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ABSTRACT 

Wire ropes are used for different applications in many industrial domains, for instance, lifting system. Depending 
on the conditions of use, wire ropes are being degraded with direct consequences are significant changes of geometric and 
mechanical characteristics of its components. This results in a reduction in the resistance capacity of the wire rope with 
time, which could bring failure. Two parameters are susceptible to depict this degradation: a continuous variable which is 
damage and a statistical variable which is reliability. Our work consists of studying the impact of the breaking of the wires 
which constitute the wire ropes on its duration. For that we will establish a model that will allow us to connect the two 
parameters (Damage and reliability) and we will thus broaden this link to the case of compound systems. We are equally 
proposing to develop a new model which permits providing the reliability of a wire rope in multiple levels of damage of its 
components. The method adopted is a multi-scale approach with a total decoupling between the scale of the wire and the 
wire rope. 
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1. INTRODUCTION 

A wire rope (Figure-1) is generally constituted of 
many strands helically arranged around the central core in 
a layer or multiple overlying. The strand itself is 
composed of a lot of steel wires regularly disposed around 
a central core in a layer or multiple overlying. A wire rope 
could be composed of one strand, and then we are talking 
about a mono-strand wire rope, or a helical wire rope. 
 

 
 

Figure-1. Schema illustrating the different component of 
the wire rope. 

 
The wire ropes are very available in the industrial 

domain. They constitute the essential element of the lifting 
systems. Their mechanical characteristics change during 
its use. In this respect, the securities of people who use 
them directly depend on their states [1, 2]. 

The sudden breaking of the wire ropes results in 
major disorders related to many aspects like the loss of 
humans or materials .Consequently, it is very important to 
predict their mechanical performance before using them. 
In this study, our purpose is essentially reliable with the 
use of a mathematical model based on a probabilistic 
approach. Therefore; our objective is being able to 
describe the fatigue behavior of every wire to deduce that 
of the wire rope. 

2.  MULTI SCALE APPROACH 
A wire rope is a group of interconnected or 

interdependent elements, so that the state of the wire rope 
depends on the states of its components [3]. In this way it 
is related to the most complex composed systems. This 
signifies that all modeling of the wire rope will be a 
multi-scale approach.  

According to the study realized by Al achachi [4, 
5], a suspension wire rope can be considered as a system 
made of a group of strands disposed in parallel. A strand is 
itself made of a group of stub disposed in series. Each stub 
of strand is composed of wires disposed in parallel. The 
study of the behavior of a wire rope is consequently a 
multi-scale study in which we can distinguish the scale of 
the wire, the scale of the strand and that of the wire rope.  
The systemic schema of a suspended wire rope is therefore 
a system: parallel (n strands) - series (p stub of strands) - 
parallel (n’ wires). The choice can be justified as follow:  
 
 The behavior of the wire governs the behavior of the 

wire rope; 
 The wires are twisted together, a broken wire has the 

capacity to re-anchor on a given length, called re-
anchor length, and which defines the stub’s 
dimension;  

 The behavior of the strand is profoundly linked to the 
behavior of the weakest stub (the series system); 

 Since the strands are disposed in parallel, the 
resistance of a wire rope depends on their individual 
resistance and the distribution of the mechanical load.  

 
 On the other hand, the realized study by 
Kolowrocki [6] consists of developing a modeling 
allowing the estimation of a wire rope’s duration of life, 
where we can distinguish the scale of the strand, the scale 
of the layer of strands and that of the wire rope. He 
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considers that the wire rope is a mixed system (series-
parallel). The choice of the series-parallel system is 
justified by: 
 
 The exterior layer of a wire rope is made of strands 

having diameters superior than those of the interior 
layer; 

 The failure of one of these strands leads to the failure 
of the wire rope (series system). These are connected 
in parallel with the interior layer (parallel system). 
Thus, we can say that the wire rope make a series 
parallel system. 

 
3. THE RELIABILITY OF COMPOSED SYSTEMS 

The reliability of a material is a statistic 
parameter. It represents the probability of the survival of 
this material. That is to say the probability of not facing 
any kind of failure (the accomplishment of the required 
function) in relation to the conditions of use given, during 
an interval of time given. We represent it R (t).  

Considering the components of a system Ei i = 1, 
2,..., n, n ∈ N having a functions of reliability: Ri(t) = P (Ti 

> t), ),,( ∞−∞∈t  where Ti, i = 1, 2,..., n, are independent 
random variables representing the lives of the components 

 with the functions of the distribution :  
Fi (t) = P (Ti  ≤ t), ).,( ∞−∞∈t    
 The functions of reliability of simplest systems 
are defined as follow [6]: 
 
 For a series system:  

 
                                (1) 

 
 For a parallel system:  

 
                          (2) 

 
 For a series-parallel system:  

 
    (3) 

 
is the number of parallel subsets and  the number of 

series components.   
 
 For a majority logic system m/n (m material among n 

functions), the reliability function is:  
 

                     (4)  
 

With  all arrangement (1, 2….m) include at 
least k materials in service. 
 When it comes to regular homogeneous systems, 
the reliability function will be:     
 
 For a series system: 

 
                              (5) 

 For a parallel system: 
 

                                  (6)       
 
 For a series-parallel system: 

 
            (7)    

 
 For  a parallel-series system: 

 
        (8)  

 
 For a majority logic system: 

 
                                 (9) 

 
Where:     

 
4. LAW OF PROBABILITY USED IN RELIABILITY 
 For predicting the life cycle of wire ropes, it is 
necessary to choose the appropriate statistic model to 
describe the duration of life of test samples. Three models 
are generally used for the description of wire ropes’s life 
duration. These models are respectively the Gauss law, the 
exponential law and the Weibull law [7]. The first law 
where the distribution of the failure is centered around an 
average value in the third phase of their life. The 
exponential law is used only if we have a constant failure 
rate that is to say in the second phase of the component’s 
life. The Weibull law which is the most used one in 
representing the wire ropes’s duration of life, because it is 
a flexible law that can adjust with all sorts of experimental 
results. It covers the case where the failure rate is variable 
and thus allows adjusting with periods of “youthfulness” 
and to different forms of aging.   
 
 Reliability according to the Weibull law:  

 

                                                 (10) 

 
Where β = Parameter of form   
         η = Parameter of scale 
          γ = Parameter of position 
 
 Density of probability: For t > γ    

 
                                       (11) 

 
 Function of dividing: 

 
                                                   (12)      

 
 Instant rate failure:    
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                         (13) 

 
5. RELIABILITY IN FUNCTION OF THE  
    FRACTION OF LIFE 

We can express the reliability R (t) in function of 
the fraction of life (β) which has as an expression:  
β = n/Nf. 

Therefore we will consider the time like an 
increment succession of period (τ) thus T =n.τ,  η  = Nf. τ.       
 
Where n = instant cycle’s amount  
τ = time between two successive cycles of loading.        
η = spreading of the distribution. 
Nf = number of cycles cumulated in the breaking. 
 
Exploiting this discretization of time T= n. τ; 
η = Nf. τ  with γ = 0 and replacing it in the model of 
Weibull [7, 9], which has appeared as the most capable 
one for adjusting with the failure’s emergence 
phenomenon, we take as an expression of reliability: 
 

                                                               (14) 
 

We signal to the factor of form β with λ so as not 
to mix it with the fraction of life  
(β = n/Nf). 
We obtain:    
 

                                                              (15)                       
 
Thus:    
 

                                                         (16)                      
 

Figure-2 represents the graphic representation of 
the reliability in function of the fraction of life (β). 
 

 
 

Figure-2. Graphic representation of the reliability in 
function of the fraction of life (β). 

 
This curve describes well the decreasing of the 

reliability during functioning of an element. We also 
remark that for a fraction of life β=1 the reliability is equal 

to a non-zero value. This value can be attributed to a 
residual reliability just before the breaking of the material. 
 
6. BEHAVIOR LAW 
 
6.1. Miner law 

The simplest and the best known approach to 
describe the evolution of damage at fatigue under constant 
amplitude, is the linear rule of the damage said: Miner Act 
[10, 11]. It is a law in which the damage varies linearly in 
function of the fraction of life. Miner supposed that the 
damage noted D is a linear function of the fraction of life β 
according to the following relationship: 
 

                                                                  (17)                     
 
Where 

n = instant cycle’s amount.                                                          
F = number of cycles cumulated in the breaking.  

 
The concept is described to be linear because of 

the linear relationship between the damage D and the 
fraction of life β. This law says that the interruption of the 
device occurs when the history of solicitations it 
underwent, caused partial damage such that their sum 
reaches the value 1. 
 

                                                            (18) 
 
6.2. Reliability in function of damage 

The theory of damage in function of fraction of 
life β is the mechanic model chosen to translate the 
damage of the wire rope through fatigue. This based on a 
synthesis of different theories which describes the damage 
under loads of fatigue [8, 9] and which has as an 
expression: 
 

                                                     (19)                    
 
Where γ = ∆σ/σ0; γu = σe/σ0 
         ∆σ = amplitude of the solicitation 
         σ0 = endurance limit of the virgin material           
         σe = limit instant endurance 
 

We put:               

This gives the expression of the reliability in 
function of damage: 
 

                                       (20)      
 

Figure-3 illustrates the graphic representation of 
the reliability in function of the damage for:   = 1.5; 

 =1.8; λ=2. 
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Figure-3. Graphic representation of the reliability in 
function of damage. 

 
After graphic reading of this curve, we remark 

that for a damage that equals 1, the reliability is not zero 
value. Thus, the damage theory considers that the damage 
reaches its maximal value “1” when it has appearance of a 
macroscopic crack, but the material keeps a certain 
resistance translated by a non zero reliability.     
 
7. NUMERICAL APPLICATION 

In what follows, we will consider a steel wire 
rope of 6 mm diameter of a 6*7 type (6strands 7 wires) 
with a core in textile. 
 

 
 

Figure-4. Steel wire rope of a 6*7 type 
with a textile core. 

 
7.1. Series parallel system (Kolowrocki model) 

Considering a series system which has some 
components or some sub systems in parallel, the system 
becomes series-parallel in which the reliability equation in 
function of the fraction of life is the following: 
 

                                  (21)          
 
Where s = the number of blocs in series.  
         p = the number of blocs in parallel. 
 

In the first case we consider that the wire rope 
(6*7) is a series-parallel system. We take s=6, the number 
of series branches which correspond to the number of the 
strand, and considering p=7 the number of parallel 
branches which is the number of wires. Figure-5 

represents the reliability in function of fraction of life of 
this wire rope according to the series-parallel model. 

Substituting β by  in the equation (16), 

we obtain the reliability’s equation of the wire rope 
according to the damage. The Figure-6 represents the 
reliability in function of damage of this wire rope 
according to the series-parallel model. 
 

 
 

Figure-5. Reliability in function of the fraction of life 
of the wire rope of (6*7) type according to the 

series-parallel model. 
 

 
 

Figure-6. Reliability in function of damage of the wire 
rope (6*7) type according to the series- parallel model. 

 
7.2. Series-parallel-series system (Al achachi model) 

The expression of the reliability in function of the 
fraction of life of a parallel-series-parallel system is 
written as follow:  
 

               (22)                     

 
Where s = the number of blocs in series. 
        p = the number of blocs in parallel. 
 

Considering that the wire rope (6 * 7) is a 
parallel-series-parallel system. Figures 7 and 8 
respectively represent the reliability depending on the 
fraction of life and reliability based on the damage of the 
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previous wire rope according to the parallel-series-parallel 
model. 
 

 
 

Figure-7. Reliability in function of the fraction of life 
of the wire rope of (6*7) type according to the 

parallel-series-parallel model. 
 

 
 

Figure-8. Reliability in function of damage of 
the wire rope (6*7) type according to the 

parallel-series-parallel model. 
 

After studying these curves, we remark that the 
reliability of the system is influenced by the parallel 
branches. The opposite is observed: the system is more 
reliable if we increase the number of parallel blocs, and 
less reliable if we increase the number of series blocs. 
 
8. A PROPOSAL OF A NEW MODELING OF A  
    WIRE ROPE 

A wire rope can be considered as a system 
constituted of a group of strands disposed of a majority 
logic system. Each strand is itself constituted of a group of 
wires disposed in parallel. The method adopted is a multi-
scale approach where we distinguish the scale of wire, the 
scale of strand and that of the wire rope. 
 The schema proposed of a suspended wire rope is 
then a system: majority logic / parallel. The choice of this 
system is justified by: 
 
 AA broken strand does not lead to the failure of the 

wire rope. However, starting from a certain number of 

broken strands, the wire rope can be declared as being 
failed.  

 The wires are twisted together, a broken wire has the 
capacity to re-anchor on a given length, called re-
anchor length, and which defines the stub’s 
dimension. 

 
            (23)             

 
With p: number of wire*number of stubs; n: total 

number of strands and m: minimal threshold of the number 
of functional strands.  
 
9. A COMPARATIVE STUDY OF THE PROPOSED  
    MODELS 

In order to show the failure criteria based on the 
number of unacceptable broken wires. We proceeded to a 
comparison of our model to those proposed by Al 
Achahchi and Kolowrocki. The first considers that the 
wire rope is like a parallel-series-parallel system. The 
second considers it as a series-parallel system, on a steel 
wire rope of (6*7) type (6 strands 7 wires). The Figures 9, 
10 and 11 illustrate this comparison taking the number of 
unacceptable broken wires as criteria of failure. 
 

 
 

Figure-9. Case where the criteria of failure is six 
broken wires. 

 

 
 

Figure-10. Case where the criteria of failure is three 
broken wires. 
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Figure-11. Case where the criteria of failure is one 
broken wire. 

 
These curves show that the two first models 

(those proposed by AL Achachi and Kolowrocki) do not 
change and consequently do not take into consideration 
the failure criteria. Yet the proposed model (majority 
logic/parallel) appears as being well adapted to the real 
situation of wire rope’s use and takes into consideration 
the degradation of the wire rope in function. 
 
CONCLUSIONS 

This work is elaborated to make a link between 
reliability and damage through fatigue. This link allows 
associating to each stage of damage the corresponding 
reliability. For each particular type of wire rope 
application, the occurrence of unacceptable number of 
broken wires is the action adopted for the damage of 
fatigue evaluation.  Consequently, our study’s purpose was 
developing a modeling which allows predicting the 
resistance capacity of a wire rope in different levels of 
damage of its components. Our contribution is essentially 
reliable by the use of a new model which determines the 
reliability of the wire rope taking into account the number 
of tolerated broken wire in the wire rope. In this respect, 
our objective is to be able to describe the mechanical 
behavior of each wire so as to deduce that of the wire rope. 
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