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ABSTRACT  

Form tolerances are related to features that are not dependent on datum for reference, where the overall feature 
accomplishes form. Evaluation of form tolerance is done from the sample space data set, its distribution and measurement 
factors.  Average value of deviation to assess the tolerance may give a quick picture of variation but shall not contribute to 
the characteristics of slope/fluctuations in the readings. The knowledge of the expected geometry achieved by best fit 
computation through any of the mathematical procedure provides the primary iterative step to define manufacturing 
variation. This paper discusses the best fit by Least Square Method by analyzing the data and deviations considered for the 
form tolerances such as Flatness, Circularity and Straightness. The standard mathematical definition for the validation of 
the form tolerances are drawn from the ASME Y14.5M standards. The case studies to evaluate the mathematical method 
are carried out for flatness on the surface plates, Circularity on Ring gauges and Straightness on a straight edge. The 
deviations of the points from the Gaussian geometry are compared against hard inspection methods and the reliability of 
the best fit by least square method is discussed against the BIS standards and its characteristics by a normal distribution 
curve. 
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INTRODUCTION 

Geometric Dimensioning and Tolerancing (GD 
and T) is a precise mathematical language that describes 
the design, dimensions, size, form, orientation and location 
of part feature. The American National Standards Institute 
publication in 1982 of ANSI Y14.5M-1982 was in the 
rigorous, unambiguous standardization of the 
methodology. Tolerance is defined as the magnitude of 
permissible variation of a dimension or other measured or 
control criterion from the specified value. Tolerances have 
to be allowed because of the inevitable human failings and 
machine limitations which prevent achieving nominal 
values during fabrication. The primary purpose of 
tolerances is to permit variation in dimensions without 
degradation of the performance where functional 
requirements will be the dominating factor in setting 
tolerances. 

Form tolerances are applicable to 
single/individual features or elements that are not 
dependent on datum for reference. The form tolerance 
accommodates the following features like Flatness, 
Straightness, Circularity and Cylindricity of a part.  These 
features fit with reliability by adopting best fit approach. 
The best fit can be achieved from several mathematical 
methods/procedures. Algorithms such as iterative 
minimum acceptable duration zone localization algorithms 
are built to address challenges of frequent variation due to 
customization and complexity of parts [1]. An iterative 
reweighed least squares algorithm for form tolerance 
evaluation by updating the weighted coefficients 
iteratively was also reported [2].  Three theorems were 
proposed on the evaluation of both straightness and 
flatness for large number of points. The first theorem 
identifies the redundant data points; the second one 
explains the procedure to obtain the optimum solution by 
subset of data points. On the failure of second theorem, 

third theorem functions as a way to identify critical data 
points and update the subset to reach the optimum 
criterion [3]. Desired results are obtained when initial 
estimates of the variables are obtained using Least squares 
method, which gives the starting point for the linear 
approximation technique and this does not result in larger 
tolerance values and the function is minimized [4]. 
Algorithms for evaluating form tolerance using the 
orthogonal arrays and experimental optimization technique 
yielded results very much close to the minimum tolerance 
zones calculated using least square method. This was 
illustrated in a convex hull calculation [5]. Downhill 
simplex method and the repetitive bracketing method with 
the convergence criteria is considered for the evaluation of 
minimum zone flatness [6]. Form errors are computed 
using the linear deviations and simplex search method. 
This method gives smaller peak-to-valley values when 
compared to the least square method [7, 8]. It explains the 
linear and normal deviations, using the least square and 
minimum deviation techniques. The analysis result for the 
evaluation of surface by least square method gives 
deterministic solution and does not lead to minimum zone 
deviation. Among the various techniques, Monte Carlo 
technique is used when the variables are few. The simplex 
search technique is used for surface involving many 
variables. The spiral search technique is applied when two 
or three variables are used [9]. A new automated technique 
that accelerates the inspection process by carrying out a 
fast registration by establishing a quick correspondence 
between the part to inspect and its CAD geometry is 
termed ‘as is where inspection is’ (AIWIN) is proposed in 
[10]. A two-step coarse registration process is proposed to 
provide a good initial guess for a modified ICP algorithm. 
The least square method accommodates all the hard 
inspected points from CMM to build the mathematical 
geometry/shape. This paper brings a comparison of hard 
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inspection methods (CMM) and the soft inspection 
procedure carried out with least square method on flatness, 
circularity and straightness with case study. Results of 
agreement are discussed with the normal distribution 
curves to show the reliability of the method. 
 
DESCRIPTION 

The Least Square Method is very robust in 
handling ‘n’ number of points for computation. This work 
focuses on the reliability on the range of tolerance 
achieved by the least square method for Flatness, 
Circularity and Straightness. The specimens considered 
are located on the Co-ordinate Measuring Machine 
(CMM) table and the points that are of interest are probed 
by contact method at regular intervals. 
 
Flatness    

Granite surface table is used to evaluate flatness 
parameter as in Figure-1. The size of the Granite surface 
Table is 500mm x 500mm. The standard tolerance zone is 
0.038 mm. The sample is divided into equal number of 
grids of 10mm x 10mm as shown in Figure-2. The number 
of sample points considered is 171. 
 

 
 

Figure-1. Photo of Granite for surface plate. 
 

 
 

Figure-2. Grid alignment for flatness measurement. 
 
 
 

Circularity 
Ring gauge of Ø80mm, is used to evaluate the 

circularity parameters as shown in Figure-3. The standard 
tolerance zone is 0.008 mm. 
 

 
 

Figure-3. Ring gauge.  
 

The readings are taken on the entire surface of the 
ring as shown Figure-4. The number of sample points 
considered is 228. 
 
 

 
 

Figure-4. Circularity measurement on CMM. 
 
Straightness 

The specimen used for the evaluation of the 
straightness is a Straight Edge Ruler of 1000mm length as 
shown in Figure-5. The given Standard tolerance for 
straightness zone is 0.026 mm. 
 

 
 

Figure-5. Straight edge ruler.  
 

The readings are along the entire length of the 
ruler at spacing of about 1mm as shown in Figure-6. 
Number of sample points considered along the length is 
1143. 
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Figure-6. Straightness measurement on CMM. 
 
METHODOLOGY 

The points tracked for the three features viz., 
flatness, circularity and straightness on granite, ring 80 
and straight edge ruler respectively form the hard 
inspection procedure defining the nominal value. These 
points are taken as input for the mathematical procedure of 
least square method as described in Appendix A. The Best 
Fit Plane/circle/straight line or the Gaussian 
Plane/circle/straight line is generated from the algorithms. 
This procedure sets up the soft inspection technique.  The 
difference between the hard inspection and the soft 
inspection can be brought by analyzing the deviation 
between the two techniques. The deviation of the Gaussian 
plane to the Nominal plane is calculated by:  
 

d = d0 - di   
 

where    
d   = Actual deviation 
do = Nominal value 
di = Inspected value for the various points   
 i =   ith point  
 

The actual deviation is presented in a graph for 
the set of points along the sampling length. The tolerance 
zone referred from BIS standards is termed as standard 
upper/lower limits (SUL/SLL). The average of maximum 
and minimum deviation is termed as the observed 
upper/lower limit (OBUL/OBLL). This margin signifies 
the distribution of points that shall help in inferring the 
shape of the bell curve, its skewness and the bias of the 
deviation. This also gives an idea about the variation of 
best fit within these limits. 
 
Conformance 

A normal distribution bell curve is presented to 
support the reliability and the percentage of acceptance of 
soft inspection procedure to the hard inspection methods. 
The reliability of the specimens are calculated using the 
equation 
 

σ
µx

z
−

=
          

                 (1) 
 

where 
µ  = Average of deviation of points 
σ  = Standard deviation of the deviation of points 

x = deviated points. 
The probability of acceptance of the deviation of 

the points by soft and hard inspection procedure is 
presented using normal distribution curve. 
 

P (zx=min < z < zx=max)                                     (2) 
 

The normal distribution curve for all the 
specimens considered is drawn individually. The 
probability distribution function for each and every 
specimen is calculated using the relation.  

( )
2

2

2σ
µx

e
2Πσ
1f(x)

−
−

=
                    (3)

 

 
The values of the probability distribution function 

for the specimens are calculated at each and every point 
and are plotted in a graph as detailed below. 
 
RESULTS AND DISCUSSIONS 

Comparative results of the flatness, circularity 
and the straightness for the components considered and 
subject of variation for each of the data sets are reported. 
 
Flatness 

With the applicability of algorithm as shown in 
Figure-7 and the methodology of the Least Square, the 
Gaussian Plane is calculated as in equation (4)  
 

0.04720.9997z0.0103y0.0231x =++                            (4)  
 

 
 

Figure-7. Flow chart for finding the Gaussian plane. 
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Figure-8. Graph representing the variations of the points 
and comparison between the standard and the obtained 

tolerance zone for surface plate. 
 

The graph depicting the variation of the distance 
of the points from the Gaussian plane is given in Figure-8. 
The tolerance zone referred in standards for Granite of this 
dimensions is 0.038mm. The obtained tolerance zone is 
0.045 millimetres. The points that lie within the standard 
tolerance zone and the obtained tolerance zone are 
deviations that shall be controlled by best fit probabilities.  
The graphs depicting the normal distribution bell curve, as 
in Figure-9, for the hard inspected points have resulted in 
f(x) and best fit by least square method represented by 
g(x) as in equation (3).    
 

 
 

Figure-9. Normal distribution curve for surface plate. 
 

The OBUL and OBLL are margins/limits to the 
errors. The areas where these data points lie are to be 
studied in detail to find whether the area plays a major 
influence in the acceptance of the surface of the part 
considered. Points lying outside this margin shall diverge 
the mathematical least square best fit.  

There is a good agreement of f(x) and g(x). 
Variations can be attributed to the points lying outside the 
tolerance zone and the distance of the points from the 
standard and the obtained tolerance zone. Four points out 
of 171 points (sample space) are deviated more in the 
negative side which is inferred in g(x). 
 
CIRCULARITY 

The mathematical equation of the circle by the 
least square best fit is calculated for the sample points as 
shown in Figure-10 and is given in equation (5).  

 
( ) ( ) ( )222 39.9958622.2063y2086.6x =−+−     (5) 
 

The graph presenting the variation of the distance 
of the points from the Gaussian plane is given in Figure-
11. The standard tolerance zone referred for Ring gauge 
Ø80mm is 0.008mm. The obtained tolerance zone is 
0.011mm. Among 228 of sample points considered for the 
best fit, 6 points lie outside the standard lower limit i.e., in 
the negative side. The shift of g(x) in the left side reflects 
the deviations in the negative regions. Erstwhile other 
points are in good agreement within the tolerance zone to 
accept the soft inspection method as shown in Figure-12. 
 
STRAIGHT EDGE RULER 

The mathematical equation of Line for the 
straight edge is calculated for the sample points as in 
Figure-13 and is given in equation (6) 
 

x102.5835559.1534y 5−×+=                       (6) 
 

The graph showing the variation of the distance 
of the points from the Gaussian plane is in Figure-14. The 
standard tolerance zone referred for the straightness of 
length 1000mm is 0.026mm. The observed limit is 
0.035mm. 
 

 
 

Figure-10. Flow chart for Gaussian circle. 
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Figure-11. Variations of the points and comparison 
between the standard and obtained tolerance 

zone for Ring Gauge. 
 

 
 

Figure-12. Normal distribution curve for Ring Gauge. 
 

 
 

Figure-13. Flow chart for Gaussian line. 

 

 
 

Figure-14. Variations of the points and comparison 
between the standard and the obtained tolerance 

zone for straight-edge. 
 

 
 

Figure-15. Graph representing the normal distribution 
curve for straight edge. 

 
The areas where these data points lie are analyzed 

and the influence of best fit by the mathematical procedure 
with the hard inspection method is shown in Figure-15. 61 
points out of 1143 points in the sample points are in-
between the tolerance zones. Besides the good agreement, 
four points are classified above the observed tolerance 
upper limit.  
 
CONCLUSIONS 

The mathematical procedure of fitting the 
geometries using least square method shows a good 
agreement with the hard inspection technique. The normal 
distribution of points exhibiting the deviations along the 
sample length exhibits an immediate picture of best fit by 
least square methods. The distribution of points within the 
tolerance helps in achieving the sharpness of the bell 
curve. The density of points within the upper/lower 
tolerance limits reflects the skewness of the curve.  The 
utility of least square method is helpful considering all the 
sample points in determining the best fit feature. The 
functional challenge in handling the least square method is 
in negative values, which shall be attempted in the future 
scope of work. 
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APPENDIX 
 
Linear Least Squares 

The conventional approach for least square fit of 
a straight line is described below.   
 
Consider fitting a straight line  
 

bxay +=  
through a set of data points (xi,yi), i= 1 to n. The 
minimizing function minimizes the sum of squares of the 
distances of the points from the straight line measured in 
the vertical direction. Thus  

( )∑
=

−−=
n

1i

2
ii bxayF  

 is the minimizing function. A necessary condition for F to 

be minimum is  0
a
f
=

∂
∂  and 0

b
f
=

∂
∂ . 

Thus the partial differentiation of the above 
function with respect to a and b gives 

( ) ( )∑
=

=−−−
n

1i
ii 0bxay12
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This can be simplified as: 
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The equations above can be solved simultaneously to give 
us the values for a and b. 
 
Normal equation 

Consider fitting a straight line, y = a + bx, to the 
set of data points (x1, y1), (x2, y2)... (xn, yn). If the data 
points were collinear, the line would pass through n point. 
So  
 

nn

33
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bxay
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It can be written in a matrix form 
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So it can be compacted as B = AP 
 

The objective vector p that minimizes the 
Euclidean length of the difference 

APB−  

If ⎥
⎦

⎤
⎢
⎣

⎡
==

*b
*a

P*P  is a minimize vector, y = a* + 

b*x is a least square straight line fit. This can be explained 
as  

( ) ( ) ( )2nn
2

22
2

11
2 bxay......bxaybxayAPB −−++−−+−−=−  

 
Let,  

( ) ( ) ( )2nnn
2

222
2

111 xayd,......,bxayd,bxayd −−=−−=−−=  , 
 
d can be explained as the distance from a point of a data 
set to fitting line. 
 
So 

2
n

2
2

2
1

2 d......ddAPB +++=−  
 

 
 

To minimize APB− , AP must be equal to AP* 
where AP* is the orthogonal projection of B on the 
column space of A. This implies B-AP* must be 
orthogonal to the column space of A. So (B-AP*) AP = 0 
for every vector P in R2 

 
This implies 

ATB-ATAP* = 0 
 

ATAP = AT B 
Which implies that P* satisfies the linear system 
 

ATAP = ATB 
This equation is called normal equation. This will 

provide the solution for P as: 
 

P = (ATA)-1ATB 
 

This equation can be used in the case of least 
square fit of a polynomial. 
 
Eigen vector and singular value decomposition 
(ATA)-1 is very difficult to solve. So the alternative 
method using singular value decomposition is used to 
solve P. 
 
Singular value decomposition 
A matrix can be decomposed in 3 matrices 
 
A = USVT 
 
Where U and V are orthogonal matrices and S is a 
diagonal matrix containing the singular matrix of A.   
Place A = USVT into normal equation  
 
(USVT)T (USVT)  P = (USVT) T 
B(VSTUTUSVT)   P = VSTUTB 
Knowing that 
UTU = I,   UT = U-1, VTV = I,    VT = V-1 

So,     (VSTSVT) P = VSTUTB 
 

Multiplying both sides by V-1 

 

(STSVT)P = STUTB 
 

S is a diagonal matrix therefore (SSVT) P = SUTB 
 

Multiplying both sides by S-1 two times 
 

VTP = S-1UTB 
 

Again multiplying both sides by V 
 

VVTP = VS-1UTB 
So the solution for P is 
 

P = VS-1UTB 
This equation is used in the case of least square 
polynomial fit. 
 


