
                                        VOL. 9, NO. 8, AUGUST 2014                                                                                                                   ISSN 1819-6608            

ARPN Journal of Engineering and Applied Sciences 
 

©2006-2014 Asian Research Publishing Network (ARPN). All rights reserved. 

 
www.arpnjournals.com 

 

 
1244

TRANSIENT-RATE ANALYSIS FOR HYDRAULICALLY-FRACTURED 
GAS SHALE WELLS USING THE CONCEPT OF INDUCED 

PERMEABILITY FIELD 
 

Freddy Humberto Escobar, Lina Marcela Montenegro and Karla María Bernal 
Universidad Surcolombiana/CENIGAA, Avenida Pastrana - Cra 1, Neiva, Huila, Colombia 

E-Mail: fescobar@usco.edu.co 
 
ABSTRACT 

Currently, the oil industry is focused on the exploitation of unconventional reservoirs. Wells in such 
unconventional resources as gas shale formations have to be hydraulically fractured for commercial production since the 
permeability is very low to ultralow reaching values in the order of nanodarcies. Also, gas shale wells are normally tested 
by recording the flow rate versus time readings under constant pressure conditions so an analysis of the reciprocal rate and 
reciprocal rate derivative following the TDS philosophy is presented for two cases in which the network of microfractures 
around the main fracture system provides an improvement of the permeability in such zone and one case in which the 
permeability is considered to be uniform. These three cases have been dealt in the literature with decline-curve analysis and 
the identification of the permeability model, dealt as a transition period, is conducted by type-curve matching which 
basically consists of a trial-and-error procedure. Here, we found that the application of the reciprocal rate derivative allows 
to easily identify the type of permeability model to be used: uniform, linear and exponential since the before-called 
transition period is shown on the derivative curve as a specific behavior which has been arbitrarily called “multilinear flow 
regime” displaying a slope of either 0.66 or 0.61 on the reciprocal rate derivative curve for the exponential and linear 
variation models, respectively. The extension of the TDS technique allows for the characterization of well test data so 
permeability, fracture length, skin factor and reservoir length are estimated and successfully verified by their application to 
synthetic and field examples. 
 
Keywords: gas shale wells, transient-rate analysis, superposition, flow regimes, average reservoir pressure. 
 
1. INTRODUCTION 

The permanent search for finding new 
hydrocarbon resources is closely related to an appropriate 
reservoir characterization and management in which well 
test has played an important role. Nowadays, gas shale 
formations are the main target of several oil companies. 
Since gas shale permeability is ultralow, then, fracturing 
the formation is a common strategy for adequate 
hydrocarbon exploitation. Well test analyses conducted in 
several gas producing basins have revealed several flow 
behaviors as a function of the distance of the main fracture 
plane. Transition flow regimes have also been observed 
since the propagation radius of the pressure waves do not 
reach the reservoir boundaries. This implies that the 
evaluation of such parameters as reservoir length may be 
overestimated depending upon the flow regime used for 
the calculations. 

It is normally expected in ultralow permeability 
formations that fracturing creates a main fracture plane 
and a network of microfractures around the well-fracture 
system. These microfractures may improve the average 
permeability of the reservoir in zones surrounding the 
fracture treatment as stated by Palmer, Moschovidis, and 
Cameron (2007), and Ge and Ghassemi (2011). Then, such 
models as those presented by Wattenbarger et al. (1998) 
and El-Banbi and Wattenbarger (1998) assume uniform 
permeability in the surroundings of the fracture system 
which may not be the proper case. Recently, Fuentes-Cruz, 
Gildin and Valko (2014) presented a mathematical model 
considering that the average effect of the failure of weak 
planes leads to a non-uniform permeability distribution 

depending on the distance to the hydraulic fracture which 
becomes the basis of this work. They performed reservoir 
characterization by using rate-decline analysis which here 
is extended to transient rate analysis using the reciprocal 
rate and the reciprocal rate derivative by following the 
TDS philosophy, Tiab (1993).  

In their work, Fuentes-Cruz et al. (2014) modeled 
three cases of permeability variation: uniform (with no 
variation in permeability), linear and exponential. They 
used type-curve matching for the identification of the 
appropriate permeability model type which is dealt in a 
very different and more practical form in this work. It was 
found that, as expected, the uniform model has no 
permeability variations then the linear flow is followed by 
the pseudosteady-state regime. However, for the linear and 
exponential models, Fuentes-Cruz et al. (2014) reported a 
transition period between linear flow regime and 
pseudosteady regime which we have found to be a 
possible flow regime, called arbitrarily here as multilinear, 
which is reflected as a slope of 0.66 and 0.61 on the 
reciprocal rate derivative curve for exponential and linear 
models, respectively. The proposed methodology is useful 
to estimate permeability, fracture length, reservoir length 
and skin factor. Also, geometrical skin factors for the 
above-named multilinear flows were introduced. The 
proposed technique was successfully tested with synthetic 
and field cases. 

The superposition function is customary 
employed in analyzing rate tests conducted in gas shale 
formations. However, the tendency is to use the radial 
superposition function for all the flow regimes. Escobar, 
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Alzate and Collazos (2013) presented an analysis for such 
flow regimes as bilinear, linear, elliptical and 
pseudosteady and determined to use each function 
separately.  

The application of transient-rate analysis using 
the reciprocal rate derivative has been recently used by 
Escobar, Sanchez and Cantillo (2008) in homogeneous 
and heterogeneous gas reservoirs, Escobar, Rojas, and 
Bonilla (2012) for elongated homogeneous and 
heterogeneous formations and Escobar, Castro and 
Mosquera (2014) for hydraulically fractured vertical 
hydrocarbon wells in conventional reservoirs. They 
applied the TDS technique in their studies. A recent 
application of the straight-line conventional analysis was 
also presented by Escobar, Rojas, and Cantillo (2012) for 
long homogeneous and naturally fractured formations. 
 
2. MATHEMATICAL FORMULATION 
 
2.1. Mathematical model 

This study, initially presented by Montenegro-G. 
and Bernal-V. (2014), is based upon the mathematical 
model introduced by Cruz-Fuentes et al. (2014) as given 
below: 

The dimensionless Laplacian pressure solution 
for permeability field is:  
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The solution for the linear permeability case is: 
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*>1, δ=1) 

 
For uniform permeability ( * 1Dk = ): 
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The dimensionless production rate is: 
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The dimensionless time for oil and gas wells in 

field units is, 
 

0

2

0.0002637
( )D

t i e

k tt
c xφ µ

=                                                (5)       

 
The dimensional length stimulated reservoir 

volume. 
 

D
e

yy
x

=                                                               (6)  

 
The dimensionless permeability quantities for 

exponential and linear cases, respectively, are, 
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The dimensionless minimum permeability is 

given also as, 
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The dimensionless gas flow reciprocal rate and 

reciprocal rate derivative, respectively, are: 
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The dimensionless oil flow reciprocal rate and 

reciprocal rate derivative, respectively, are: 
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Using the concept of stimulated reservoir volume, 
the length of the hydraulic fracture (2xf) is equal to the 
lateral extent of the volume that is stimulated, Fuentes-
Cruz et al. (2014):  
 
2 f ex x=                                                             (14) 
 
2.2. TDS formulation for linear flow regime 

This flow regime is presented in the three dealt 
models: uniform, linear and exponential. It is characterized 
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by a typical 0.5-slope line on the reciprocal rate derivative 
curve. As expressed by Fuentes-Cruz et al. (2014) at short 
times is governed by the following equation: 
 

3
21

D
D

t
q

π=                                                             (15) 

 
This flow regime takes place at about the same 

period of time for the different yD as shown in Figures-1 
through 3. Therefore, its behavior does not depend upon 
neither the variation of the dimensionless reservoir length 
nor the minimum permeability value. 
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Figure-1. Effect of the dimensionless reservoir length 
(yD

*) on the flow behavior for the uniform linear 
case, (kD

*=0.15). 
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Figure-2. Effect of the dimensionless reservoir length 
(yD

*) on the flow behavior for the linear flow, (kD*=0.1) 
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Figure-3.  Effect of the dimensionless reservoir length 
(yD

*) on the flow behavior for the exponential case, 
(kD

*=0.1). 
 

Once the dimensionless quantities given by 
Equations (5) and (10) are replaced into Equation (15), 
and taking the derivative to Equation (15) and, also, 
replacing in it the dimensionless quantities, it yields, 
respectively, 
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Since linear flow is independent of the minimum 

permeability -at the end of the main plane of fracture- 
Equations (16) and (17) allow to obtain respective 
expressions for obtaining the maximum induced 
permeability, k0, by reading the values of reciprocal rate 
and reciprocal rate derivative at any arbitrary time during 
linear flow regime, so that: 
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Notice that the reservoir length, xe, can be solved 

from Equation (19), 
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Fuentes-Cruz et al. (2014) introduce an 

expression to estimate skin factor from a point on the 
reciprocal rate curve during linear flow regime. That 
expression is rewritten here as: 
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2.3. TDS Formulation for multilinear flow regime 

For both linear and exponential permeability 
distribution models, Fuentes-Cruz et al. (2014) point out 
the existence of a transition period between the linear flow 
regime and the boundary-dominated pseudosteady state 
(BDS). However, we have found that such transitions may 
behave as a new flow regime since the reci [procal rate 
derivative reflects very characteristic new slopes which are 
not reported in the literature. We assume that this flow 
regime may result from a combination of several flow 
regimes, then, we have arbitrarily call that as “multilinear 
flow regime”. However, we recommend conducting a 
simulation in order to properly identify the streamlines 
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acting in such case and, then, identify and name the 
observed flow regime. 

For the case of the linear permeability model, the 
multilinear flow is defined by a slope of 0.61 on a log-log 
plot of the reciprocal rate derivative. As seen in Figure-5, 
the flow behavior is independent of the variation in the 
dimensionless permeability (kD), then its representative 
equation developed in this work is given below, 
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Figura-4. Absence of multilinear case for uniform flow, 
with effects of variation of permeability in the stimulated 

reservoir volume (kD
*) at constant yD. 
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Figure-5. Multilinear flow behavior during the linear 
model with different permeability values (kD

*) and 
constant yD. 

 
Suffix MLL, in Equation (22), stands for 

Multilinear Flow in the linear permeability model. After, 
replacing the dimensionless terms given by Equations (5) 
and (11) into Equation (22), expressions to estimate either 
permeability or reservoir length from Equation (22) are 
obtained: 
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Notice that the permeability value obtained from 
Equation (23) does not correspond to the initial 
permeability value, k0, since the permeability value is 
going under a decay process related to the distance from 
the fracture system. 

Once the lateral reservoir length is estimated, the 
fracture length, xf, is calculated with Equation (14) in 
which Fuentes-Cruz et al. (2014) pointed out that lateral 
extension of the stimulated reservoir volume is two fold 
the hydraulic fracture length, xe, then (2xf= xe), 
considering a rectangular geometry reservoir. 

Following the philosophy of the TDS technique, 
the geometrical skin factor, sMLL, occurring due to the 
change from linear to multilinear flow regimes is obtained 
by taking the ratio between the reciprocal rate –integration 
of Equation (22) and the reciprocal rate derivative given 
by Equation (22), then solving for sMLL: 
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For the case of the linear permeability model, the 

multilinear flow for the case of the exponential 
permeability model is defined by a slope of 0.66 on a log-
log plot of the reciprocal rate derivative. It gives a 
relationship of three log cycles in the time axis against two 
log cycles in the reciprocal rate derivative axis. As shown 
in Figure-6, the flow behavior does not present a 
uniformity related to the variation of kD, then, it was 
necessary to determine the most representative 
mathematical representation of the multilinear flow 
behavior which was performed by using a probabilistic 
average, 
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Figure-6. Multilinear flow behavior during the 
exponential model with different permeability 

values (kD
*) and constant yD. 
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Once again, after plugging the dimensionless 

terms in Equation (26), expressions for either permeability 
and reservoir length can be obtained, such as, 
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As for the linear permeability model, the 

geometrical skin factor, sMLE, is obtained by the dividing 
the reciprocal rate equation resulting from the integration 
of Equation (26) and the reciprocal rate derivative, 
Equation (26), and solving for the skin factor, so: 
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2.4. TDS formulation for Pseudosteady-state regime 

The determination of the governing equation for 
the late pseudosteady period requires a log-log plot of 
tD*(1/qD)’ versus tDA using a dimensionless constant 
permeability (kD = constant) and different dimensionless 
length values (yD = 0.3, 0.6 and 0.9), for each one of the 
induced permeability models. In each model, a uniform 
behavior was found by dividing the dimensionless time by 
the dimensionless length of the stimulated volume 
reservoir for each case respectively,  
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Similarly to transient-pressure analysis, the late 

pseudosteady-state regime is used for the calculation of 
the well drainage area without using the permeability 
value. Needless to say that the in transient-rate analysis the 
derivative during pseudosteady state does not follow to a 
unit-slope line, but a constantly increasing curve instead, 
then, a tangent unit-slope line must be drawn on the 
derivative curve during this late time for the 
characterization of such regime, See Figures-7, 8 and 9. 

For the uniform model, Figure-7, the 
dimensionless reciprocal rate derivative governing 
equation during pseudosteady-state regime is given below, 
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After the dimensionless terms given by Equations 

(5), (6) and (11) are replaced in Equation (31), an 
expression for the determination of the lateral reservoir 
length, xe, is obtained, 
 

( ) ( ) ( ) [ ]

57 (0.0002637)(1424)
25

* (1 / ) '
PSSU

e
f t i pwf PSSUi

T tx
t qn h c y m P m P

π

φ µ
=

⎡ ⎤−⎣ ⎦
   (32)

    

For the linear model, Figure-8, the dimensionless 
reciprocal rate derivative governing equation during 
pseudosteady-state regime is given as follows, 
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t q
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π=                                (33)   

 
From which an expression to estimate the lateral 

reservoir length is developed once the dimensionless 
parameters are replaced in Equation (33), 
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Figure-7. Effect of the variation of the dimensionless 
length on the pseudosteady state regime for the 

uniform model with kD constant. 
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Figure-8. Pseudosteady state behavior on the linear model 
with constant kD and the effect of varying the length of 

field stimulated. 
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Figure-9. Effect of varying the reservoir length in the 
exponential model with constant kD. 

 



                                        VOL. 9, NO. 8, AUGUST 2014                                                                                                                   ISSN 1819-6608            

ARPN Journal of Engineering and Applied Sciences 
 

©2006-2014 Asian Research Publishing Network (ARPN). All rights reserved. 

 
www.arpnjournals.com 

 

 
1249
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For the exponential permeability model, Figure-9, 

the reciprocal rate derivative governing equation in 
dimensionless form which takes place during 
pseudosteady-state regime is shown as, 
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                               (35)   

 
Which also leads to the development of an 

equation to find reservoir length after the replacement of 
the dimensionless time, Equation (5), and the 
dimensionless reciprocal rate derivative, Equation (11),  
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Finally, it is possible to write a general 

dimensionless derivative equation for the pseudosteady 
state period,  
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The value of α is reported in Table-1 depending 

on the permeability model. 
 

Table-1. Values of alpha for the general dimensionless 
derivative equation for the pseudosteady state period. 

 

Model α 
Exponential 101/20 

Linear 153/100 
Uniform 57/25 

 
2.5. Intersection points of the uniform model 

The intersection point formed by the drawn line 
on the linear flow regime given by derivative of Equation 
(15) with the psuedosteady state period line, tLPSSUi, is 
provided below as, 
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Equation (38) allows to solve for the maximum 

induced permeability, 
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2.6. Intersection points of the linear model 
At the point, tLPSSLi, at which the psudosteady-

state period, Equation (33) intersects with the linear flow 
regime given by Equation (15), is given below, 
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The maximum permeability value can be solved 

from the above equation to give, 
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The point of intersection, tMLPSSLi, between the 

late pseudosteady state regime, Equation (33), and the 
multilinear flow regime, Equation (22), gives the 
following equation in dimensional terms:    
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This allows to solve for the low permeability 

induced in dimensional terms (k*), 
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2.7. Intersection points of the exponential model 

The intersection point of the pseudosteady state 
[Equation (35)] and linear flow regime given by the 
derivative of Equation (15), tLPSSEi, provides the following 
expression, 
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Equation (45) is useful to recalculate the 

maximum induced permeability, 
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The intersection point formed between the 

pseudosteady state regime, Equation (37), and the 
multilinear flow regimen given by Equation (26), tMLPSSEi, 
provides the following equation, 
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Which is also useful to develop an expression for 
the estimation of the minimum induced permeability, 
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Table-2. Relevant information for each model. 

 

Parameter Value Parameter Value 
h  (ft) 400 µg (cp) 0.018 

φ  (%) 5.2 xe (ft) 600 
T (°R) 633.5 Pi (psi) 3115 

Bgi (rb/Mscf) 0.916 Pwf  (psi) 500 
m(Pi) (psi2/cp) 5.15x108 ct (psi-1) 1.85x10-4 

m(Pwf) 
(psi2/cp) 2.08x107 y (ft) 300 

k (md) 0.05 nf 2 
s 0   

 
4. EXAMPLES 

Three synthetic and one field examples are 
worked for the applicability of the above-developed 
equations for each model. Table-2 provides relevant 
information of the reservoir, well and fluid properties 
employed in each one of the permeability models. 
 
4.1. Example-1: Uniform model 

For the case under consideration, the reciprocal 
rate and its derivative are reported in Figure-10 with the 
purpose of determining the permeability, fracture length 
and reservoir length. 
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Figure-10. Log-log plot of the reciprocal rate and the 
reciprocal rate derivative vs. time for the uniform 

synthetic example. 
 

Solution. As expected for this example, only 
linear flow regime and pseudosteady state period are 
developed. The below parameters were read from Figure-
11. 
 
(t)LU = 9.030 hr     
(1/qg)LU = 1.1134x10-5 day/Mscf 

[t *(1/qg)’]LU = 5.5375x10-6 day/Mscf 
(t)PSSU = 252.8018 hr     
(1/qg)PSSU = 5.9819x10-5 day/Mscf 
[t *(1/qg)’]PSSU = 3.5429x10-5 day/Mscf 
(t)LPSSUi = 168.0775 hr     
 

Permeability and reservoir length are estimated 
from the linear flow regime by means of Equations (19) 
and (20), 
 

0
4 -1

2

2
68 7

4144.95 (9.039323549 hr)
(0.052) (0.018 cp) ( 1.85x10 psi )

633.5 R
0.0503 md

psi dia(2)(400ft) (5.15x10 ) (2.08x10 ) (600 ft)(5.53746x10 )
cp Mscf

k −

°

−

=

⎧ ⎫
⎪ ⎪
⎪ ⎪ =⎨ ⎬
⎪ ⎪⎡ ⎤−⎣ ⎦⎪ ⎪⎩ ⎭

 

 
2

8 7 6 4 1 2

64.38 (633.5 R) 9.0303 hr
psi dia 12 (400ft) (5.15x10 ) (2.08x10 ) (5.538x10 ) (0.05 md (0.052) (0.018 cp)(1.85x10 ))
cp Mscf psi

ex
°

− −

=
⎡ ⎤−⎣ ⎦

 
xe = 601.621 ft 
 

The above value of xe is used in Equation (14) to 
find the fracture length, xf, 
 

601.621 ft 300.81 ft
2fx = =  

 
The initial damage is calculated using Equation 

(21), 
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Equation (32) applied on the pseudosteady state 

period is used to calculate the reservoir length. 
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592.323 ftex =  

 
Which also leads to produce a value of 299.16 ft 

for the fracture length by using Equation (14). 
Finally, Equation (39) uses the intersection point 

of the late pseudosteady-state and linear lines, tLPSSUi, to 
allow obtaining the initial permeability, 
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4.2. Example-2: Linear model 
It is required to find permeability, reservoir 

length and fracture length from the data reported in 
Figure-11 and the information given in table 2. 
 

Solution. For the application of the governing 
equations of each flow in this example, the following data 
are read from Figure-11, 
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Figure-11. Log-log plot of the reciprocal rate and the 
reciprocal rate derivative vs. time for the linear 

synthetic example. 
 
(t)LL = 1.56021 hr     
(1/qg)LL = 4.7468x10-6 day/Mscf 
[t *(1/qg)’]LL = 2.34379x10-6 day/Mscf 
(t)MLL = 68.2239 hr     
(1/qg)MLL = 3.4161x10-5 day/Mscf 
[t *(1/qg)’]MLL = 1.92435x10-5 day/Mscf 
(t)PSSL = 355.6813 hr     
(1/qg)PSSL = 9.4474x10-5 day/Mscf 
[t *(1/qg)’]PSSL = 6.64326x10-5 day/Mscf 
(t)LPSSLi = 98.4825 hr     
(t)LPSSLi = 228.5948 hr     
 

Equation (19) applied on the linear flow regime is 
ideal for calculating the maximum induced permeability 
which resulted to be 0.048 md. Then, Equation (20) allows 
calculating a xe value of 590.8367 ft which used in 
Equation (14) gives a value of fracture length of 295.4183 
ft. An initial skin factor of 0.1042 is found with Equation 
(21). 

Taking advantage of the presence of the 
multilinear flow regime, permeability 0.034 md 
representing the transition period mentioned by Fuentes-
Cruz et al. (2014) is obtained from Equation (23). The 
estimated geometrical skin factor using Equation (25) for 
this flow regime resulted to be 0.052. 

The pseudosteady state regime is used along with 
Equation (34) provides a value xe of 597.2 ft and the points 
of intersection used in Equation (40) provides the 
maximum permeability with a value 0.05, while Equation 
(43) provides minimum induced permeability values of  
0.0298 md. 
 
 
 

4.3. Example-3: Exponential model 
Figure-12 presents synthetic reciprocal rate and 

reciprocal rate derivative versus time data for an 
exponential model simulated using information from 
Table-2. It is required to properly characterize the 
reservoir by transient-rate interpretation analysis. 
 

Solution. The following information was read 
from Figure-12. 
 
(t)LE = 0.33095 hr     
(1/qg)LE = 2.3135x10-6 day/Mscf 
[t *(1/qg)’]LE = 1.06623x10-6 day/Mscf 
(t)MLE = 7.89562 hr     
(1/qg)MLE = 1.20184x10-5 day/Mscf 
[t *(1/qg)’]MLL = 6.85377x10-6 day/Mscf 
(t)PSSE = 845.87182 hr     
(1/qg)PSSE = 3.07091x10-4 day/Mscf 
[t *(1/qg)’]PSSE = 2.60214x10-4 day/Mscf 
(t)LPSSEi = 35.69578 hr     
(t)LPSSEi = 270.9569 hr     
 

Equation (19) applied on the linear flow regime is 
very useful for calculating the maximum induced 
permeability which resulted to be 0.0497 md. Equation 
(20) provides a xe value of 598.18 ft which is further used 
in Equation (14) to find xf = 299.081 ft. Also from this 
flow regime an initial skin factor of 0.0507 was found with 
Equation (21). 

The multilinear flow regime is also used to 
estimate a transition permeability value of 0.0244 md by 
means of Equation (27). The estimated geometrical skin 
factor using Equation (29) for this flow regime resulted to 
be 0.012.  

Equation (36) applied on the pseudosteady state 
regime provides a xe value of 597.2063 ft and the 
intersection points used in Equations (45) provides the 
maximum permeability with a value 0.051, while Equation 
(47) provides minimum induced permeability values of  
0.155 md. 
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Figure-12. Log-log plot of the reciprocal rate and the 
reciprocal rate derivative vs. time for the exponential 

synthetic example. 
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Table-3. Fluid, reservoir and well information for 
Example-4. 

 

Parameter Value Parameter Value 
h (ft) 306 µg (cp) 0.018 

φ  (%) 4.8 xe (ft) 800 
T (°R) 633.5 Pi (psi) 3115 

Bgi (rb/Mscf) 0.916 Pwf  (psi) 500 
m(Pi) (psi2/cp) 6.83x108 ct (psi-1) 2.51x10-4 

m(Pwf) 
(psi2/cp) 2.08x107 y (ft) 552 

k0 (md) 2.8x10-3 nf 3 
 
4.4. Field example: Exponential case 

Table-14 contains reservoir, fluid and well 
properties for a field case presented and solved by 
Fuentes-Cruz et al. (2014) using rate-decline analysis. The 
rate-time data are reported in Figure-13 and. It is required 
to find permeability, damage and reservoir length by 
transient-rate analysis. 

It is important to remark that original rate versus 
time data were not available so they were digitized from 
the work of Fuentes-Cruz et al. (2014). The reciprocal rate 
derivative was estimated, afterwards. 
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Figure-13. Log-log plot of the reciprocal rate and the 
reciprocal rate derivative vs. time for the exponential 

field example. 
 

Solution. The following parameters were read 
from Figure-13. 
 
(t)LE = 852.8151 hr     
[t *(1/qg)’]LE = 1.06x10-4 dia/Mscf 
(t)PSSE = 13234.6 hr     
[t *(1/qg)’]PSSE =9.08x10-4 dia/Mscf 
(t)LPSSUi = 35.6958 hr     
 

Equation (36), applied on the pseudosteady state 
regime, is used to calculate a xe value of 755.58 ft. Now, 
the use of Equation (19) on the linear flow regime allows 
finding a maximum induced permeability value of 
2.4837x10-3 md and Equation (21) provided a damage of 
0.346. Table 4 summarizes the results compared to the 

original work of Fuentes-Cruz et al. (2014). Notice that in 
spite of that the data were digitized the results match well. 
 

Table-4. Results for Example-4 against original results. 
 

Parameter Fuentes-Cruz 
et al. (2014) 

This 
work % Error 

k° (md) 2.8x10-3 2.48x10-3 11.43 
k*(md) 3.9x10-5 -  
xe (ft) 800 755.58 5.56 

s 0.31 0.346 11.6 
 
5. COMMENTS ON THE RESULTS 

The worked examples show the great agreement 
obtained for all the estimated parameters compared to the 
values used for the simulation. As far as the field example 
is concerned, comparing to the output values given by 
Fuentes-Cruz et al. (2014), the results from the equations 
developed in this work do not match quite well. This is 
due to be caused by not having the original rate-time data. 
 
6. CONCLUSIONS 

a) Several expressions based upon the uniform, 
linear and exponential flow models introduced by Fuentes-
Cruz et al. (2014) for the estimation of permeability, skin 
factor, fracture length and lateral reservoir length in 
ultralow reservoirs by transient-rate analysis using the 
TDS technique were presented and successfully tested with 
synthetic and field examples. 

b) It is presented the characterization of a new 
feature behavior taking place between the linear flow 
regime and the pseudosteady state period was found to be 
represented by a slope of either 0.66 (exponential model) 
or 0.61 (linear model) on the reciprocal rate derivative. A 
combination of linear flow regimes was assumed to take 
place. Then, this behavior was arbitrarily named called 
“multilinear flow regime”. However, a simulation study is 
recommended to properly identify this flow behavior. 
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Nomenclature 

Bg Volumetric factor,  rb/Mscf 
ct System total compressibility, 1/psi 
k0 Maximum permeability induced, md
k* Minimum permeability induced, md

m(P) Pseudopressure, psi2/cp 
nf Number of main hydraulic-fracture planes
P Pressure, psi
P Laplace-space pressure 

Pwf Bottomhole flowing pressure, psi 
q Laplace-space flow rate 

1/q Reciprocal flowrate , D/Mscf 
t*(1/q)’ Reciprocal flow rate derivative, D/Mscf

s Skin factor
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t Time, hr 
T Absolute temperature, °R 
u Laplace space variable 
xe effective reservoir width,  ft 
xf Hydraulic fracture half-length, ft 

y* half-length of stimulated reservoirs volume 
element, ft 

 
Greeks 

φ Porosity, fraction 
µ Viscosity, cp 

 
Suffices 

g Gas 
i Initial 

BDS Boundary-dominated state 
D Dimensionless

DA Dimensionless based on drainage area
PSS Pseudosteady state 
sc Standard conditions 
ST Short times 
LU Linear flow, uniform model 
LL Linear flow, linear  model 
LE Linear flow, exponential  model

MLL Multilinear  
MLLU Multilinear flow, uniform model
MLLL Multilinear flow, linear model 
MLLE Multilinear flow, exponential model
PSSU Pseudosteady state, uniform model
PSSL Pseudosteady state, linear model
PSSE Pseudosteady state, exponential model

LPSSUi Intersection point between linear flow and 
pseudosteady state, uniform model 

LPSSLi Intersection point between linear flow and 
pseudosteady state, lineal model 

LPSSEi Intersection point between linear flow and 
pseudosteady state, exponential model 

MLLPSSLi Intersection point between multlinear flow 
and pseudosteady state, linear  model 

MLLPSSEi Intersection point between multlinear flow 
and pseudosteady state, exponential model 

 
APPENDIX-A: GOVERNING EQUATIONS FOR 
OIL FLOW 
 
A.1. Linear flow regime 

The dimensionless equation representing the 
linear flow is independent of the model and the variation 
of permeability, the behavior is given by: 
 

3
21*(1/ ) '

2DL D L Dt q tπ=                                             (A.1) 

 
Once the dimensionless terms given by Equations 

(5) and (12) are plugged into Equation (A.1), the lateral 
extent of the stimulated reservoir volume can be solved 
for: 

[ ]

0.5

0.5

12.77
( )*(1/ )'

L
e

tf i wf L

tBx
cn k h P P t q

µ
φµ

⎡ ⎤
= ⎢ ⎥⎡ ⎤− ⎣ ⎦⎣ ⎦

            (A.2) 

 
From the above equation it is possible to know 

the value of permeability: 
 

[ ]

20.5
12.77

( )*(1/ ) '
L

tf e i wf L

tBk
cn x h P P t q

µ
φµ

⎡ ⎤⎡ ⎤
⎢ ⎥= ⎢ ⎥⎡ ⎤⎢ ⎥− ⎣ ⎦⎣ ⎦⎣ ⎦

          (A.3)  

 
A.2. Multilinear flow regime 
 
A.2.1. Linear model 

The general equation describing this flow regime, 
for the linear model in dimensionless terms is: 
 

0.6135250*(1/ )' ( )
50D D MLL D MLLt q t=                                       (22)                

 
It is possible to obtain from Equation (A.4) 

equations for calculating k and xe, respectively, 
 

[ ]

1
0.38650.6135

0.6135 1.227

4.4( )
( ) *(1/ )'

MLL

ti e f i wf MLL

tk
c x n h P P t qφµ

⎧ ⎫⎪ ⎪=⎨ ⎬
⎡ ⎤−⎪ ⎪⎣ ⎦⎩ ⎭

      (A.4) 

 

[ ]

1
1.2270.6135

0.6135 0.3865

4.4( )
( ) *(1/ )'

MLL
e

ti f i wf MLL

tx
c k n h P P t qφµ

⎧ ⎫⎪ ⎪=⎨ ⎬
⎡ ⎤−⎪ ⎪⎣ ⎦⎩ ⎭

     (A.5)                     

 
The geometrical skin damage equation obtained 

from the multilinear flow: 
 

0.6135 (1/ )
4.8903( ) 1.629991

*(1/ )'
D MLL

MLL D MLL
D MLL

q
s t

t q
⎡ ⎤

= −⎢ ⎥
⎣ ⎦

      (A.6) 

 
A.2.2. Exponential model 

The general dimensionless equation which 
describes the behavior of linear flow in the exponential 
model is: 

0.6612405*(1/ )' ( )
50D D MLE D MLEt q t=                                 (26)    

 
After replacing Equations (5) and (12) into 

Equation (26) and solving for both k and xe gives: 
 

( ) ( ) [ ]

1
0.33880.6612

0.6612 1.3224

4.9( )
( ) *(1/ )'

MLE

ti e f i wf MLE

tk
c x x n h m P m P t qφµ

⎧ ⎫⎪ ⎪=⎨ ⎬
⎡ ⎤−⎪ ⎪⎣ ⎦⎩ ⎭

            (A.7)    
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( ) ( ) [ ]

1
1.32240.6612

0.6612 0.3388

4.9( )
( ) *(1/ )'

MLE
e

ti f i wf MLE

tx
c x k n h m P m P t qφµ

⎧ ⎫⎪ ⎪=⎨ ⎬
⎡ ⎤−⎪ ⎪⎣ ⎦⎩ ⎭

           (A.8)    

 
The developed equation for calculating the 

geometrical kin factor, for exponential induced 
permeability model is, 
 

0.6612

2

(1/ )0.03488 1.512402
*(1/ )'

MLE MLE
MLE

t e MLE

kt qs
c x t qφµ

⎛ ⎞ ⎡ ⎤
= −⎜ ⎟ ⎢ ⎥

⎣ ⎦⎝ ⎠
            (A.9)    

 
A.3. Pseudosteady state period 
 
A.3.1. Uniform model 

After replacing Equations (5) and (12) in 
Equation (31) and solving the reservoir length, 
 

( ) [ ]
0.267

*(1/ ) '
PSSU

e
f t i w f PSSUi

t
x

t qn h c y P Pφ µ
=

⎡ ⎤−⎣ ⎦
            (A.10)    

 
A.3.1. Linear model 

Same as above for Equation (33) yields, 
 

( ) [ ]
0.358

*(1/ ) '
PSSL

e
f t i wf PSSLi

t
x

t qn h c y P Pφ µ
=

⎡ ⎤−⎣ ⎦
              (A.11) 

 
A.3.1. Exponential model 

The replacement of Equations (5) and (12) in 
Equation (35) leads to solve for the reservoir length, 
 

( ) ( ) ( ) [ ]
0.596

*(1/ )'
PSSE

e
f t i pwf PSSEi

tx
t qn h c y m P m Pφ µ

=
⎡ ⎤−⎣ ⎦        (A.12)
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