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ABSTRACT 

In high dimension space, many conventional clustering algorithms do not work well in effectiveness and 
efficiency, especially for image data set. For example, k-means is widely used in image clustering especially visual 
clustering. But its drawback such as long clustering time and high memory cost seriously deteriorates feasibility in 
incremental large image set. To improve the feasibility, we proposed a Locality Sensitive Clustering method. Firstly, 
multiple hashing functions are generated. Secondly, data points are projected to get bucket indices. Thirdly, proper 
quantification interval is selected to merge the bucket indices, and the cluster labels are assigned for each point. 
Experimental results show that on synthetic data set this method performs almost as well as k-means, and on image data set 
it performs slightly worse than k-means algorithm about accuracy. But its advantage is in low memory cost, fast running 
speed and incremental clustering. So Locality Sensitive Clustering can be used to clustering data, especially in high 
dimensional space. 
 
Keywords: Exact Euclidean Locality Sensitive Hashing, locality sensitive clustering, random projection, data clustering. 
 
INTRODUCTION 

Many conventional clustering algorithms do not 
work well in effectiveness and efficiency for data sets in 
high dimensional spaces for several reasons. Firstly, the 
inherent sparsity of high dimensional data cumbers 
conventional cluster algorithm. Secondly, the distance 
between any two points becomes almost the same (Cao et 
al., 2002); therefore it is difficult to differentiate similar 
data points from dissimilar ones. Thirdly, clusters are 
embedded in the subspaces of the high dimensional space, 
and different clusters may exist in different subspaces of 
different dimensions (Agrawal et al., 1998).  

Image clustering is a typical application of high 
dimensional clustering, for nearly all the dimensions of 
image features are high. So, the problem of high 
dimensional clustering also lies in image clustering. 
Though many clustering algorithms have developed for 
these years, most of them don’t work well in image 
clustering, especially in visual dictionary construction. 
The common used clustering algorithm is still k-means, 
but the limitation of k-means seriously deteriorates its 
feasibility in incremental large image set. 

Random projection is used in many areas 
including fast approximate nearest-neighbor (Indyk P et 
al., 1998; Sanjoy Dasgupta et al., 2013), clustering 
(Schulman, L. J, 2000), signal processing (Donoho, D. L, 
2006), anomaly detection (James E. Fowler, 2012), 
dimension reduction (Alon Schclara et al., 2013) and so on. 
This is largely due to the fact that distances are preserved 
under such transformations in certain circumstances 
(Dasgupta, S. et al., 2002). Moreover, random projections 
have also been applied to classification for a variety of 
purposes (Balcan, M. F, 2006; Duarte, M.F, 2007; Shi, Q 
et al., 2009).  

Exact Euclidean Locality Sensitive Hashing is a 
special case of random projection, and it is first introduced 
as approximate near neighbor algorithm (Andoni, 2008). It 

has attracted much attention in recently, and was mainly 
used in retrieval (Liang YingYu, 2009; Jegou H, 2010). In 
fact, the data points projected into a same buckets are 
much similar than those in different buckets. So, if we 
divide a data set according bucket indices into groups, the 
task of data clustering can also be achieved approximately. 
What’s more, E2LSH is a data independent method, so it 
can create a dynamic index for an incremental dataset. 
And if used in data clustering, it can be a dynamic 
clustering method. In fact, the introducer of LSH has 
pointed that LSH can serve as a fast clustering algorithm, 
but he didn’t testify it. In fact, E2LSH has applied for noun 
clustering by Ravichandran D (Ravichandran D. et al., 
2005). However, clustering image data is more difficult 
than text word data for its complexity. 

Therefore, we propose a Locality Sensitive 
Clustering method in high dimensional space based on 
distance and separability preservation property of random 
projection and the rationale of E2LSH, which makes use of 
the advantage of Locality Sensitive Hashing. In this 
method data points are projected to bucket indices by 
hashing functions, and bucket indices are merged to 
cluster labels. It can cluster high dimension data at a high 
speed and low cost. 
 
RANDOM PROJECTION AND SEPERABILITY 
PRESERVATION 

Dimension reduction is a main property of 
random projection, compared with classical dimension 
reduction algorithm PCA (Principal Component Analysis); 
Random projection offers many benefits (Sanjoy Dasgupta, 
2000). PCA can’t be used to reduce the dimension of a 
mixture of n Gaussians to below ( )nΩ  generally, whereas 
random projection can reduce the dimension to just 

(log )nΩ . Moreover, PCA may not reduce the eccentricity 
of Gaussians. However, if the projected dimension is high 
enough, then a PCA-projected mixture could easily be far 
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better separated than its randomly projected counterpart. 
For this reason PCA remains an important tool in the study 
of Gaussian clusters. Random Projection has another 
tremendous benefit, even if the original Gaussians are 
highly skewed, their projected counterparts will be more 
spherical. And it is much easier to design algorithms for 
spherical clusters than ellipsoidal ones.  

As to data clustering, the Johnson-Lindenstrauss 
Lemma shows that the distance of data points are 
preserved after projection. This makes it capable for 
approximate nearest neighbor search in information 
retrieval. Only distance preservation is not sufficient for 
clustering, the preservation of the class margin of data set 
can be helpful in clustering. 

The Johnson-Linden Strauss Lemma is famous 
for the distance preservation property. It can be described 
as: Given 0 1γ< < and any set S in n

 , for a positive 

integer 2

1( log )d S
γ

= Ω , there exists a map : n df →  , 

such that for all ,u v S∈ , 
 
( ) 2 2 21 ( ) ( ) (1 )u v f u f v u vγ γ− − ≤ − ≤ + −              (1) 
 

This lemma says that all pairwise distances are 
preserved up to 1 γ±  with high probability after mapping. 

Let (0,1)N  denote the standard normal 
distribution with mean 0 and variance 1, and ( 1,1)U −  
denote the distribution that has probability 1/2 on −1 and 
probability 1/2 on 1. 

Let , nu v R∈ , 1u uA
d

′ =  and 1v vA
d

′ =  where A is 

n d×  random matrix, whose entries are chosen 
independently from either (0,1)N  or ( 1,1)U − . Then 
 

( ) 2 3
2 2

( )
4

2

1
Pr 1 2

(1 )

d

A

u v u v
e

u v

γ γγ

γ

− − ′ ′− − ≤ − ≤
  ≥ −
 + − 

        (2) 

 
Imagine a set S of data in some high-dimensional 

space nR , and suppose that we randomly project the data 
down to dR . By the Johnson-Lindenstrauss Lemma, 

( )2 logd O Sγ −=  is sufficient so that with high 
probability, all angles between points changed by at most 

/ 2γ± (Avrim Blum, 2006). In particular, consider 
projecting all points in S and the target vector ω , if 
initially data was separable by margin γ , then after 
projection, since angles with ω  have changed by at most 

/ 2γ , the data is still separable.  
Shi et al. established the conditions under which 

margins are preserved after random projection, and to 
show that error free margins are preserved for both binary 
and multiclass problems if these conditions were satisfied 
(Qinfeng Shi et al., 2012) Balcan et al. studied the 

problem of margin preservation under random projection 
for binary classification, and provided a lower bound on 
the number of dimensions required if a random projection 
was to have a given probability of maintaining half of the 
original margin in the data (Balcan, M. F. et al., 2006). 
 But it demands infinite many projections in order 
to guarantee the preservation of an error free margin. They 
provided two margin definitions below: 

Normalized Margin: A dataset S is linearly 
separated by margin γ  if there exists d∈u  , such that for 
all ( , )x y S∈ ,  
 

, x
y

x
γ≥

u
u

                                                                     (3) 

 
Error-allowed Margin: A data distribution D is 

linearly separated by margin γ  with error ρ , if there 
exists d∈u  , such that 
 

( , )

,
Pr

x y D

x
y

x
γ ρ

 
< ≤  

 

u
u

                                           (4) 

 
If the original data has normalized margin γ  

then as long as the number of projections 
 

2

1lncn
ρδγ

≥                                                               (5) 

 
for an appropriate constant c, the projected data  has 
margin / 2γ  with error ρ , with probability at least 1 δ− . 
Equal (4) shows that a positive margin implies ρ = 0, by 
which Equal (5) implies that n = +∞ . Thus in order to 
preserve a positive margin in the projected data infinitely 
many random projections are needed. 

For binary margin preservation, given any 
random Gaussian matrix ,n d∈R  , if the dataset 

{ }( ){ }
1

, 1, 1
md

i i i
S x y

=
= ∈ ∈ − +  is linear separable by 

margin (0,1]γ ∈ , then for any , (0,1)δ ε ∈  and any 
 

2 3
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3 2

mn
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>
−                                                 (6) 

 
with probability at least 1 δ− , the dataset 

{ }( ){ }
1

, 1, 1
mn

i i i
S x y

=
′ = ∈ ∈ − +R   is linear separable by 

margin 2
1

εγ
ε

−
−

. 

The lower bound of the margin after random 
projection can become negative for certain values of ε . A 
negative margin implies that the projected data are not 
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linearly separable. When the lower bound is positive, 
Equal (6) indicates that margin separability for binary 
classification is preserved with high probability under 
random projection.  

For normalized multiclass margin, the multiclass 

dataset { }( ){ }
1

, 1, ,
md

i i i
S x y Y L

=
= ∈ ∈ =   is linear 

separable by margin (0,1]γ ∈ , if there exists{ }d
y y Y

u
∈

∈ , 

such that for all ( , )x y S∈  
 

u , u ,
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y y
y y

x x

x x
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′≠
′

− ≥                                      (7) 

 
For any multiclass dataset S and any Gaussian 

random matrix R, if S is linearly separable by 
margin (0,1]γ ∈ , then for any , (0,1)δ ε ∈  and any  
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with probability at least 1 δ− , the dataset 
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For angle preservation, given any , dw x ∈ and 
any random Gaussian matrix ,n d∈R  , for any (0,1)ε ∈ , 
if , 0w x > , then with probability at least 
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LOCALITY SENSITIVE CLUSTERING 

E2LSH is a special case of LSH (Locality 
Sensitive Hashing), and it is a random projection based 
method, this can be seen from the definition of hashing 
function. The k hashing functions are generated by random 
methods, and the inner-product perform the data 
projection. But it is different from general random 
projection. Each data point is projected by k hashing 
functions, and the results are k bucket indices, which were 
representation of a point. The k hashing functions also 
indicate difference from general random projection. The 
first is the projection itself, the projection were not 
performed on the whole axis of some direction, but on 
parts of the axis. The second is that general projection is 

done by a matrix operation, that is to say a data point 
multiplies a n d×  random projection matrix A, but this 
converted to a data points multiplies a single hashing 
function. This means that the matrix operation is omitted 
in E2LSH algorithm. This is of vital importance for large 
scale data processing, because matrix operation is nearly 
infeasible or high computation and memory cost. 

In data clustering, E2LSH could also come into 
application. Based on the former separability description, a 
data set could be distance, margin and angle preservation 
after projection. There properties make E2LSH feasibility 
for data clustering. In fact, the bucket indices after 
projection can be used to group data points. It means that 
similar data are arranged into a single bucket or adjacent 
several buckets. So if we group them into a cluster, and 
further group all similar groups into corresponding clusters, 
the destination of data clustering is achieved. This is the 
main idea for Locality Sensitive Clustering. 

E2LSH is based on p - stable distribution 
function, its single hashing function is defined as: 
 

( ) a v bh v
w

⋅ + =   
                                               (9) 

 
where a is a n-dimension vector generated by p - stable 
distribution function, and inner-product ( )a v⋅  work as a 
single channel random projection, b is the offset added to 
the random projection, and the module operation ensure 
the projected value(bucket index) is in a specific range. 

The projection function is similar to LSH, 
projected points in n

  to k
 :  

 

1{ : }, ( ) ( ( ), ( ))d k
kg g v h v h v= →   =                (10) 

 
The Locality Sensitive Clustering (LSC) mainly 

includes several steps. The first is to compute optimal 
parameters k and L.  Secondly, constructs random matrix A 
and random vector b and w to substitute a, b and w in 

hashing function a v bh
w

⋅ + =   
. Thirdly, projects every 

point and stores the bucket index 1( , )kh h  in but map 
chain. Fourthly, selects proper quantification interval and 
merge bucket indices, the last is to group data points 
according merged bucket indices. The procedure of 
Locality Sensitive Clustering (LSC) is showed as follows:  

Step-1: for a data set S, optimal parameters k and 
L; 

Step-2: generate n k×  random matrix A from 
Gaussian distribution, and repeat L times, 1( , )LA A A=  , 
generate k dimension b and w according the definition of 
LSH function, 1( , )kb b b=  , 1( , )Lw w w=  ; 

Step-3: perform random projection for all 
points iv S∈ , the results are bucket 
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indices 1 2( , )i i i iLB B B B=  , each ijB  is a k dimension 
vector 
 

l
ij

v A b
B

w
⋅ + =   

                                                   (11) 

 
where [1, ]l L∈ . 
 
Step-4: select proper quantification interval to merge m 
bucket indices iB , m S= , [1, ]i m∈ .  
 

merge

B B′→                                                             (12) 
 
where 1 2{ , , }mB B B B=  , 1 2{ , , }nB B B B′ =  , n m≤ . 
Step-5: assign points in iB′  to class i. 
 

1
1

1
2

1

1,

2,

, n

v S B
v S B

classLabel

n v S B

−

−

−

′    ∈


′   ∈= 

 ′   ∈









                      (13) 

 
where 1

iB −′  denotes the points whose bucket index after 
merging is iB′ . 
 
EXPERIMENTS 

To intuitively show the clustering results, we first 
run clustering algorithms on two synthetic data sets. The 
synthetic data set 1 contains 30 points of 2 dimension 
belonged to 3 clusters orderly (called data set 1), that is the 
first 10 points belong to the first cluster; the last 10 points 
belong to the third cluster. Similarly, the data set 2 
contains 30 points of 100 dimension belonged to 3 clusters 
(called data set 2) in order too. We also construct an image 
data 1, which comes from TRECVID image set, 
containing four categories and 75 images total (called 
image set 1), the 4 categories includes ‘compere’, ‘singer’, 
‘rice’ and ‘sports’. 
 
The experiments on synthetic data sets 

We first compare the clustering results of k-
means with Locality Sensitive Clustering method on 
synthetic data set 1. The results of k-means on data set 1 

are showed in Figure-1. The bucket indices on data set 1 
are showed in Figure-2. 
 

 
 

Figure-1. The clustering results of k-means on data set 1. 
 

 
 

Figure-2. The bucket indices of LSC on data set 1. 
 

From the Figure-1, we can see that all the 30 
points are correctly grouped into 3 clusters, and the 
accuracy achieves 100 percent.  

The Figure-2 indicates that the bucket indices of 
each point may be different in each cluster, but the 
difference among them in same cluster fluctuates in a 
small range, and the inner-class distance are smaller than 
the inter-class difference. So, the bucket indices can be 
used to decide cluster labels, but they need to be merged 
by specific quantification interval first.  

The bucket indices generated from 5 LSC runs 
were shower in Table-1. From Table-1 we can also see 
that the bucket indices of same point in each cluster may 
also different. This comes from the randomization of hash 
functions.
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Table-1. The bucket indices of LSC for the 1st cluster. 
 

Data point 1 2 3 4 5 6 7 8 9 10 
bucket index 59 64 66 64 64 63 61 64 62 61 
bucket index 63 68 68 65 66 66 65 65 63 64 
bucket index 68 74 71 71 71 72 67 71 69 71 
bucket index 69 75 73 72 71 72 71 73 69 70 
bucket index 57 63 60 59 59 62 61 61 57 59 

 
To verify the effect the new clustering method on 

high dimension data set, we also run new method for data 
set 2. The results of k-means are showed in Figure-3. 
 

 
 

Figure-3. The clustering results of k-Means on data set 2. 
 

We can see from Figure-3 that all the 30 points 
are correctly grouped into 3 clusters, and the accuracy 
achieves 100 percent. Repeat the experiment 5 times, the 
results are showed in Table-2. In this table, only the results 
of first cluster are showed, we can see that though the 
labels are different each time, the labels are also all correct, 
because they can be grouped into one cluster every time. 

The result of LSC is also showed in Figure-4, the 
bucket indices also correctly indicate the origin cluster the 
corresponding points belonging to. The indices of each 
point in the first cluster were showed in Table-3 for 5 runs. 

 
 
 

Table-2. The clustering results of k-means for the 
1st cluster. 

 

Data 
point 1 2 3 4 5 6 7 8 9 10 

Label 1 1 1 1 1 1 1 1 1 1 1 
Label 2 3 3 3 3 3 3 3 3 3 3 
Label 3 3 3 3 3 3 3 3 3 3 3 
Label 4 3 3 3 3 3 3 3 3 3 3 
Label 5 1 1 1 1 1 1 1 1 1 1 

 

 
 

Figure-4. The bucket indices of LSC on data set 2. 
 

The bucket indices of points in same cluster in 
Table-3 are also different. This comes from the 
randomization of random projection vectors. The 
quantification intervals of these bucket indices are 
different from that of data set 1. After merging bucket 
indices, right clustering results can be achieved.

 
Table-3. The clustering results of LSC for the 1st cluster. 

 

Data point 1 2 3 4 5 6 7 8 9 10 
bucket index 59 63 61 61 59 64 59 63 60 61 
bucket index 69 76 73 70 72 73 71 72 70 73 
bucket index 67 70 68 68 69 72 65 71 67 69 
bucket index 71 77 74 73 76 76 71 74 70 75 
bucket index 67 65 68 68 69 64 65 71 66 70 
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The experiments on image set 
To verify the effect the new clustering method on 

real data, we also run new method on image set 1. To 
compare the performance, we first run k-means on this 
image set. The results of k-means on image set 1 are 
showed in Figure-5. 
 

 
 

Figure-5. The clustering results of k-means for image 
set 1. 

 
The result of LSC on image set 1 is showed in 

Figure-6, most of the cluster labels of cluster 2 and 4 are 
correct, clustering labels of cluster 3 are correct, and 
several cluster labels of cluster 1 are wrong. We can see 
that the accuracy of clustering labels are less than 
synthetic, this is because the distinctness of inter-cluster 
are less than synthetic data. But the results on real data are 
more meaningful.  

Because LSC is a randomized algorithm, it is 
understandable that its clustering results are less accurate 
than k-means. On the other hand, the advantage of LSC 
lies in low computation cost, fast running speed and 
dynamic clustering which come from E2LSH. 
 

 
 

Figure-6. The clustering results of LSC for image set 1. 
 
 
 

CONCLUSIONS  
To improve the feasibility of high dimensional 

data clustering especially image clustering, Locality 
Sensitive Clustering is presented based on E2LSH. It first 
generates the multiple hashing functions, then projects 
each point by these hashing functions to get bucket indices, 
and then merge the bucket indices by proper quantification 
interval, at last decide the last labels for each data point 
according merged bucket indices. For the clustering 
accuracy, experiments show that on synthetic data set, 
LSC performs nearly as good as k-means algorithm, and 
on image set LSC performs slightly worse than k-means 
algorithm. But its advantage such as fast running speed, 
low memory cost and dynamic clustering are more urgent 
for large dataset clustering, especially in incremental 
dataset, and these elements are key components for the 
feasibility of large dataset clustering. 
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