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ABSTRACT 

It is difficult to identify the mechanics of an underground reservoir and is even more difficult to identify the 
qualities of sites that have unusual forms. Pressure transient analysis is a tool that helps to understand what is happening 
inside the reservoir, understand the flow mechanisms at a macro level, and sometimes, however, they are not enough to 
identify flow channels generated by complex fault systems. Currently, there is not a methodology to characterize either 
wedge or T-shaped deposits by pressure transient testing. Then, this paper contains a careful analysis of different pressure 
behaviors on such systems, so numerical simulations were run for reservoirs systems considering T and wedge geometries 
having a well inside them in a variety of locations. The final product consists of developing an interpretation methodology 
using the pressure and pressure derivative log-log plot to characterize these types of reservoirs. The developed equations 
were succesfully tested with synthetic examples. 
 
Keywords: reservoirs, fault, wedge, pressure, channels, TDS technique. 
 
1. INTRODUCTION 

Pressure transient tests are performed with the 
purpose of evaluating and determining properties of 
hydrocarbon-bearing formations. However, some 
reservoirs may have unusual shapes caused by complex 
faulting or deltaic channels. They possess the conditions 
for the formation of wedge or T-shaped systems. The 
complexity of the geology of such systems can be 
characterized by transient-pressure analysis. However, the 
identification and quantification of the developed systems 
require complex analyses, mainly, since there is no an 
analytical methodology for achieving the interpretation in 
such systems in which faults can act as leaky or sealing 
barriers and, depending upon their geometry and location, 
faulting can form elongated deposits or channels 
developing T or wedge shapes. Non-linear regression 
analysis which is by itself related to nonuniqueness is the 
most common way for interpretation pressure tests in the 
above mentioned systems. 

Some studies have been conducted on the above 
geometrical situations. Horne, Kawaku and Temeng 
(1981) provided a novel analysis based upon an analytical 
solution to observe the pressure behavior of a well 
producing from a non-uniform thick stratum near to a 
pinch-out. Stewart and Whaballa (1980) described a new 
solution for compartmentalized systems based upon 
material balance considerations. Anisur-Rahman and 
Ambastha (1997) were focused on the effects of rock-fluid 
properties on the pressure transient in compartmentalized 
reservoirs. For such purpose they developed an analytical 
solution. They also found that certain parameters 
associated with the geological structure of compartments 
can be estimated via pressure testing. Mijinyawa and 
Gringarten (2008) investigated by numerical simulation 
four more common geometries found in complex 
reservoirs. They showed that all these configurations 
produce characteristics behaviors on well-test data which 
were analyzed by analogy of simpler systems. Charles, 

Rieke, and Purushothaman (1999) analyzed and 
interpreted pressure tests of two wedge off-shore 
reservoirs located in the south of Louisana. Anisur-
Rahman, and Bentsen (2003) utilized an integrate-
transformation (ITT) useful to develop new analytical 
solutions more powerful than the existing solutions to 
evaluate T and wedge shaped reservoirs.  

In this paper, T and wedge geometry conditions, 
wedge angles and well locations were simulated to 
observe pressure behavior and identify unique 
characteristics for each system so an analytical 
methodology using the log-log plot of the pressure and 
pressure the derivative versus time is formulated and 
successfully tested with simulated cases. 
 
2. MATHEMATICAL FORMULATION 
 
2.1. Basic equations 

The dimensionless time and pressure quantities 
used in this study are given below: 
 

2
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Tiab (1993) demonstrated that the dimensionless 

reciprocal rate derivative during radial flow regime takes 
the value of 0.5, 
 
[ * '] 0.5D D rt P =                    (3) 
 

From which the permeability is solved once the 
pressure derivative of Equation (2) is replaced into 
Equation (2), such as: 
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Where (t*∆P’) r is the value of the pressure 

derivative during radial flow regime. Tiab (1993) also 
found an expression for the skin factor by dividing the 
dimensionless pressure during radial flow by Equation (4) 
to give; 
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* '

r r

t wr

P kts
t P c rφµ
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                  (5) 

 
Being ∆Pr the pressure drop read at any arbitrary 

time, tr, durinrg radial flow. 
 

The governing pressure derivative equation 
during pseudosteady-state regime is given by: 
 
[ ]* ' 2 ( )DA D DA ppt P tπ=        (6) 

 
As indicated by Tiab (1994), an equation for the 

determination of drainage area, A, is found from the 
intersection point of the radial flow regime governing 
equation, Equation (3), and the pressure derivative 
equation during pseudosteady-state, Equation (6), as 
follows: 
 

301.77
rpi

t

kt
A

cφµ
=                       (7) 

 
Where trpi is the point of intersection between the radial 
flow pressure derivative and the pseudosteady-state 
pressure derivative (extrapolated) lines.                                                                                   
 
2.2. Pressure derivative behavior for wedge-shaped  
       reservoirs  

Benavidez and Polanco (2014) performed several 
simulations run were performed for wedge reservoirs 
under variation of well location and the angle formed by 
the intercepting sealing faults so different empirical 
expressions were developed to find the angle between the 
intercepting faults or the distance from the well to the 
center of the T as will be indicated below. The different 
geometry combinations are given in Table-1.  
 
2.2.1. Well located in the vortex 

As described in Figure-1, the well pressure 
derivative trace displays initial radial flow regime and then 
presents a consecutive behavior as the angle changes 
increases from 30°, 45°, 60°, 75° y 90° so does the time to 
reach the boundaries; therefore, ending of radial flow time 
can be correlated with the angle as given in Table-2. Then, 
an equation for the estimation of the angle is given by: 
 

6 1.5 9 224.86956 0.001629975 5.20 10 4.78 10Dre Dre Dret t tθ − −= + − × + ×     (8) 
 
 

Table-1. Well location and reservoir geometry. 
 

90°

30°

45°

60°

75°

VORTEX

WELL    LOCATION

NEAR RIGHT FAULT

NEAR LEFT FAULT

CENTERED

ANGLE INTERCEPTIN FAULTS

 
 

1.E-01

1.E+00

1.E+01

1.E+02 1.E+03 1.E+04 1.E+05 1.E+06 1.E+07 1.E+08 1.E+09

tD

 t 
*P

 '
 D

   
 D

 RADIAL FLOW

6 1.5 9 224.86956 0.001629975 5.20 10 4.78 10Dre Dre Dret t tθ − −= + − × + ×

θ
30°
45°
60°
75°
90°

( ) ( ) ( )max
max max

103.14103 63.90788922.033333 1.8598104 * '
* ' * 'D D

D D D D
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Figure-1. Pressure derivative behavior for a well located 
in the vortex of two intercepting faults.  

 
Being tre the time at which the radial flow regime 

ends and tDre is the dimensionless time for that given time. 
 
Table-2. Values of angle and ending dimensionless time 

of radial flow regime for a well located in the vortex 
of a wedge-shaped reservoir. 

 

tDre θ, ° 
4x103 30 
2x104 45 
5x104 60 
1x105 75 
3x105 90 

 
Another estimation of the intercepting angle is 

found from the maximum value of the pressure derivative 
before pseudosteady-state develops. These maximum 
points against angle are given in Table-3 from which the 
following expression was obtained:  
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Table-3. Values of angle and maximum dimensionless 

pressure derivative values for a well located in the 
vortex of a wedge-shaped reservoir. 

 

(tD*PD’) max (tD*PD’) min θ, ° 
5.97 2.15 30 
3.94 2.04 45 
2.98 1.88 60 
2.29 1.68 75 
1.91 1.52 90 

 
The minimum value of the pressure derivative 

that shows up just before the development of the 
pseudosteady-state regime was also correlated to find the 
intersecting angle and their values are reported in Table-3. 
The resulting correlation is given by: 
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( ) ( )
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4 6

min min
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41.012164 * ' -4.0464308 * '

D
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t P

t P t P
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      (10) 

 
2.2.2. Well located near the right fault 

It is observed in Figure-2 that once the near fault 
is felt a transition period develops and a hemi-radial flow 
regime shows up and vanishes once the other fault is 
reached by the disturbance. Before the pseudosteady-state, 
a maximum shows up as the intercepting angle is smaller 
than 60°. For this case, the characteristic point used was 
the dimensionless time for the transient wave to reach the 
far fault which values for each study angle are given in 
Table-4. 
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Figure-2. Pressure derivative behavior for a well located 
at the right fault of the vortex. 

 
Equation (11) was obtained for estimating the 

intersecting angle for this case. 

7
5 12 2 19 3 2.11 1010.695946 3.29 10 7.02 10 5.26 10Dle Dle Dle

Dle

t t t
t

θ − − − ×
= + × − × + × −

 (11) 

 
2.2.3. Well located at the left fault 

This case which dimensionless pressure 
derivative reported in Figure-3 is very similar to the 
former one which means that Equation (11) can be 
applied. However, in this case the ending time of the radial 
flow regime against the angle, see Table-5, was used to 
develop the following expression: 
 

9 2
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+ ×
=

+ ×
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Table-4. Values of angle and dimensionless inflection 
time after reaching the second fault for a well located 

in the vortex of a wedge-shaped reservoir. 
 

tDle θ, ° 
1.11x106 20 
1.4x106 30 

2.22x106 45 
4.4x106 60 

7.03x106 75 
7.91x106 90 

 
Table-5. Values of angle and ending dimensionless time 
of radial flow regime for a well flow a well located near 

the left fault of a wedge-shaped reservoir. 
 

tDre θ, ° 
2.8x104 30 

8.83x104 45 
1.4x105 60 

3.52x105 90 
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Figure-3. Pressure derivative behavior for a well located 
at the left fault of the vortex.  
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2.2.4. Well located at the center 
The pressure derivative behavior of a well located 

in the middle point of two intersecting faults is given in 
Figure-4 for angles of 20°, 30°, 45°, 60°, 75° and 90°. As 
the intersecting angle increases the time required to finish 
the radial flow regime also increases. See also Table-6. 
Pseudosteady state develops once all the reservoir 
boundaries are reached. 
 

Table-6. Values of angle and ending of radial flow for a 
well located in the center of two sealing faults in 

a wedge-shaped reservoir. 
 

tDre θ, ° 
2.79x105 20 
5.57x105 30 
8.83x105 45 
1.11x106 60 
1.2x106 75 
1.4x106 90 
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t t
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= + × − −
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 D
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Figure-4. Pressure derivative behavior for a well located 
at the center of two sealing faults. 

 
Equation (13) was obtained using the data from Table-5. 
 

12
4

2

2.37 10193.93557 2.84 10 0.4213224Dre Dre
Dre

t t
t

θ − ×
= + × − −  (13) 

 
2.3. Pressure derivative behavior for T-shaped  
       reservoirs  

For this type of systems, simulations were 
performed for different well locations inside the system 
according to labels A through E as depicted in Figure-4. 
The pressure derivative behavior for each case is reported 
in Figure-5. Notice that the closer to the center of the T, 
the longer the duration of the radial flow. After the radial 
flow vanishes, Case A presents a combination of two 
perpendicular linear flow regimes while case E has an 
initial predominant linear flow that later combines with 
another radial flow coming from the lower part of the T. 
As a final behavior, pseudosteady-state is developed. 

Since a characteristic pattern was not observed, 
the next step was to study the second dimensionless 
pressure derivative behavior. Case E was taken out of the 
analysis since is located too close to the west boundary, 
then, its behavior does not follow an established pattern as 
given in Figure-6, from which data reported in Table-7 
was read. 
 

E   D   C   B   A

Lt

Lpf

 
 

Figure-4. Well location inside the T-shaped reservoir. 
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Figure-5. Pressure derivative behavior for a well located 
along a T-shaped reservoir. 
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Figure-6. Second pressure derivative behavior for a well 
located along a T-shaped reservoir. 

 
A dimensionless distance was defined as the ratio 

between the distance from the west or east boundary to the 
center, thus; 
 

pf
D

t

L
L

L
=        (14) 
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Information from Table-7 led to develop an 
expression for the estimation of the distance from the well 
to one of the boundaries along the upper region of the T, 
see Figure-4, as follows: 
 

12
2 2

min

21.37740.72347744 5.42363 10
( * '')

re
D

t w

q B ktL
kh t P c r

µ
φµ

−= − + ×
∆

  (15) 

 
Table-7. Coordinates of the minimum value of the second 

pressure derivative for each dimensionless length. 
 

(tD*PD”)min (tD)min LD 
0.868894 22000000 1 
0.464527 15800000 0.75 
0.334065 11400000 0.5 
0.219073 10500000 0.25 

 
3. EXAMPLES 

Three synthetic examples were run with the 
information given below: 
 
φ = 20%                rw = 0.5 ft                    q =500 STB/D 
h = 100 ft              Bo = 1.15 bls/STB      µ = 5 cp 
ct = 4x10-6 psi-1    A = 990855995.8 ft2 

 
3.1. Example-1 

Pressure and pressure derivative against time data 
are reported in Figure-7 for the case of a well located near 
the vortex of two sealing faults. It is required to estimate 
permeability, skin factor, drainage area and the angle 
formed between the two faults. 
 

1.E+01

1.E+02

1.E+03

1.E+04

1.E-01 1.E+00 1.E+01 1.E+02 1.E+03 1.E+04 1.E+05

Flujo radial

∆
P

 &
 t*
∆

P
', 

ps
i

t, hr

3600 hrrpit =
1hrrt =

719.6 psirP∆ =

( * ') 60.9 psirt P∆ =

max( * ') 500 psit P∆ =

2.6 hrret =

 
 

Figure-7. Log-log plot of pressure and pressure derivative 
vs. time for example-1. 

 

Solution 
The following information was read from Figure-

7: 
tr = 1 hr        ∆Pr =  719.6 psi      
(t*∆P’) r = 60.9 psi tre = 2.6 hr   
(t*∆P’) max = 500 psi 

 
Permeability and skin factor are estimated with 

Equations (4) and (5), respectively, thus: 

( ) ( ) ( ) ( )
( ) ( )

70.6 500 5 1.15
33.3 md

100 60.9
k = =  

 

( ) ( )
( ) ( ) ( ) ( )6 2

33.3 1
0.5 19.6 ln 7.43 0.9

0.2 5 4 10 0.5
s

−

⎧ ⎫⎛ ⎞⎪ ⎪⎜ ⎟= − + =⎨ ⎬⎜ ⎟×⎪ ⎪⎝ ⎠⎩ ⎭

 

 
Drainage area is found using Equation (7), 
 

( ) ( )
( ) ( ) ( )

2
6

33.3 10100
99314047.1 ft

301.77 0.2 5 4 10
A

−
= =

×
 

 
Equation (1) allows translating the actual time to 

dimensionless time,  
 

( ) ( ) ( )
( ) ( ) ( ) ( )6 2

0.0002637 33.3 2.6
23000

0.2 1.15 4 10 0.5Dret
−

= =
×

 

 
The intercepting angle is found after replacing he 

above value into Equation (8),  
 

6 1.5

9 2

24.86956 0.001629975(23000) 5.20 10 (23000)
4.78 10 (23000) 46.75

θ −

−

= + − × +

× = °
 

 
The angle of intersection can be verified using the 

maximum point of the pressure derivative in Equation (9), 
thus, 
 

0.0131715(33.3)(100)(500)22.033333
(500)(5)(1.15)

14563.5134(500)(5)(1.15) 9023.7939(500)(5)(1.15) 43.4
(33.3)(100)(500) (33.3)(100)(500)

θ = − +

+ = °

 

 
3.2. Example-2 

The same input data for the former example was 
applied for a wedge-shaped reservoir with the well 
centered. The input intercepting angle was 70°. Pressure 
derivative data is reported in Figure-8. It required finding 
the intersecting angle. 
 

1.E-01

1.E+00

1.E+01

1.E+01 1.E+02 1.E+03 1.E+04 1.E+05

 t 
  *

P
 '

 D
   

  D

t, hr

133 hrret =

 
 

Figure-8. Log-log plot of pressure derivative vs. time for 
example-2. 
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Solution 
A value of tre of 133 hr was read from Figure-8 

which translates into a dimensionless time of 1.16x106. 
This allows finding an intersection angle of 67° by means 
of Equation (13). 
 
3.3. Example-3 

A pressure test of T-shape reservoir was 
simulated using the data mentioned at the beginning of the 
examples. The well is located in the B position given in 
Figure-4 and the total length from the well to the middle 
position (point A in Figure-4) was 2600 ft. Data of the 
pressure derivative and second pressure derivative against 
time are reported in Figure-9. It is required to find the 
length of the B position. 
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1.E-01

1.E+00

1.E+01

1.E+02

1.E+03

1.E-01 1.E+00 1.E+01 1.E+02 1.E+03 1.E+04 1.E+05

t, hr

20 hrret =

t*∆
P

' &
 t 

 *∆
P

", 
ps

i
2

2
min( * ") 0.064 psit P∆ =

 
 

Figure-9. Log-log plot of pressure derivative and second 
pressure derivative vs. time for example-3. 

 
Solution 

A value of tre of 20 hr and a minimum second 
derivative of 63 psi were read from Figure-9. The 
corresponding dimensionless values found with Equation 
1 and the second derivative of Equation 1 result into: 
 
tDre = 176000  
(tD

2*PD”) min = 0.513 
 

Use of Equation (15) leads to find a 
dimensionless length of 0.44 which multiplied by 2600 
translates into 1152.12 ft. 
 
4. COMMENT ON THE RESULTS 

The values of intersecting angles and distance 
from boundary to well were in close agreement with the 
values used for the simulation which verify the validity of 
the given correlations. 
 
5. CONCLUSIONES AND RECOMMENDATIONS 

Pressure behavior was studied for a well located 
inside both wedge-shape (simulated with intersecting 
sealing faults) and T-Shaped reservoirs which led to the 
development of new equations to find the intersecting 
angle and the distance from the boundary to the well. The 

developed expressions were successfully tested with 
synthetic examples. 
 
ACKNOWLEDGEMENTS 

The authors gratefully thank the Most Holy 
Trinity and the Virgin Mary mother of God for all the 
blessing received during their lives. 

The author also thanks Universidad 
Surcolombiana for providing financial support for the 
complement of this study. 
 

Nomenclature 
A Draining area, ft2 
B Oil volume factor, rb/STB 
ct Compressibility, 1/psi 
h Formation thickness, ft 
k Formation compressibility, md 
P Pressure, psi 

Pwf Well-flowing pressure, psi 
q Flow rate, STB/D 
re Drainage radius, ft 
rw Wellbore radius, ft 
s Skin factor 
t Test time, hr 

(t*∆P’) Pressure derivative, psi 
(t2*∆P”) Second pressure derivative, psi 
(tD*PD’) Dimensionless pressure derivative 
(tD

2*PD”) Dimensionless second pressure derivative 
Lpf Distance from boundary to center, ft 
Lt Lenght from boundary to middle of  

 
Greek 

∆ Change 

φ Porosity, fracction 
µ Viscosity, cp 

 
Suffixes 

D Dimensionless 

le inflection time after reaching the second 
fault 

max Maximum 
r Radial 
re End of radial flow 
rpi Intersect of radial-pseudosteady state lines 
w well 
t tiempo  
p Pseudosteady-state 
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