs are taken as the initial sequence; remaining jobs are inserted one by one starting form the first job.

Finally, for the NEH2 algorithm, the last two jobs are taken as the initial sequence; remaining jobs are inserted one by one starting form the first job.

Now, the new algorithm can be stated as follows:

**Step-1:** for a given permutation flow shop scheduling problem, the minimum makespan and the corresponding sequence are computed, using the NEH Algorithm. This is the 'NEH Makespan' and the sequence is the 'Reference Sequence'.

**Step-2:** for the same problem, the makespans are computed separately using the NEH family of heuristics. The minimum makespan and the corresponding sequence among these three are selected. This is the 'NEH family best Makespan'.

**Step-3:** now, two jobs are selected randomly as the initial partial sequence. The optimal partial sequence

for these two jobs is computed using the Johnson's Algorithm

**Step-4:** from the reference sequence, other jobs are inserted one by one from the beginning, at the place, which minimizes the partial makespan among the possible ones. The makespan and the sequence are computed.

**Step-5:** steps 3 and 4 are repeated for the required number of trials; the makespan and the corresponding sequence are computed, in each trial. Separate counter is provided for counting the number of trials yielding makespans better than that of the NEH makespan. The authors have taken 10 trials for each problem instance.

**Step-6:** the minimum value among the makespans obtained from the trials is found. This is the 'Random Best Makespan'.

**Step-7:** The lower bounds are computed. The makespans are statistically analyzed for any set of Benchmark problems.

## COMPUTATIONAL RESULTS AND DISCUSSION

The problem instances proposed by Taillard are used for the validation purpose. Taillard benchmark is composed of 12 groups of 10 instances each, totaling 120 instances. Each group is characterized by a combination of jobs and machines (n×m). The groups are  $\{20, 50, 100\} \times$  $\{5, 10, 20\}, 200 \times \{10, 20\}, and 500 \times 20$ . The processing times are randomly generated between 1 and 99 time units. The seeds proposed by Taillard are used for this. For each problem instance, using the Random Simulation, ten trials are made for obtaining a minimum makespan. In addition, the NEH makespan and the NEH family best makespan are also computed. The results are tabulated in Tables 1 to 3. Table-1 lists the output for the first forty Taillard problems. The problems size varies from 5 machines, 20 jobs to 5 machines, 50 jobs. Subsequently, Tables 2 and 3 report the results for the remaining 80 problems. Lower bounds are directly taken from the Taillard work. It can be seen that the number of makespans better than the NEH makespan is not consistent within the same group. Also, due to the random nature of the algorithm, the values and count vary each time we repeat the simulation and change the number of trials.

Out of the 120 problems, the Random Simulation could report better makespans than the NEH in 99 problem instances and equals the NEH makespans in 15 problems. Only in case of 6 problems, the makespans are worse than the NEH. The average number of sequences per problem instance, having the makespans better than the original NEH, is 4.2333. (10 trials were conducted per simulation. Therefore, a maximum of 10 is possible).

In addition, ten simulations for the problem instances, 20 m/c 50 jobs and 20 m/c 100 jobs, each simulation with 10 trials each, have been carried out. The results are tabulated in Tables 4 and 5. The average number of sequences per problem instance, having makespans better than the original NEH, are 5.4 (6.4) and 4.19 (4.5) respectively. In brackets, the values obtained in a single simulation are indicated. It may be noted that, as

#### www.arpnjournals.com

the number of simulations and trials increases, the possibility of getting better makespans also increases. In the case of 20 m/c 50 jobs problem set, out of the 10 problems, the makespans improved in 8 and in the other case of 20 m/c 100 jobs, the improvement reported in all the 10 problems.

The authors repeated the simulation and changed the number of trials per simulation for a few more times and the average number of sequences per problem instance, having makespans better than the original NEH do not change much. The rate of improvements also reduces significantly with the number of simulations and trials and stops at a particular moment. That marks the saturation point of the power of NEH's insertion technique and selection of the initial partial sequence.

### ANOVA

One way ANOVA has been carried out, considering the relative deviations of makespans from the Lower Bound for the three; NEH, NEH family best, and the Random Simulation Algorithms. MINITAB16 software is used for this analysis. Algorithm 0 represents the original NEH, 1 represents the NEH family best and 2 represent the Random best algorithms. The analysis was carried out at 95% confidence level. Figure-1 indicates the box plot for the relative deviations of the three algorithms considered. It clearly indicates that the simulation based algorithm has less deviation band than the others.

Relative Deviation,  $RD = \frac{(Makespan - LowerBound) \times 100}{LowerBound}$ 

### Test for equal variances: RD versus algorithm

95% Bonferroni confidence intervals for standard deviations

| Algori | thm N | Lower   | StDev   | Upper   |
|--------|-------|---------|---------|---------|
| 0      | 120   | 6.23691 | 7.21068 | 8.51988 |
| 1      | 120   | 5.96253 | 6.89347 | 8.14507 |
| 2      | 120   | 5.85282 | 6.76662 | 7.99519 |

Bartlett's Test (Normal Distribution) Test statistic = 0.51, p-value = 0.775 Levene's Test (Any Continuous Distribution) Test statistic = 0.25, p-value = 0.781

### **One-way ANOVA: RD versus algorithm**

| Source    | DF  | SS     | MS    | F    | P     |
|-----------|-----|--------|-------|------|-------|
| Algorithm | 2   | 55.2   | 27.6  | 0.57 | 0.566 |
| Error     | 357 | 17290. | .8 48 | 3.4  |       |
| Total     | 359 | 17346. | . 0   |      |       |

S = 6.959 R-Sq= 0.32% R-Sq(adj)= 0.00%

Individual 95% CIs for Mean Based on Pooled  $\operatorname{StDev}$ 

| +   | +<br>)  | +      | )   | - |
|-----|---------|--------|-----|---|
| (   | *-<br>* |        | )   |   |
| +   | +       | )<br>+ | +   | _ |
| 6.0 | 7.0     | 8.0    | 9.0 |   |

| Pooled | StDev | 7 = 6.95 | 59    |
|--------|-------|----------|-------|
| Level  | N     | Mean     | StDev |
| 0      | 120   | 7.906    | 7.211 |
| 1      | 120   | 7.292    | 6.893 |
| 2      | 120   | 6.961    | 6.767 |
|        |       |          |       |

Figures 2 to 4 show the Probability Plot, Interval Plot and the Test for Equal Variances, respectively for the Relative Deviations. From the probability plot, it can be seen that about 50% of the solution makespans have the relative deviations less than 5% from the lower bound. The deviations span also gets lowered for the Random Algorithm, whereas, the span is at its highest for the NEH algorithm. The mean and standard deviations for the random best algorithm clearly outperforms the other algorithms, but at the cost of computation time.

It may be recalled that, the null hypothesis in ANOVA is that, the means of all the groups are the same. The alternative is that, at least one is different. So, for our analysis with the three algorithms:

H<sub>0</sub>: all means are same

H<sub>A</sub>: at least one mean is different

It can be seen that the F value is small (0.57) and the P value is > 0.05 (0.566) and hence, the Null Hypothesis is accepted.



Figure-1. Box plot for the relative deviations.



Figure-2. Probability plot for the relative deviations.

# ARPN Journal of Engineering and Applied Sciences

ISSN 1819-6608

10)

© 2006-2014 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com





Figure-3. Interval plot for the algorithms.



|                  |             |                 | 5 I                         |                         |                                   |  |
|------------------|-------------|-----------------|-----------------------------|-------------------------|-----------------------------------|--|
| Problem instance | Lower bound | NEH<br>Makespan | NEH family best<br>Makespan | Random best<br>Makespan | Count- better than<br>NEH (10max) |  |
| 5 machines       | 1232        | 1286            | 1286                        | 1286                    | 0                                 |  |
| 20 jobs          | 1290        | 1365            | 1365                        | 1365                    | 0                                 |  |
|                  | 1073        | 1159            | 1132                        | 1100                    | 10                                |  |
|                  | 1268        | 1325            | 1309                        | 1304                    | 4                                 |  |
|                  | 1198        | 1305            | 1244                        | 1244                    | 2                                 |  |
|                  | 1180        | 1228            | 1228                        | 1210                    | 5                                 |  |
|                  | 1226        | 1278            | 1269                        | 1251                    | 9                                 |  |
|                  | 1170        | 1223            | 1223                        | 1221                    | 1                                 |  |
|                  | 1206        | 1291            | 1270                        | 1260                    | 7                                 |  |
|                  | 1082        | 1151            | 1122                        | 1127                    | 6                                 |  |
| 10 machines      | 1448        | 1680            | 1631                        | 1626                    | 8                                 |  |
| 20 jobs          | 1479        | 1729            | 1707                        | 1719                    | 2                                 |  |
|                  | 1407        | 1557            | 1557                        | 1546                    | 3                                 |  |
|                  | 1308        | 1439            | 1404                        | 1399                    | 4                                 |  |
|                  | 1325        | 1502            | 1490                        | 1448                    | 5                                 |  |
|                  | 1290        | 1453            | 1444                        | 1434                    | 3                                 |  |
|                  | 1388        | 1562            | 1544                        | 1518                    | 7                                 |  |
|                  | 1363        | 1609            | 1589                        | 1587                    | 5                                 |  |
|                  | 1472        | 1647            | 1638                        | 1638                    | 3                                 |  |
|                  | 1356        | 1653            | 1646                        | 1628                    | 5                                 |  |
| 20 machines      | 1911        | 2410            | 2357                        | 2379                    | 8                                 |  |
| 20 jobs          | 1711        | 2150            | 2114                        | 2150                    | 0                                 |  |
|                  | 1844        | 2411            | 2411                        | 2398                    | 7                                 |  |
|                  | 1810        | 2262            | 2262                        | 2240                    | 2                                 |  |
|                  | 1899        | 2397            | 2371                        | 2366                    | 3                                 |  |
|                  | 1875        | 2349            | 2281                        | 2294                    | 8                                 |  |
|                  | 1875        | 2362            | 2362                        | 2323                    | 3                                 |  |
|                  | 1880        | 2249            | 2249                        | 2249                    | 0                                 |  |
|                  | 1840        | 2320            | 2320                        | 2276                    | 5                                 |  |
|                  | 1900        | 2277            | 2253                        | 2231                    | 3                                 |  |
| 5 machines       | 2712        | 2733            | 2731                        | 2731                    | 2                                 |  |
| 50 jobs          | 2808        | 2843            | 2843                        | 2843                    | 0                                 |  |
|                  | 2596        | 2640            | 2625                        | 2625                    | 8                                 |  |
|                  | 2740        | 2782            | 2782                        | 2781                    | 1                                 |  |
|                  | 2837        | 2868            | 2864                        | 2868                    | 0                                 |  |
|                  | 2793        | 2850            | 2835                        | 2835                    | 7                                 |  |
|                  | 2689        | 2758            | 2741                        | 2735                    | 7                                 |  |
|                  | 2667        | 2721            | 2719                        | 2695                    | 9                                 |  |
|                  | 2527        | 2576            | 2563                        | 2565                    | 6                                 |  |
|                  | 2776        | 2790            | 2786                        | 2786                    | 1                                 |  |

| Table-1. Results of | of simulation | for the first | forty problems. |
|---------------------|---------------|---------------|-----------------|
|---------------------|---------------|---------------|-----------------|

ARPN Journal of Engineering and Applied Sciences

©2006-2014 Asian Research Publishing Network (ARPN). All rights reserved.



# www.arpnjournals.com

| Problem instance | Lower bound | NEH<br>Makespan | NEH family<br>best Makespan | Random best<br>Makespan | Count- better<br>than NEH<br>(10max) |
|------------------|-------------|-----------------|-----------------------------|-------------------------|--------------------------------------|
| 10 machines      | 2907        | 3135            | 3133                        | 3112                    | 2                                    |
| 50 jobs          | 2821        | 3032            | 3032                        | 2986                    | 5                                    |
|                  | 2801        | 2986            | 2986                        | 2986                    | 0                                    |
|                  | 2968        | 3198            | 3198                        | 3140                    | 9                                    |
|                  | 2908        | 3160            | 3126                        | 3098                    | 5                                    |
|                  | 2941        | 3178            | 3139                        | 3148                    | 4                                    |
|                  | 3062        | 3277            | 3224                        | 3231                    | 3                                    |
|                  | 2959        | 3123            | 3123                        | 3118                    | 1                                    |
|                  | 2795        | 3002            | 3002                        | 3002                    | 0                                    |
|                  | 3046        | 3257            | 3236                        | 3198                    | 8                                    |
| 20 machines      | 3480        | 4082            | 4053                        | 4025                    | 8                                    |
| 50 jobs          | 3424        | 3921            | 3914                        | 3871                    | 7                                    |
|                  | 3351        | 3927            | 3872                        | 3849                    | 4                                    |
|                  | 3336        | 3969            | 3916                        | 3886                    | 8                                    |
|                  | 3313        | 3835            | 3835                        | 3805                    | 2                                    |
|                  | 3460        | 3914            | 3856                        | 3860                    | 9                                    |
|                  | 3427        | 3952            | 3905                        | 3881                    | 6                                    |
|                  | 3383        | 3938            | 3938                        | 3915                    | 5                                    |
|                  | 3457        | 3952            | 3916                        | 3914                    | 5                                    |
|                  | 3438        | 4079            | 3969                        | 3965                    | 10                                   |
| 5 machines       | 5437        | 5519            | 5519                        | 5514                    | 3                                    |
| 100 jobs         | 5208        | 5348            | 5284                        | 5284                    | 9                                    |
| -                | 5130        | 5219            | 5206                        | 5204                    | 7                                    |
|                  | 4963        | 5023            | 5023                        | 5023                    | 0                                    |
|                  | 5195        | 5266            | 5261                        | 5261                    | 4                                    |
|                  | 5063        | 5139            | 5139                        | 5139                    | 0                                    |
|                  | 5198        | 5259            | 5257                        | 5255                    | 1                                    |
|                  | 5038        | 5120            | 5105                        | 5105                    | 6                                    |
|                  | 5385        | 5489            | 5489                        | 5487                    | 1                                    |
|                  | 5272        | 5341            | 5341                        | 5341                    | 0                                    |
| 10 machines      | 5759        | 5846            | 5846                        | 5812                    | 1                                    |
| 100 jobs         | 5345        | 5453            | 5443                        | 5427                    | 5                                    |
| 0                | 5623        | 5824            | 5764                        | 5756                    | 10                                   |
|                  | 5732        | 5929            | 5929                        | 5912                    | 2                                    |
|                  | 5431        | 5679            | 5613                        | 5593                    | 8                                    |
|                  | 5246        | 5375            | 5360                        | 5354                    | 4                                    |
|                  | 5523        | 5704            | 5681                        | 5685                    | 1                                    |
|                  | 5556        | 5760            | 5760                        | 5754                    | 2                                    |
|                  | 5779        | 6032            | 5988                        | 6012                    | 6                                    |
|                  | 5830        | 5918            | 5903                        | 5902                    | 8                                    |

# **Table-2.** Results of simulation for the second forty problems.

ARPN Journal of Engineering and Applied Sciences

©2006-2014 Asian Research Publishing Network (ARPN). All rights reserved.



# www.arpnjournals.com

| Problem<br>instance | Lower bound | NEH<br>Makespan | NEH family<br>best Makespan | Random best<br>Makespan | Count- better<br>than NEH<br>(10max) |
|---------------------|-------------|-----------------|-----------------------------|-------------------------|--------------------------------------|
| 20 machines         | 5851        | 6541            | 6541                        | 6541                    | 0                                    |
| 100 jobs            | 6099        | 6523            | 6523                        | 6473                    | 6                                    |
|                     | 6099        | 6639            | 6594                        | 6550                    | 8                                    |
|                     | 6072        | 6557            | 6518                        | 6542                    | 3                                    |
|                     | 6009        | 6695            | 6623                        | 6623                    | 10                                   |
|                     | 6144        | 6664            | 6664                        | 6656                    | 1                                    |
|                     | 5991        | 6632            | 6609                        | 6569                    | 6                                    |
|                     | 6084        | 6739            | 6739                        | 6752                    | 0                                    |
|                     | 5979        | 6677            | 6630                        | 6587                    | 10                                   |
| _                   | 6298        | 6677            | 6677                        | 6665                    | 1                                    |
| 10 machines         | 10816       | 10942           | 10941                       | 10942                   | 0                                    |
| 200 jobs            | 10422       | 10716           | 10660                       | 10644                   | 7                                    |
| -                   | 10886       | 11025           | 11025                       | 11025                   | 0                                    |
|                     | 10794       | 11057           | 11057                       | 11057                   | 0                                    |
|                     | 10437       | 10645           | 10645                       | 10618                   | 1                                    |
| _                   | 10255       | 10458           | 10458                       | 10437                   | 3                                    |
|                     | 10761       | 10989           | 10989                       | 10938                   | 7                                    |
| _                   | 10663       | 10829           | 10829                       | 10785                   | 3                                    |
|                     | 10348       | 10574           | 10558                       | 10535                   | 5                                    |
|                     | 10616       | 10807           | 10758                       | 10772                   | 5                                    |
| 20 machines         | 10979       | 11625           | 11594                       | 11587                   | 6                                    |
| 200 jobs            | 10947       | 11675           | 11675                       | 11690                   | 0                                    |
|                     | 11150       | 11852           | 11761                       | 11785                   | 7                                    |
|                     | 11127       | 11803           | 11766                       | 11730                   | 7                                    |
|                     | 11132       | 11685           | 11670                       | 11666                   | 4                                    |
|                     | 11085       | 11629           | 11582                       | 11636                   | 0                                    |
|                     | 11194       | 11833           | 11754                       | 11772                   | 5                                    |
|                     | 11126       | 11913           | 11825                       | 11754                   | 9                                    |
|                     | 10965       | 11673           | 11641                       | 11628                   | 4                                    |
|                     | 11122       | 11869           | 11743                       | 11748                   | 8                                    |
| 20 machines         | 25922       | 26670           | 26670                       | 26671                   | 0                                    |
| 500 jobs            | 26353       | 27232           | 27162                       | 27119                   | 7                                    |
|                     | 26320       | 26848           | 26848                       | 26923                   | 0                                    |
|                     | 26424       | 27055           | 27010                       | 26861                   | 9                                    |
|                     | 26181       | 26727           | 26727                       | 26766                   | 0                                    |
|                     | 26401       | 26992           | 26986                       | 26969                   | 1                                    |
|                     | 26300       | 26797           | 26748                       | 26759                   | 3                                    |
|                     | 26429       | 27138           | 27138                       | 27015                   | 5                                    |
|                     | 25891       | 26631           | 26580                       | 26495                   | 5                                    |
|                     | 26315       | 26984           | 26952                       | 26918                   | 4                                    |

# **Table-3.** Results of simulation for the last forty problems.



| N | ww | arpni  | ournal | s com   |
|---|----|--------|--------|---------|
|   |    | .urpiŋ | ournu  | 0.00111 |

| Problem no. | Lower bound | NEH<br>Makespan | Random best<br>Makespan<br>(one simulation) | Random best<br>Makespan<br>(10 simulations) | Avg. count-<br>better than<br>NEH, 10max.* |
|-------------|-------------|-----------------|---------------------------------------------|---------------------------------------------|--------------------------------------------|
| 1           | 3480        | 4082            | 4025                                        | 4017                                        | 6.7(8)                                     |
| 2           | 3424        | 3921            | 3871                                        | 3869                                        | 3(7)                                       |
| 3           | 3351        | 3927            | 3849                                        | 3835                                        | 7.7(4)                                     |
| 4           | 3336        | 3969            | 3886                                        | 3895                                        | 6.5(8)                                     |
| 5           | 3313        | 3835            | 3805                                        | 3782                                        | 1.5(2)                                     |
| 6           | 3460        | 3914            | 3860                                        | 3824                                        | 6(9)                                       |
| 7           | 3427        | 3952            | 3881                                        | 3893                                        | 5.2(6)                                     |
| 8           | 3383        | 3938            | 3915                                        | 3888                                        | 4.1(5)                                     |
| 9           | 3457        | 3952            | 3914                                        | 3891                                        | 3.7(5)                                     |
| 10          | 3438        | 4079            | 3965                                        | 3942                                        | 9.6(10)                                    |

### Table-4. Ten simulations for the problem instances, 20 m/c 50 jobs.

\*In brackets, the values obtained in a single simulation Avg. 5.4 (6.4)\*

### Table-5. Ten simulations for the problem instances, 20 m/c 100 jobs.

| Problem no. | Lower bound | NEH<br>Makespan | Random best<br>Makespan<br>(one simulation) | Random best<br>Makespan<br>(10 simulations) | Avg. count-<br>better than<br>NEH, 10max* |
|-------------|-------------|-----------------|---------------------------------------------|---------------------------------------------|-------------------------------------------|
| 1           | 5851        | 6541            | 6541                                        | 6467                                        | 1.3(0)                                    |
| 2           | 6099        | 6523            | 6473                                        | 6421                                        | 6.1(6)                                    |
| 3           | 6099        | 6639            | 6550                                        | 6537                                        | 7.4(8)                                    |
| 4           | 6072        | 6557            | 6542                                        | 6504                                        | 1.3(3)                                    |
| 5           | 6009        | 6695            | 6623                                        | 6570                                        | 9(10)                                     |
| 6           | 6144        | 6664            | 6656                                        | 6631                                        | 0.6(1)                                    |
| 7           | 5991        | 6632            | 6569                                        | 6543                                        | 6.4(6)                                    |
| 8           | 6084        | 6739            | 6752                                        | 6704                                        | 0.3(0)                                    |
| 9           | 5979        | 6677            | 6587                                        | 6563                                        | 8.7(10)                                   |
| 10          | 6298        | 6677            | 6665                                        | 6641                                        | 0.8(1)                                    |

\*In brackets, the values obtained in a single simulation Avg. 4.19 (4.5)\*

### CONCLUSIONS

The proposed new Random Simulation Algorithm produces better makespans in most of the cases. For the 120 number of Taillard problem instances analyzed, the new algorithm reports better makespans in 99 cases, same makespan in 15 cases when compared with the original NEH algorithm. Also, the average number of sequences per problem instance, having makespans better than the original NEH, is 4.2333 (a maximum of 10 is possible, as 10 trials have been made per simulation).

The one way ANOVA indicates that, all the three algorithms considered have almost the same values of the standard deviations; the Random Simulation Algorithm performs slightly better. In the analysis, the F value is small and the P value is > 0.05 and hence, the Null

Hypothesis (all means are the same) is accepted. It is proposed that the output of the simulation algorithm can be used as a candidate solution to refine the solution further using metaheuristics.

### REFERENCES

- [1] A.H.G. Rinnooy Kan. 1976. Machine Scheduling Problems: Classification, Complexity, and Computations: The Hague: Martinus Nijhoff.
- [2] M.Nawaz, E.E. Enscore Jr. and I. Ham. 1983. A heuristic algorithm for the m-machine, n-job flowshop sequencing problem. OMEGA, The International Journal of Management Science. 11 (1): 91–95.

#### www.arpnjournals.com

- [3] E. Taillard. 1993. Benchmarks for basic scheduling problems. European Journal of Operational Research. 64: 278–285.
- [4] Problem instances available in: http://soa.iti.es
- [5] S.M. Johnson. 1954. Optimal two- and three-stage production schedules with setup times included. Naval Research Logistics Quarterly. 1: 61-68.
- [6] D.S. Palmer. 1965. Sequencing jobs through a multistage process in the minimum total time: a quick method of obtaining a near optimum. Operations Research Quart. 16: 101–107.
- [7] H.G. Campbell, R.A. Dudek and M.L. Smith. 1970. A heuristic algorithm of the n-job, m-machine sequencing problem. Management Science. 16: B630–B637.
- [8] J.N.D.Gupta. 1971. A functional heuristic algorithm for the flow-shop scheduling problem. Operations Research. 22: 39-47.
- [9] D.G. Dannenbring. 1977. An evaluation of flow shop sequencing heuristics. Management Science. 23: 1174-1182.
- [10] S. Turner and D. Booth. 1987. Comparison of heuristics for flow shop sequencing. OMEGA, The International Journal of Management Science. 15(1): 75-78.
- [11]S.F. Rad, R. Ruiz and N. Boroojerdian. 2009. New high performing heuristics for minimizing makespan in permutation flow shops. OMEGA, the International Journal of Management Science. 37: 331-345.
- [12] J.M. Framinan, R.Leisten and C. Rajendran. 2003. Different initial sequences for the heuristic of Nawaz, Enscore and Ham to minimize makespan, idletime or flowtime in the static permutation flowshop sequencing problem. International Journal of Production Research. 41(1): 121-148.
- [13] A.A. Juan, A. Guix, F. Adelantado, P. Fonseca i Casas and R.Ruiz. 2010. Simulation for Alternative Solutions to the Flowshop Sequencing Problem. Integrationsaspekte der Simulation, Technik, Organisation und Personal, Gert Zülch and Patricia Stock (Hrsg.), Karlsruhe, KIT Scientific Publishing. pp. 349-356.
- [14] A. Baskar and M. Anthony Xavior. 2013. Optimization of Makespan in Flow Shop Scheduling Problems using Combinational NEH family of Heuristics - An Analysis. International Journal of Applied Engineering Research. 8(10): 1205-1216.

486

