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ABSTRACT 

Fractal coding has been proved useful for image compression, and it is also proved effective for image retrieval. 
In the paper, we present a statistical method called variable bandwidth kernel density estimation to analyze fractal coding 
parameters. Then retrieve images using the retrieval index constructed with this method. Experimental results show that the 
proposed method with a variable optimized bandwidth performs better than those with a fixed bandwidth and the histogram 
method both in retrieval rate and retrieval speed. In this paper, the Average Retrieval Rate (ARR) can reach 72.40%, which 
is more than that obtained by the existing methods. 
 
Keywords: average retrieval rate, image, fractal coding. 
 
INTRODUCTION 

Image retrieval has been an active research area 
for years; there are various kinds of image retrieval 
technique mainly based on text, content and semantic. The 
Content-Based Image Retrieval (CBIR) technique [1] is 
used to retrieve images with image features directly, so we 
can find the most similar images from the database 
through the comparison between the image features. 
Fractal coding parameters can effectively represent 
essential features of images. Fractal coding, as a new 
image compression technique, has been applied into image 
retrieval. Fractal features provide geometric information of 
an image that is irrelevant to the shape and size of an 
object in the image, therefore, fractal features are more 
robust than color and texture features. Meanwhile, 
retrieving images in fractal domain can be faster and more 
effective, especially for the compressed images.  

Fractal image coding is a block-based scheme 
that exploits the self-similarity hiding within an image. 
Fractal features generated by the block-based scheme are 
quantitative measurements of self-similarity; therefore 
they can be used to construct image features. Fractal 
image compression was originally developed by Barnsley 
and Sloan [2]. Jacquin [3] implemented a block-based 
fractal compression, which is popularly known as fractal 
block coding. And fractal block coding has been applied 
into image retrieval. Pi MH proposed to employ the 
histogram of range block means and the 2D joint 
histogram of range block means and contrast scaling 
parameters as an image index [4, 5], and this technique 
greatly improved the retrieval rate. Some scholars 
proposed the histogram of collage error as an image 
signature and combined fractal parameters with collage 
error to improve the retrieval rate [6]. 

The features of an image can be acquired 
effectively with the statistical characteristics of fractal 
coding parameters, and the performance in image retrieval 
has already been confirmed. A statistical method called 
kernel density estimation is proposed, which can estimate 
the density of samples more accurately. Compared with 
the commonly used histogram method, the kernel density 

estimation can be more accurate and smooth. Therefore, 
we apply this method into image retrieval. Since the 
bandwidth of kernel function plays an important role in 
kernel density estimation, we propose the method with a 
variable optimized bandwidth in conformity with data [7]. 
Experimental results show that this method has not only 
higher retrieval rate but also less retrieval time than the 
existing methods. 

The rest of the paper is organized as follows. The 
section 2 introduces fractal coding and collage error. 
Section 3 presents the proposed method. Section 4 
presents the performance evaluation. The section 5 
presents conclusions and future work.  
 
FRACTAL CODING AND COLLAGE ERROR  
 
Fractal coding  

In this paper, the orthogonalization fractal coding 
method is adopted [8]. An image ( )M M× is first 
segmented into non-overlapping blocks of size B B× called 
range blocks, recorded as 1 2, ,... mR R R . A domain block 
pool Ω  is a set of domain blocks of size 2 2B B× , 
generated by dividing the ( )M M× image into overlapped 
blocks. And the domain blocks are recorded as

1 2, ,... nD D D . 

In general, 2tB = , t is an integer. After the 4-
neighborhood pixel average and compression transform, 
the domain blocks are mapped into the images with 
size B B× . To improve the quality of the images, eight 
kinds of isometric transform are applied into the domain 
blocks. (In Jacquin’s scheme, rotation transformation 
of 0o , 90o ,180o , 270o , vertical midline, horizontal midline 
and diagonal reflection transformation of 45o �135o  are 
proposed). 

According to the Partitioned Iterated Function 
System (PIFS), we can find out the domain blocks 
matched with the range blocks using affine transformation 
iterations. 
 

' ( )R rU s D dU= + ρ −                                                     (1) 
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For each range block R, orthogonalization fractal 
block coding is obtained by minimizing the following 
equation 
 

2
( , ) ( )i jE R D R rU s D dU= − − ρ −

                                      (2) 
 

The above minimization is performed over 
D∈Ω  by working with a set of pre-quantized fractal 
parameters 

1{ }I
i ir =

 and 
1{ }J

j js =
( I and J  are the quantization 

levels for ir  and js , respectively). Note that U  is a matrix 
whose elements are all ones, s  is a contrast scaling 
parameter, ρ  is the isometric transform, || ||⋅  is the 2-

norm and r and d  are the average of range block and 
domain block respectively. ir  is the average of the i-th 
range block. Since , 0U D dU− = , we define Equation (2) 

as orthogonalization fractal block coding. Then range 
block R  can be written as ( , , , ) arg min ( , )D D D

r s x y E R D
∈Ω

= . 

Where ( , )D Dx y  is the top-left corner coordinating of the 
‘best-matching’ domain block. 

When all the domain blocks matched with the 
range blocks are found, the fractal coding of the whole 
image is completed. 
 
Collage error 

We define the collage error as follows:  
 

( ) ( ),
min
D

E R D
e E R

B B∈Ω
= =

×

)
                   (3) 

 
Collage error is a quantitative measure of the 

similarity between range block and “best-matching” 
domain block. It is relatively robust compared with other 
fractal parameters which can be quite sensitive to changes 
in domain block pool. Pi MH [9] has proved that the 
proposed indices not only reduce computational 
complexities, but also enhance the retrieval rate, compared 
with the existing fractal-based retrieval methods. 
 
Program code 
[imagem imagen]=size(Image1);                 
Sr=4;Sd=8;                                   
Rnum=(imagem/Sr)*(imagen/Sr);                 
Dnum=(imagem/Sd)*(imagen/Sd);                 
Image2=zeros(Dnum,Sr,Sr);         
Image2=blkproc(Image1,[Sd/Sr,Sd/Sr],'mean(mean(x))'); 
RBlocks=zeros(Rnum,Sr,Sr); 
DBlocks=zeros(Dnum,Sd,Sd); 
DBlocksReduce=zeros(Dnum*8,Sr,Sr); 
for i=1:imagem/Sr                 
for j=1:imagen/Sr             
k=(i-1)*imagen/Sr+j; 
RBlocks(k,:,:)=Image1((i-1)*Sr+1:i*Sr,(j-1)*Sr+1:j*Sr); 
end 
end 

for i=1:imagem/Sd 
for j=1:imagen/Sd 
k=(i-1)*imagen/Sd+j; 
m=Sr; n=Sr; 
DBlocksReduce(k,:,:)=Image2((i-1)*Sr+1:i*Sr,(j-
1)*Sr+1:j*Sr); 
DBlocksReduce(k+Dnum,:,:)=DBlocksReduce(k,m:-
1:1,:);           
DBlocksReduce(k+2*Dnum,:,:)=DBlocksReduce(k,:,n:-
1:1);          
DBlocksReduce(k+3*Dnum,:,:)=DBlocksReduce(k,m:-
1:1,n:-1:1);      
DBlocksReduce(k+4*Dnum,:,:)=reshape(DBlocksReduce(
k,:,:),Sr,Sr)';   
A=reshape( DBlocksReduce(k+3*Dnum,:,:),Sr,Sr)'; 
DBlocksReduce(k+5*Dnum,:,:)=A(:,n:-1:1);    
DBlocksReduce(k+6*Dnum,:,:)= 
imrotate(reshape(DBlocksReduce(k,:,:),Sr,Sr),90);        
DBlocksReduce(k+7*Dnum,:,:)= 
imrotate(reshape(DBlocksReduce(k,:,:),Sr,Sr),270); 
DBlocks(k,:,:)=Image1((i-1)*Sd+1:i*Sd,(j-1)*Sd+1:j*Sd); 
end 
end 
RandDbest=zeros(Rnum,1)+256^3; 
RandDbests=zeros(Rnum,1); 
RandDbesto=zeros(Rnum,1); 
RandDbestj=zeros(Rnum,1); 
for i=1:Rnum 
x=reshape(RBlocks(i,:,:),Sr*Sr,1);                   
meanx=mean(x);                                
for j=1:Dnum*8 
y=reshape(DBlocksReduce(j,:,:),Sr*Sr,1);       
meany=mean(y);  
s=(x-meanx)'*(y-meany)/((y-meany)'*(y-meany));  
o=(meanx-s*meany);                        
e=(x-s*y-o)'*(x-s*y-o);                        
if (RandDbest(i)>e)                 
RandDbest(i)=e;                          
RandDbests(i)=s; 
RandDbesto(i)=o; 
RandDbestj(i)=j; 
end 
end 
end 
 
Proposed method 

Kernel Density Estimation (KDE), as popular 
nonparametric density estimation, is widely used in the 
field of pattern recognition, classification and image 
processing. The histogram is the simplest non-parametric 
density estimation method which is frequently used. It has 
been demonstrated that histograms of fractal parameters 
capture statistical characteristic of texture images 
effectively [4]. Since the histograms heavily depends on 
width of bins and end points may result in different 
histogram distribution, meanwhile, different distributions 
lead to different results of image retrieval, and thereby 
affect the retrieval rate.  
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On the condition that the densities of data are 
unknown, the kernel density estimation is used, and it has 
been applied into statistical characteristics of images in 
massive literatures [10, 11] and has obtained considerable 
results. The properties of kernel density estimation are, as 
compared to histograms, smooth, no end points and they 
depend on bandwidths heavily. This method is more 
simple and effective than the histogram method, which 
reduces the computational complexity of data in image 
retrieval. 
 
Kernel density estimation of fractal parameters 

Let 1 2, , nx x xL  be an i.i.d (independent and 
identically distributed) sample drawn from some 
distribution with an unknown density ( )p x . We are 
interested in estimating the shape of this function ( )p x . Its 
kernel density estimation is 
 

1

1( ) ( )
n

i
n

i

x xp x K
nh h=

−
= ∑)

                    (4) 
 

where ( )K •  is the kernel - a symmetric but not necessarily 
positive function that integrates to one - and h  is a 
smoothing parameter called the bandwidth. Intuitively we 
want to choose h  as small as possible, which will lead to 
instability. However, we should balance the smoothness 
and stability of the estimation. However, it’s the 
bandwidth not the function of the kernel that exhibits a 
strong influence on the estimation results. A bandwidth h  
of the kernel may alter the density estimation, and it can 
accordingly affect the goodness-of-fit of the density 
function � ( )np x  to the unknown underlying density ( )np x . 
Generally the most common optimal criterion used to 
select bandwidth is the Mean Integrated Squared Error 
(MISE) [12]. This principle is applied to select a fixed 
optimal bandwidth. The optimal bandwidth is the 
argument that minimizes the MISE. 
 

2
ˆ ˆ( ( )) [ ( ) ( )]n n nMISE p x E p x p x dx= −∫                  (5)    

 

The integrand of the MISE can be decomposed 
into three parts: 2 2ˆ ˆ2n n n nEp p Ep p− + . Then we will 

subtract 2
np  from the MISE since it is the underlying 

density and does not depend on the choice of a kernel, thus 
the cost function as a function of the bandwidth is defined 
as 
 

' 2 2ˆ ˆ( ) 2
b b b

n n n na a a
MISE MISE p x dx Ep dx p Ep dx= − = −∫ ∫ ∫    (6) 

 

Here [a, b] is an interval of interest, and the 
interval length is H . The minimum of the cost function 
Eq. (6) is an estimate of the fixed optimal bandwidth, 
which is denoted by *h .  

After obtaining the fixed bandwidth, we will 
introduce the proposed method to obtain a variable 
bandwidth. First we define a formula: 

1 ( )
1

N
y x xin i

δ= −∑
=

                                                   (7)   

 

Where n is the number of estimated point. ( )tδ  is 
the Dirac delta function. The kernel density estimation is 
obtained by convoluting a Gaussian kernel ( )k s to y . 
 

ˆ ( )n x sp y k s ds−= ∫                                                (8) 
 

The most commonly used kernel is Gaussian 
kernel function: 
 

2

2

1( ) exp( )
22
sk s
hhπ

= −                                          (9) 

 

As we know, the fixed bandwidth is selected 
from an entire observation interval [a, b], however, the 
estimation may be improved by using a kernel bandwidth 
which is adaptively selected in conformity with data. 
Thus, the kernel density estimation with the variable 
bandwidth xh  is expressed as 
 

ˆ ( )n x s hp y k s ds−= ∫                                                    (10) 
 

Here, we provide a method for obtaining the 
variable bandwidth 

xh  that minimizes the MISE by 
optimizing a local interval length among which the 
variable bandwidth can be regarded as a fixed one. To 
conduct the local optimization, we introduce the local 
MISE criterion as 
 

2
ˆ[ ( ) ( )]n n HlocalMISE E p x p x dxρ= −∫               (11) 

 

The weight function 
Hρ  localizes the integration 

in the interval H . According to Eq.(6), we introduce the 
local cost function by subtracting the term irrelevant for 
the choice of h  as 
 

2
,2 2

,

1 2( , ) ( , ) ( ) ix x
n n i j i jH Hh H h

i j i j
C h H localMISE p dx x x k x x

n n
ρ ψ ρ −

≠
= − = − −∑ ∑∫  (12) 

 

where 
 

, ( , ) ( ) ( ) u x
h H i j h i h j Hx x k u x k u x duψ ρ −= − −∫        (13) 

 

The optimal bandwidth *h  varies according to 
different interval length H . We suggest selecting an 
interval length that scales with the optimal bandwidth 
as 1 *hγ − , the parameter γ  is a smoothing parameter for the 
variable bandwidth; it regulates the interval length for 
local optimization. With smallγ , the variable bandwidth 
fluctuates slightly, while with largeγ , the variable 
bandwidth fluctuates significantly. 

In order to select a variable kernel bandwidth, 
firstly, compute the local cost function 

, ( , )h H i jx xψ  in 
Equation (13) and find that minimize the Equation (13) 
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then repeat the procedure above while changing H . 
Change H to find *H that satisfies 1 *H hγ −= . We could 
obtain the variable bandwidth by computing the cost 
function 
 

2
2

2ˆ ˆ( ) ( )
b

n n h i ja
i j

C p dx k x x
n γ

γ
≠

= − −∑∫                 (14)             

 

where ˆ ( )n h ii
p k x x

γ
= −∑ . At last, we should repeat 

the procedure above to find *γ  that minimizes ˆ ( )nC γ , and 
then apply it to obtain the variable bandwidth *hγ . The 
bandwidth is what we want to calculate kernel density 
estimation more precisely. 

It has been proved that range block mean R , 
contrast scaling parameter s and collage error e [4, 6, 9] 

are effectively used to retrieve images. In this paper, we 
apply these parameters into kernel density estimation 
directly. The optimal uniform quantization for R is 
{0,1,2,...,63}[13] and to ensure the convergence of the 
decoding, the scaling factor s is restricted to the interval 

max max( , )S S− , where max0 1S< < , as for collage error e , it 
is real-valued , hence, before we calculate kernel density 
estimation of collage errors, they are rounded into the 
closest integer if collage errors are smaller than 1T − , or 
are set as 1T −  if they exceed 1T − (T is a user-specified 
threshold). In this paper, we set 20T = . Then we calculate 
kernel density estimation with the processed collage errors 
and fractal coding parameters. 

Figure-1 shows four similar and four different 
texture images from VisTex texture database [14]. Kernel 
density estimation of range block mean R , contrast scaling 
parameter s and collage errore corresponding to these 
images are plotted in Figure-2. In most cases, the curves 
are close for similar texture images, and different for the 
dissimilar texture images. 
 

    
           (a)                  (b)                  (c)               (d) 

    
            (e)                 (f)                 (g)                 (h) 
 

Figure-1. Examples of 128x128 images. (a)- (d) Four 
similar images; (e)-(h) Four different images. 

 
The left column of Figure-2 shows the kernel 

density estimation of range block mean R , contrast scaling 
parameter s  and collage error e  respectively according to 
the first four similar images (a)-(d). Obviously the curves 
are close for the similar texture images. 

The right column of Figure-2 shows the kernel 
density estimation of range block mean R , contrast 
scaling parameter s  and collage error e  respectively 
according to the other four different images(e)-(h). We can 
see that the curves are different for the dissimilar texture 
images.  
 

 
 

 
 

Figure-2. Comparison of the KDE of fractal coding 
parameters. 

 
Similarity measurement 

We define that 
1 2( ) { , ,..., }Q HV u u u• = and 

1 2( ) { , ,..., }C HV v v v• = are the features of the query and 
candidate images respectively. The vectors of range block 
mean R , contrast scaling parameter s and collage error e  
of a query image are expressed as 1 2{ , ,..., }R R RHu u u , 

1 2{ , ,..., }S S SHu u u  and 1 2{ , ,..., }e e eHu u u respectively. The 
same with vector CV for candidate images.  

In addition, the subscript variable H represents 
the amount of range block mean R , contrast scaling 
parameter s  or collage error e of an image. To measure 
the similarity between two images, we can calculate the 
deviation between their fractal coding parameters instead 
since these parameters can express images compactly. 
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In this paper, we adopt the most commonly used 
2L and KLD (Kullback-Leibler divergence) [15] as the 

distance criterion to measure the similarity between the 
query and the candidate images, the distance between the 
two images is calculated as follows: 
 

2

2

1
( , ) ( )

H

L b b
b

d Q C u v
=

= −∑                                (15) 

 

1
( , ) log( )

H
b

b
b b

uKLD Q C u
v=

= ∑                  (16) 

 

The distances between similar images are much 
smaller than those between dissimilar images. 
Experiments show that the similarity measurement 
Equation (7) performs much better than Equation (8). Thus 
we only discuss the retrieval rate using 2L distance. The 
obtained distances are sorted in an ascending order.  
 
PERFORMANCE EVALUATION 

We have performed experiments on VisTex 
texture database. The set of VisTex is the classical 
selection of 40 classes of texture images that are used by 
many literatures for image retrieval [16]. The images are 
listed as follows: Bark0, Bark6, Bark8, Bark9, Brick1, 
Brick4, Brick5, Buildings9, Fabric0, Fabric4, Fabric7, 
Fabric9, Fabric11, Fabric14, Fabric15, Fabric17, Fabric18, 
Flowers5, Food0, Food5, Food8, Grass1, Leaves8, 
Leaves10, Leaves11, Leaves12, Leaves16, Metal0, 
Metal2, Misc2, Sand0, Stone1, Stone4, Terrain10, Tile1, 
Tile4, Tile7, Water5, Wood1, and Wood2. These are real 
world 512×512 images from different natural scenes. Only 
gray-scale levels of the images are used. As for our 
experiments each image is divided into sixteen non-
overlapping 128×128 sub-images, thus creating a test 
database of 640 texture images.  

In the retrieval experiments, each sub-image in 
the database is used once as a query image. For 
comparison purpose, retrieved images are the first 16 most 
similar images for each query. The relevant images for 
each query consist of all the sub-images from the same 
original texture image. All experiments are conducted on a 
2GHz PC using Matlab7.8.0 as a programming tool.  

The retrieval method using feature vectors of 
range block mean, contrast scaling and collage error are 

respectively named as KM� kernel density estimations of 
range block mean�, KS� kernel density estimations of 
contrast scaling� and KE� kernel density estimations of 
collage error�. A large number of texture images in 
database are used to do testing, from which we could 
conclude that the KE method works much better than the 
KM and KS. Therefore, we apply the KE method into 
images retrieval in this paper. 
 
Average retrieval rate and retrieval speed 

We use 40 512×512 VisTex texture images. Each 
image is divided into16 128×128 non-overlapping sub-
images. Finally a test database of 640Z = texture images 
is created. Each sub-image is encoded using full search. 
Let the number of ideally retrieved images of one class be 
denoted by F (in this case 16F = ) and zm be the number of 
correctly retrieved images of one class from the top 16 
images at the z-th test. The performance is measured in 
Average Retrieval Rate (ARR) that is defined the same 
with literature [6], which is then calculated as 
 

1

Z
zz

m
ARR

F Z
==
×

∑
                                             (17) 

 

Experiments show that KE (kernel density 
estimation of collage error) method works better than the 
others. Table-1 and Table-2 shows that our method 
performs better than HE (histogram estimation) method, 
FKE (fixed bandwidth kernel density estimation of collage 
error) method and other methods. 

Table-2 shows that the ARR of the proposed 
method is 72.40%, which is more that the other listed 
methods. The runtime of the retrieval, which is completely 
determined by the performance of the similarity 
measurement process, is also a key index to indicate the 
performance. Compared with literature [16], our runtime is 
largely reduced since the basic arithmetic operations are 
adopted in our method, while the computationally 
expensive log, xe and rx operations with more iterations 
are applied in literature [16], which leads to an increase in 
computation time.  
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Table-1. Retrieval rate of three methods (%). 
 

Image HE FKE VKE 
Bark0 
Bark6 
Bark8 
Bark9 
Brick1 
Brick4 
Brick5 

Buildings9 
Fabric0 
Fabric4 
Fabric7 
Fabric9 
Fabric11 
Fabric14 
Fabric15 
Fabric17 
Fabric18 
Flowers5 

Food0 
Food5 
Food8 
Grass1 

Leaves8 
Leaves10 
Leaves11 
Leaves12 
Leaves16 

Metal0 
Metal2 
Misc2 
Sand0 
Stone1 
Stone4 

Terrain10 
Tile1 
Tile4 
Tile7 

Water5 
Wood1 
Wood2 

16.80 
14.84 
22.27 
21.48 
22.27 
34.77 
21.48 
21.88 
46.88 
36.80 
33.69 
58.20 
38.28 
35.94 
52.34 
30.47 
25.00 
57.03 
67.19 
65.40 
46.48 
32.03 
36.72 
23.83 
48.44 
42.58 
50.47 
38.67 
34.77 
39.45 
37.11 
26.56 
31.25 
37.97 
72.27 
69.92 
63.28 
25.00 
22.66 
38.75 

21.09 
11.72 
20.31 
22.66 
39.06 
30.86 
24.22 
26.17 
41.80 
41.48 
38.91 
59.53 
42.58 
40.63 
46.88 
38.67 
46.88 
58.59 
63.44 
28.52 
51.17 
42.50 
64.06 
27.34 
57.81 
57.81 
32.03 
54.53 
48.67 
46.25 
35.16 
33.44 
33.98 
22.66 
63.28 
74.22 
71.41 
22.27 
34.27 
38.13 

52.34 
37.50 
47.65 
46.87 
64.84 
83.98 
76.56 
75.39 
76.56 
75.00 
75.78 
74.21 
76.56 
74.60 
76.56 
74.60 
75.39 
73.82 
81.17 
73.43 
76.17 
73.82 
76.17 
75.78 
75.00 
76.56 
71.87 
81.17 
76.09 
77.73 
73.04 
78.12 
75.00 
77.34 
85.82 
88.04 
86.60 
70.31 
75.39 
87.10 

 
Table-2. Average Retrieval Rate (ARR) compared with other literatures (%). 

 

Method HE FKE literature[3] 
GGD+MM 

literature[4] 
rmm+CT 

Proposed 
Method 
(VKE) 

ARR�%� 35.42 39.88 67.27 69.52 72.40 
 
CONCLUSIONS 

In this paper, we apply orthogonalization fractal 
coding algorithm into image retrieval, which has been 
verified that the decoding speed is higher than that of the 
basic fractal coding. Meanwhile, we propose an image 
retrieval method based on fractal coding parameter with a 
variable optimized bandwidth kernel density estimation 
method. The kernel bandwidth can adjust according to the 
data distribution. Thus, the statistical characteristics of 

fractal coding parameters are employed as retrieval 
indices. Experiments show the superiority in both retrieval 
rate and retrieval speed when compared with the existing 
methods. In the future, we will combine some other 
features of images with fractal parameters to improve 
performance of image retrieval. 
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