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ABSTRACT 

This paper presents the comparison of two algorithms used for the numerical inversion of the Laplace transform. 
The comparison was applied to two well-known oil-industry reservoir models in the Laplacian domain, for which the 
inversion is made and the results are plotted to establish comparison. Not only accuracy but also computing effort was 
studied. Although, the Iseger’s algorithm is computationally much heavier it handles more efficiently functions with 
discontinuities or functions having sharp changes. It was also observed in well tests that fulfilling the conditions relating 
time with the number of sample points leads to more stable inversions. It was also found that the greater the number of 
points to be inverted, the more accurate the solution. Moreover, the oversampling parameter nrp provides more stable 
solutions when it takes the value of three contrary to eight as initially proposed by Iseger. 
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1. INTRODUCTION 

Since the work presented by van Everdingen and 
Hurst (1953), the Laplace transform has been a standard 
tool for solving transient problems for fluid flow in porous 
materials. The Laplace transform is mainly used for the 
solution of initial boundary value problems. For some of 
these applications, an exact analytical inversion is not 
possible and then numerical inversion is the only resource. 
For some others, the numerical inversion is also chosen for 
its convenience. For this inversion, the Stehfest’s 
algorithm (1970) is normally used and included in 
conventional software applications in the oil industry. 
However, it has such limitations as handling of 
discontinuous functions and stiff functions which are 
better handled by the Iseger’s algorithm, Al-Ajmi et al. 
(2008). 

For numerical inversion of Laplace Transform 
several algorithms have been proposed. Among them, we 
can name the works presented by Bellman, Kalaba and 
Lockett (1966), Crump (1976), Kryzhniy (2004) and 
Talbot (1979). However, they did not have much 
acceptance. The most famous method in the oil industry is 
the Stehfest’s algorithm (1970). However, it is not very 
accurate when handling either sharply changing functions 
such the situation presented in the trough found on the 
pressure derivative behavior of naturally-fractured 
formations when the transition period appears just after 
wellbore storage vanishes or the inverse Laplace in 
singular/discontinuous functions. For these cases, Iseger’s 
algorithm (2006) alleviates this type of restrictions and 
provides opportunities for many practical applications. 
 
2. METHODOLOGY  
 
2.1. Election of the programming tool and reservoir  
       models 

Visual Basic 2008 was used as the programming 
environment for the easiness on handling plots as well as 

the accuracy. However, Iseger’s algorith works in the 
plane of complex numbers. Since Visual Basic 2008 does 
not possess management tools for working with complex 
numbers, it was necessary to use some external libraries 
that include all needed functions for the declaration and 
operation of high precision complex variables. 

Models for homogeneous and heterogeneous 
infinite reservoirs were chosen to test the kindness, 
advantages and drawbacks of Iseger’s and Stehfest’s 
algorithms. The model for heterogeneous reservoirs was 
the one proposed by Warren and Root (1963). 
 
2.2. Iseger’s algorithm 

This algorithm has the property of eliminating the 
continuity restriction presented in some of the common 
inversion algorithms. This functionality makes the Iseger’s 
algorithm to be applied for a wider range of applications. 

The algorithm proposed by Iseger (2006) is a 
Fourier series method based upon the Poisson summation 
formula. The summation of Poisson relates an infinite sum 
of Laplace transform values with the Z transformation 
values of the function. The infinite sum is approximated 
by a finite sum based on the Gaussian Quadrature rule and 
the values in the time domain of the function are 
calculated by a Fourier transform algorithm. The results 
offered are related to the precision of the machine, Al-
Ajmi et al. (2008). 

The attractiveness of the Iseger’s algorithm lies 
on its ability to calculate the inverse of the Laplace 
transform for functions with all kinds of discontinuities, 
singularities and without local smoothing, although it 
should be pointed out that the implementation of this 
algorithm is more complicated than the implementation of 
the Stehfest’s algorithm, but it is comparable to the 
implementation of other common algorithms. 

There are several parameters to be taken into 
account in the Iseger’s algorithm since they affect the 
accuracy of the results. A critical parameter used is ∆ 
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(delta) which can be calculated by the following 
relationship: 
 

T
M

∆ =
                                                                            (1) 

 
Where T is the period for which the inversions are 
calculated and M is the number of points for which is 
calculated the Laplace inverse. 

The approximation error also depends on ∆, to 
guarantee accurate and reliable results, two conditions 
must be met. The first condition to be fulfilled is that (1/∆) 

 N. As noted by Al-Ajmi et al. (2008), there must also 

meet that,  
 
M ≥ 10 ∆M, which is equivalent to M ≥ 10 T  
 

By fulfilling these conditions, stability and 
accuracy results are guaranteed in the inversion of the 
Laplace transform. It is important to note that the greater 
the number of sample points the higher the accuracy; then, 
needless to say that in order to obtain stable and accurate 
inversions M has to to be as large as possible. 

Iseger's algorithm (2006) uses M2=nrp (M) 
oversampling points to calculate the inversions en M data 
points. The actual execution time is M2log (M2); therefore, 
from this perspective, M2 ought to be chosen as small as 
possible. However, according to Al-Ajmi et al. (2008) in 
obtaining numerically stable results, M2 should be chosen 
as large as possible. 

The nrp parameter, given by Iseger (2006), does 
not have a formal definition but it is called the 
oversampling factor, which increases the accuracy of the 
results. Iseger (2006) recommends using M2 = 8M, which 
translates into nrp = 8, particularly for well-behaved 
functions. This particular choice for nrp was because of 
the conditions imposed by the Fast Fourier Transform as 
originally used by Iseger, which requires nrp and M to be 
a power of 2 (iseger, 2006). 

In the Iseger's algorithm, the parameter n was 
arbitrarily defined as n = 16; therefore, constants beta and 
lambda for this value of n were defined according to the 
values provided by him - Iseger (2006). 
 
n = 16 for all smooth functions 
n = 32 for very oscillating singular functions 
n = 48 when the function has many peaks 
 

Iseger (2006) shows several algorithms with 
various modifications. The model used here is the most 
complete, which means, it has wider applications. It was 
proved to handle discontinuities of all kind without any 
problem even without considering the location of 
discontinuity; therefore, as far as handling discontinuities, 
its confidence is unlimited. 

2.3. Comparison of algorithms’ performance  
Several cases are shown here in which the 

stability and accuracy of the Iseger algorithm could be 
affected.   

A unit-step function with a testing period T of 20 
hr was considered. Based on the before mentioned 
conditions, the number of sampling points must M ≥ 200. 
Then, to observe the effect of the number of inversion 
points on the results, three different M values were used.   

According to Al-Ajmi et al. (2008), Figure-1 
shows unappropriated Laplace inversions using 103 and 
233 data points. The function losses its nature at the 
discontinuity point since 103 data points do not meet any 
of the required conditions while 233 points just meet one. 
The desire inversion is gotten when using 220 points since 
both conditions are fulfilled. 
 

 
 

Figure-1. Numerical inversión of a unit-setp function by 
the Iseger’s Algoritm. After Al-Ajmi et al. (2008). 

 
Further from Al-Ajmi et al. (2008), applications 

of Iseger’s algorithm for the numerical inversion of fluid 
flow models do not provide stable solutions for nrp = 8. 
Stable inversions were obtained by trial-and-error using 
discrete Fourier transforms and nrp = 3. Figure-2 shows 
the effect of nrp on the numerical inversion found in 
mentioned models of well test pressure behavior by means 
of the algorithm proposed by Iseger. 

Several functions were used for testing the 
validity of our computer program with an arbitrary period 
T = 20 and M = 220 inversion points to fulfill the inversion 
stability. As examples, Figure-3 reports the inversion 
solution for a multi-step function and Figure-4 for 
inversion of the Sine function.  

Both Stehfest’s and Iseger’s algorithm were 
tested for inverting the pressure behavior of a well in an 
infinite reservoir. Since the behaviors are very close, only 
the absolute dimensionless pressure error is reported in 
Figure-5 having the Iseger’s algorithm as the reference 
point. 
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Figure-2. Effect of nrp in the numerical inversion using 
the Iseger’s algorithm. After Al-Ajmi et al. (2008). 
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Figure-3. Inversion of a multi-step function using 
the Iseger’s algorithm. 
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Figure-4. Inversion of the Sine function using the 
Iseger’s algorithm. 
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Figure-5. Absolute error of the dimensionless pressure 
found by inverting with Iseger’s and Stehfest’s algorithm 

for a well in an infinite homogeneous reservoir. 
 

Figure-5 allows noting a small difference 
between the two worked inversion methods. There is a 
small data distortion at the beginning and then a slight 
stabilization and an increasing tendency of the difference 
which can be due to round-off error accumulation. 
However, since the difference is very small we can 
conclude that both methods are equally applied.  
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Figure-6. Dimensionless pressure and pressure derivative 
vs. time behavior for a well in an infinite heterogeneous 

reservoir using Iseger’s and Stehfest’s algorithm for 
Laplace inversion. 
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Figure-7. Absolute error of the dimensionless pressure 
found by inverting with Iseger’s and Stehfest’s algorithm 

for a well in an infinite heterogeneous reservoir. 
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Figure-6 shows the dimensionless pressure and 
pressure derivative response for a naturally-fractured 
reservoir using the Warren-and-Root (1963) parameters: λ 
= 0.000001 and ω = 0.001. As seen in Figure-7, the 
dimensionless pressure differences are small, although, as 
expected, a higher early distortion is given by the 
Stehfest’s algorithm. Also, the pressure derivative shows a 
less stable behavior using Stehfest, maybe, caused by error 
accumulation. 
 
3. CONCLUSIONS 

It was observed that discontinuities are better 
handled while inverting Laplace domain solutions by 
using the algorithm developed by Iseger than the 
commonly used Stehfest algorithm. Although, for oil-field 
applications the Iseger algorithm provides better results in 
stiff functions, however its manipulation is much more 
complicated than the Stehfest’s algorithm and also 
machine time computation increases. This, however, is not 
a big problem with today’s computers.    
 
Nomenclature 
 

n Parameter depending on the function type 
nrp Oversampling factor 
M Number of inverting points 
PD Dimensionless pressure 
tD Dimensionless time 
T Period 

 
Greek 

 
∆ Ratio T/M 

λ Interporosity flow parameter 

ω Dimensionless storativity ratio 
 
While in the Stehfest's algorithm, the number of sample 
points is the same number of calculated inversions since 
time is handled in a logarithmic way; in Iseger's algorithm 
is necessary to take into account the needed conditions to 
be met to obtain reliable and stable results, so the period 
and the number of points are directly proportional and 
depends of the parameter ∆. The condition indicates that 
the number of sampled points must be at least 10 times 
greater than the period for which inversions are made. 
Because of this, the number of calculations for Iseger's 
algorithm is about 10 times greater than in the algorithm 
Stehfest, so it is not as suitable for large periods. 
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