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ABSTRACT 

There are several developed models in the literature to interpret pressure tests in heterogeneous reservoirs; 
however, none of these had developed a methodology able to estimate the characteristic parameters of triple-porosity and 
single-permeability reservoirs without storage and wellbore damage. Amacho et al. (2005) analytical solution was used as 
a reference point for modeling the complexity of these reservoirs. Since none commercial software includes this analytical 
solution up to now, then, this proposal represents the characterization of heterogeneous naturally fractured vuggy reservoirs 
by extending the TDS methodology which refers to the “fingerprints” found on the pressure and pressure derivative versus 
time curve -without using type-curve matching- during the transient flow period and dominated flow boundaries. This 
leads to obtain the dimensionless storativity coefficients, ωv and ωf for the systems of fractures and vugs and, also, the 
interporosity flow parameters: matrix - fracture, matrix - vugs, fractures - vugs, λmf, λvf, y λmv. The mathematical 
expressions proposed were verified successfully by simulating synthetic pressure tests, in which there were found very 
good adjustments between the calculated results and the values used for simulations. Although, one filed case was worked, 
the agreement was not so good since part of the input data was assumed.  
 
Keywords: interporosity flow parameters, storativity coefficients, vuggy reservoirs, naturally fractured systems. 
 
1. INTRODUCTION 

Recent studies have shown that the presence of 
cavities or vugs in naturally fractured carbonate reservoirs 
affect the well-pressure behavior since they present a 
complex porous system identified as a triple-porosity 
naturally-fractured reservoir. As a consequence, strange 
anomalies are observed in the slope of the semilog plot 
during the transition period. The behavior of the 
dimensionless pressure versus dimensionless time has an 
alteration of the normal slope reflected as an additional 
depression in the curve. These abnormalities in the slope 
changes are caused by the presence of an additional pore 
system with different petrophysical properties in the 
reservoir due to the presence of fractures, vugs and matrix, 
or large fractures, small fractures and matrix, which is 
especially present in naturally fractured carbonate 
reservoirs. 

From the years 60s to now, there have been 
various formulations to conceptualize naturally fractured 
formations and to establish the fluid flow modeling in this 
type of rocks. Initially, dual-porosity models were 
proposed; the most used in the oil industry to present a 
better field-scale application is the one developed by 
Warren and Root (1963). It is classified as a dual-medium 
formulation (double-porosity model) in which the 
fractures form a network of channels providing fluid flow 
parallel to the main permeability axi and the matrix 
subsystem is constituted for a discrete homogeneous and 
isotropic blocks, providing the capacity of storage. These 
dual-medium formulations were also applied to 
characterize triple-porosity systems, where the presence of 
vugs was calculated as part of the fractures system or as 
part of the matrix system, simplifying the calculations. 
However, this assumption did not correctly describe the 

fluid mechanics behavior in the reservoir, because vugs 
and matrix do not have the same effect or interaction with 
the fracture network. Taking into account the limitations 
of these models, different authors have reformulated the 
theoretical principles to try to establish a model that 
captures the reality of the process flow taking place in 
triple porosity reservoirs. 

Abdassah and Ershaghi (1986) presented a triple 
porosity model and unique permeability. They considered 
a model for unsteady flow between the system of 
fractures, with two types of matrix blocks, and only the 
primary flow through the fracture system. Also, they 
considered the existence of parallel flow between the 
fracture system, with homogeneous properties, and the 
interaction with two separate groups of matrix blocks 
having different permeabilities and porosities. 

Cols and Rodríguez (2004) developed an 
analytical solution for characterizing secondary porosity in 
naturally fractured reservoirs. They generated a nested 
triple-porosity and single-permeability model for transient 
pressure of a well producing in a naturally fractured 
reservoir. It was considered as a triple-porosity system 
acting at different scales: matrix, secondary porosity of 
small and large scale, where the fluid flow through these 
media takes place in series: the matrix exchanges fluids 
with the small-scale secondary porosity which also feeds 
the large-scale secondary porosity. 

Wu and Cols (2004) proposed a conceptual 
model of triple porosity and triple permeability. They 
conceptualized the fracture-matrix system formed by a 
matrix and two types of fractures: large and small 
fractures; and extended the concept of dual permeability 
by adding a connection (with small fractures), between the 
large fractures and matrix blocks. 
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Camacho et al. (2005) presented a study to model 
secondary porosities, mainly naturally fractured vuggy 
carbonate reservoirs. This model utilized the 
approximation of pseudosteady interporosity flow (it 
means that the fluid transfer among the matrix, the vugs 
and fractures is directly proportional to the difference of 
the average pressure in volume with the macroscopic 
matrix, fractures and vugs). They proposed solutions to 
two different cases: the first one, when no primary flow 
occurs through vugs, which is an extension of the model of 
Warren and Root (1963), and the second one, where the 
dissolution process has created an interconnected system 
of vugs. In both cases, there exists an interaction between 
the matrix, the vugs and fracture system. Based on the 
analytical solution introduced by Camacho et al. (2005) 
and by referring the studies and analysis techniques 
presented by Escobar et al. (2004) and Mirshekari et al. 
(2007) a methodology is developed here to interpret 
pressure behavior and pressure derivative of the transient 
flow period and the period of flow dominated by bordering 
in naturally fractured vuggy carbonate reservoirs; and in 
that way the dimensionless storativity coefficients and the 
interporosity flow parameters matrix-fracture, matrix-vugs 
and vugs-fractures can be estimated. The methodology 
was successfully tested with synthetic and field examples. 
 
2. MATHEMATICAL DEVELOPMENT 

In this study and the work of Rojas and Rojas 
(2014) an extension of the TDS technique, Tiab (1993), 
was applied to observe the characteristic behavior of the 
dimensionless pressure and dimensionless pressure 
derivative versus dimensionless time, by changing the 
different dimensionless storativity coefficients and 
interporosity flow parameters, so some expressions to 
estimate them were developed. The idea is to use the 
characteristic points, lines and intersection points of 
several straight-line portions, slopes and starting points, 
see Figure-1, to correlate their behavior and develop the 
expressions for the interpretation technique. 

The dimensionless pressure and pressure 
derivative behavior were obtained from the model 
presented by Camacho et al. (2005) which along to several 
parameter definitions is given in Appendix A. 

The dimensionless time, pressure and pressure 
derivative used for the mathematical development are: 
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Figure-1. Points or fingerprints characteristic the triple 
porosity reservoirs. 

 
2.1. Matrix-fracture interporosity flow parameter, λmf 

Figure-2 shows the effect of the matrix-fracture 
interporosity flow parameter, λmf, on the behavior of the 
dimensionless pressure derivative versus dimensionless 
time for reservoir with triple porosity (naturally fractured 
vuggy reservoirs) with constant values of λvf=1×10-7, 
λmv=1×10-10, ωf=1×10-4 and ωv=1×10-5. The pressure 
behavior for these conditions is presented in Figure-3. 
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Figure-2. Effect of λmf on the dimensionless pressure 
derivative, λvf=1×10-7, λmv=1×10-10, ωf=1×10-4 and 

ωv=1×10-5 
 

Basically, this parameter affects the occurrence of 
the transition period. When the value of  λmf decreases, the 
presence of the second minimum point, the unit-slope 
behavior just before the second radial flow (the radial flow 
formed in the homogenous systems once the transition 
period is no longer felt) and the same second radial flow 
occur later. In addition to this, the first transition zone is 
also affected by this interporosity flow parameter; 
however, the change is not significant and makes it 
impractical to use in a correlation. 

Figure-3 shows the effects when λmf decreases. 
Slope changes are better appreciated in the pressure curve 
as a consequence of the typical transitions generated by 
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the influence of different porous media affecting fluid 
flow in naturally fractured vuggy reservoirs. 

Considering these observations and the points or 
characteristic fingerprints, the expressions generated to 
calculate the matrix-fracture interporosity flow parameter 
are these: 
 

1) Using the second minimum point, PDmin2/ 
(tD*PD’) min2 and tDmin2: 
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The constants used in Equation (4) are given in Table-1. 

 
Table-1. Constants for Equation (4). 

 

Rank 
λmf 

1×10-4 to 
1×10-3 

1×10-5 to 
1×10-3 

1×10-6 to 
1×10-3 

1×10-7 to 
1×10-3 

1×10-8 to 
1×10-3 

λvf  1×10-4 1×10-5 1×10-6 1×10-7 1×10-8 

λmv 1×10-7 1×10-8 1×10-9 1×10-10 1×10-11 

ωf 1×10-1 1×10-2 1×10-3 1×10-4 1×10-5 

ωv 1×10-2 1×10-3 1×10-4 1×10-5 1×10-6 
A 18.750525 -0.01991929 1.4395861 0.61733522 0.87955429 
B -175.1714 -1.1282632 -33.795176 -14.552994 -21.273956 
C 548.95252 9.4026458 311.82424 134.54613 201.21104 
D -559.03426 0 -1436.2235 -635.27347 -955.35918 
E 0 0 3438.6978 1667.9363 2413.0321 

 
2) Using the beginning of the second radial flow, 

tDb2: 
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Constant A, B and C are provided in Table-2. 
 

Table-2. Constants for Equation (5). 
 

Constant Value 
A -122.95071 
B 7.3564664×10-6 
C 0.9062836 

 
Equation (5) is applicable to 1×10-6<λmf<1×10-3, 

1×10-8 <λvf<1×10-4, 1×10-11<λmv<1×10-7, 1×10-5<ωf<1×10-

1 and 1×10-6<ωv<1×10-2. 
 

Another expression developed using the 
beginning of the second radial flow is: 
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With constants A through F given in Table-3. 
 

Table-3. Constants for Equation (6). 
 

Constant Value 
A -4.7766068×10-8 
B 12.367255 
C -622407 
D 9.0548479×1010 
E -2.7050964×1015 
F 2.1249078×1019 

 
The above equation is applicable for the range of 

1×10-6 < λmf <1×10-3, 1×10-8 <λvf<1×10-4, 1×10-11<λmv<1×10-7, 
1×10-5< ωf <1×10-1 and 1×10-6 < ωv <1×10-2.  
 



                                        VOL. 9, NO. 8, AUGUST 2014                                                                                                                   ISSN 1819-6608            

ARPN Journal of Engineering and Applied Sciences 
 

©2006-2014 Asian Research Publishing Network (ARPN). All rights reserved. 

 
www.arpnjournals.com 

 

 
1326

1

10

100

1.E+00 1.E+01 1.E+02 1.E+03 1.E+04 1.E+05 1.E+06 1.E+07 1.E+08 1.E+09 1.E+10
t
D

   
P D

λ
1x10
5x10
1x10
5x10
1x10
5x10
1x10
5x10
1x10
5x10

mf
-7
-7
-6
-6
-5
-5
-4
-4
-3
-3

 
 

Figure-3. Effect of λmf on the dimensionless pressure, 
λvf=1×10-7, λmv=1×10-10, ωf=1×10-4 and ωv=1×10-5. 

 
Table-4. Constants for Equations (7) and (8). 

 

Constant Value Value 
A 1543.0125 -7517.7246 
B -0.0031036453 -0.043074373 
C 348.57011 39.852572 
D -1018.2157 0.48824847 
E -5442.053 8247.468 
F 32.722676 121.74982 
G -11958.569 2708.9279 
H 494.01527 2249.5118 
I -4460.9516 19002.275 

 
3) Using a time point, tDus, read on the unit-slope 

line developed during the transition period before the 
starting of the second radial flow regime. The pressure 
derivative is read at a time tDus which is located one log 
cycle after the second minimum point, tDmin2. The equation 
would be given for λvf =1×10-6, λmv=1×10-9, ωf =1×10-3, 
ωv=1×10-4 and 1×10-6<λmf <1×10-4: 
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For which constants A through I are given in the 

second column of Table-4. Also, for λvf=1×10-7, λmv= 
1×10-10, ωf=1×10-4, ωv=1×10-5 and 1×10-7<λmf <1×10-4, the 
resulting expression is: 
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Constants A through I are given in the third 

column of Table-4. 
 

4) Another way to use the Equations (7) and (8) 
is reading the intercept point between the unit-slope line 
formed at the end of the transition period with the line of 
the second radial flow regime, taking tDus as tDusi and 
(tD*PD’)us as (tD*PD’)usi. Since any point on the radial flow 
has a dimensionless pressure derivative of 0.5 then, at this 
intersection point, (tD*PD’)usi=0.5, replacing this value and 
the respective constant, it yields: 
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For λvf=1×10-6, λmv=1×10-9, ωf=1×10-3, ωv=1×10-4 

and 1×10-6<λmf <1×10-4 with constants A, B, C and D 
provided in the second column of Table-5. 
 

Table-5. Constants for Equations (9) and (10) 
 

Constant Value Value 
A 1082.188281 380.1675508 
B -0.0031036453 -0.043074373 
C 348.57011 39.852572 
D -1018.2157 0.48824847 

 
For λvf=1×10-7, λmv=1×10-10, ωf=1×10-4, ωv=1×10-5 

and 1×10-7<λmf <1×10-4. 
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Constants for Equation (10) are given in the third 

column of Table-5. 
 
2.2. Matrix-vugs interporosity-flow parameter, λmv 

Figure-4 and Figure-5 show the effect of the 
matrix-fracture interporosity-flow parameter, λmv, on the 
transient pressure behavior for constant values of 
λmf=1×10-7, λvf=1×10-10, ωf=1×10-7 and ωv=1×10-8. 

Unlike the observation of λmf, the starting time of 
the second radial flow converges at the same point for 
different λmv values and unit-slope line at the end of the 
pressure derivative depression varies in length but it is the 
same in terms of location (no parallel displacement along 
the time axis). These observations lead to develop the 
expressions given below. 
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Figure-4. Effect of λmv on the dimensionless pressure derivative 
for λmf=1×10-7, λvf=1×10-10, ωf=1×10-7 and ωv=1×10-8. 

 
5) Using the second minimum point, PDmin2/ (tD*PD’) min2 and tDmin2: 
 

( )
min2

2 3 4
min2 min2 min2 min2min2

* '
D

mv
D D D D D D

P C D E FA B
t P t t t t

λ = + × + + + +
                                                (11) 

 
The constants depending on λmf, λvf, ωf and ωv are provided in Table-6. 
 

Table-6. Constants for Equation (11). 
 

Rank λmv 1×10-11 to 1×10-8 1×10-12 to 1×10-9 1×10-12 to 1×10-10 1×10-13 to 1×10-11 
λmf 1×10-4 1×10-5 1×10-6 1×10-7 
λvf 1×10-7 1×10-8 1×10-9 1×10-10 
ωf 1×10-4 1×10-5 1×10-6 1×10-7 
ωv 1×10-5 1×10-6 1×10-7 1×10-8 
A -1.6415236×10-9 -1.4333864×10-11 -1.7301336×10-13 -5.1835462×10-16 
B 5.9010132×10-14 8.3945406×10-17 1.2107007×10-17 8.4049346×10-21 
C 1.5850872×10-7 1.6214372×10-8 1.7214656×10-9 2.3157263×10-10 
D 6.008467×10-6 1.5473226×10-6 1.9670959×10-7 2.610502×10-8 
E 9.4481581×10-6 -3.3702849×10-5 -3.5827173×10-6 -5.6665697×10-7 
F 0.0019066336 0.0011408245 0.00017086007 3.1146649×10-5 

 
6) Using the dimensionless delta time ∆tD defined 

as the difference between tDusi and tDmin2: 
 

2 3
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The constants depending upon λmf, λvf, ωf and ωv 
values are given in Table-7. 
 
2.3. Vugs-fractures interporosity flow parameter, λvf 

Figure-6 and Figure-7 show the effect of vugs-
fracture interporosity flow parameter λvf on the behavior of 
the dimensionless pressure and the dimensionless pressure 
derivative having constant values of λmf=1×10-2, 
λmv=1×10-7, ωf=1×10-2 and ωv=1×10-3. 
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Figure-5. Effect of λmv on the dimensionless pressure for 
λmf=1×10-7, λvf=1×10-10, ωf=1×10-7 and ωv=1×10-8. 
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Figure-6. Effect of λvf on the dimensionless pressure derivative 
for λmf=1×10-2, λmv=1×10-7, ωf=1×10-2 and ωv=1×10-3. 

  
Table-7. Constants for Equation (12). 

 

Rank 
λmv 

1×10-11 to 1×10-8 1×10-12 to 1×10-9 1×10-12 to 1×10-10 1×10-13 to 1×10-11 

λmf 1×10-4 1×10-5 1×10-6 1×10-7 

λvf 1×10-7 1×10-8 1×10-9 1×10-10 

ωf 1×10-4 1×10-5 1×10-6 1×10-7 

ωv 1×10-5 1×10-6 1×10-7 1×10-8 
A 1.0013273×10-9 -1.1127195×10-12 8.3458729×10-17 -2.1318805×10-17 
B -1.510529×10-13 1.6910126×10-17 9.8924541×10-22 4.2037988×10-24 
C 7.5990051×10-18 -8.4508641×10-23 -9.1889747×10-28 -2.471287×10-31 
D -1.2747192×10-22 1.3923415×10-28 2.0543111×10-34 4.5497101×10-39 

 
As for the case of λmf, the variation of the 

interporosity flow parameter between vugs-fracture, λvf, 
has the same effect on the behavior of the dimensionless 
pressure and the dimensionless pressure derivative. It 
affects the second minimum point, the onset of unit-slope 
line occurring previous to the second radial flow regime. 
The last one occurs later (location of the second 
depression in the pressure derivative). However λvf does 
not alter in the same extent as λmf does. For example, 
comparing Figure-6 to Figure-2, the second minimum time 
point has smaller variation but their corresponding 
pressure derivative values vary largely with changes of λvf 
than λmf. Based on these considerations, the generated 
expressions for calculation the interporosity flow 
parameter between vugs-fractures are as follows: 
 

7) Using the second minimum point, PDmin2/ 
(tD*PD’) min2 and tDmin2: 
 

( ) ( )

( )
( )

( ) ( )

( )

min2
2

min2 min2 min2

min2
2

min2min2

min2min2

3

min2
3

min2min2

min2

min2

ln
* '

ln
* '

ln
* '

ln
* '

ln
* '

D
vf

D D D D

D

D DD

D D D

D

D DD

D

D D

PB DA C
t t P t

PF
t PPE

t P t

PG H
t Pt

PI
t P

⎛ ⎞
λ = + + × + +⎜ ⎟⎜ ⎟

⎝ ⎠
⎛ ⎞

× ⎜ ⎟⎜ ⎟⎛ ⎞⎛ ⎞ ⎝ ⎠× + +⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

⎛ ⎞⎛ ⎞
+ × +⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

⎛ ⎞
× ⎜ ⎟⎜ ⎟

⎝ ⎠ ( )
( )

2

min2

min2
2

min2 min2

ln
* '

D

D D

D D

PJ
t P

t t

⎛ ⎞ ⎛ ⎞
⎜ ⎟ × ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠+

                         (13) 

 
Constants for Equation (13) are presented in Table-8. 
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Table-8. Constants for Equation (13). 
 

Rank λvf 5×10-8 to 9×10-7 3×10-9 to 3×10-8 

λmf 1×10-4 1×10-5 

λmv 1×10-10 1×10-11 

ωf 1×10-4 1×10-5 

ωv 1×10-5 1×10-6 
A 3.7301428×10-06 2.8589362×10-06 
B 0.00014429885 0.0064676422 
C 2.66054×10-06 -1.5822898×10-06 
D 0.21684084 3.6608159 
E 6.4429743×10-07 2.9058185×10-07 
F -0.00023134716 -0.0023232953 
G 2.9644256 703.42261 
H 5.2651235×10-08 -1.7712087×10-08 
I 5.4043502×10-05 0.00020931574 
J 0.010538647 -0.66612539 

 
For another range: 
 

( ) ( ) ( )

( ) ( ) ( )

2

min2 min2
min2

min2 min2

2

min2 min2
min2

min2 min2

* ' * '

1
* ' * '

D D
D

D D D D

vf

D D
D

D D D D

P PA B t C D
t P t P

P PE t F G
t P t P

⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟+ × + × + ×⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠λ =
⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟+ × + × + ×⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

  (14) 

 
The constants depending on the values of λmf, 

λmv, ωf and ωv are given in Table-9. 
 
8) Using unit-slope line developed prior to the second 
radial flow regime. This point is read with the same 
conditions as for λmf estimation. The equation would be: 
 

( ) ( )( ) ( )( )
( ) ( )( ) ( )( )

( )( )

2 3

2 3

4

ln ln ln

* ' * ' * '

* '

vf Dus Dus Dus

D D D D D Dus us us

D D us

A B t C t D t

E t P F t P G t P

H t P

λ = + × + × + × +

× + × + × +

×

 (15) 

 
With the respective constants given in Table-10. 
 

1
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t
D

   
P D

 
 

Figure-7. Effect of λvf on the dimensionless pressure for 
λmf=1×10-2, λmv=1×10-7, ωf=1×10-2 and ωv=1×10-3. 

 
Table-9. Constants for Equation (14) 

 

Rank λvf 1×10-9 to 1×10-7 5×10-7 to 1×10-5 
λmf 1×10-2 1×10-1 

λmv 1×10-8 1×10-7 

ωf 1×10-2 1×10-1 

ωv 1×10-3 1×10-2 
A -4.6443423×10-07 -3.4145192×10-05 
B 8.0324488×10-11 -4.9380799×10-08 
C 9.936457×10-10 -5.6541379×10-7 
D -6.2787366×10-13 -9.0007149×10-12 
E 0.0010076483 -0.002093633 
F -0.13825481 -0.092186966 
G 0.00015750301 -0.0038416544 

 
Table-10. Constants for Equation (15) 

 

Ran λvf 5×10-8 to 9×10-7 3×10-9 to 3×10-8 

λmf 1×10-4 1×10-5 

λmv 1×10-10 1×10-11 

ωf 1×10-4 1×10-5 

ωv 1×10-5 1×10-6 
A 9.1288254×10-5 4.6546782×10-6 
B -2.7841968×10-5 -1.2091635×10-6 
C 2.8397741×10-6 1.0455704×10-7 
D -9.6854292×10-8 -3.0237203×10-9 
E 9.0567788×10-7 7.0123633×10-7 
F -3.574932×10-6 -7.8123529×10-6 
G 5.1720753×10-6 3.8047196×10-5 
H -2.3694035×10-6 -6.7541516×10-5 

 
For another range: 
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( ) ( )( ) ( )( )
( ) ( )( ) ( )( )

2

2

ln ln ln * '

1 ln ln ln * '
Dus Dus D D us

vf

Dus Dus D D us

A B t C t D t P

E t F t G t P

+ × + × + ×
λ =

+ × + × + ×
  (16) 

 
With constants depending on λmf, λmv, ωf and ωv 

values given in Table-11. 
 

9) Another way of using the Equation (16) and 
taking into account the development for Equations (9) and 
(10); then, Equation (16) can be rewritten as: 
 

( ) ( )( )
( ) ( )( )

2

2

ln ln

ln ln
Dusi Dusi

vf

Dusi Dusi

A B t C t

D E t F t

+ × + ×
λ =

+ × + ×
                (17)

 
 

Table-11. Constants for Equation (16). 
 

Rank λvf 1×10-9 to 1×10-7 5×10-7 to 1×10-5 

λmf 1×10-2 1×10-1 

λmv 1×10-8 1×10-7 

ωf 1×10-2 1×10-1 

ωv 1×10-3 1×10-2 
A 9.473719×10-9 -2.3554034×10-6 
B -1.9452657×10-9 6.2511182×10-7 
C 1.0186085×10-10 -4.1006933×10-8 
D 6.5972841×10-11 6.9129679×10-9 
E -0.21933576 -0.29487292 
F 0.012033019 0.021752823 
G -0.0010661593 0.0011396252 

 
With its constants provided in Table-12. 
 

Table-12. Constant for Equation (17) 
 

Rank λvf  1×10-9 to 1×10-7 5×10-7 to 1×10-5 

λmf 1×10-2 1×10-1 

λmv 1×10-8 1×10-7 

ωf 1×10-2 1×10-1 

ωv 1×10-3 1×10-2 
A 9.42799011×10-9 -2.3601951×10-6 
B -1.9452657×10-9 6.2511182×10-7 
C 1.0186085×10-10 -4.1006933×10-8 
D 1.000739005 0.999210072 
E -0.21933576 -0.29487292 
F 0.012033019 0.021752823 

2.4. Dimensionless fracture storativity coefficient, ωf 
The same analysis and aspects that were 

considered in the study of interporosity flow parameters 
are used for the dimensionless storativity coefficients. 
Basically, the effect on the dimensionless pressure 
derivative due to variation of dimensionless storativity 
coefficients depends upon the size of the transition periods 
(size of the depression). 

In the same fashion as for λmv, the starting time of 
the second radial flow regime converges at the same point 
for different ωf values and the unit-slope line during the 
transition period varies in length but in terms of location is 
the same (no parallel displacement occurs along the time 
axis). The developed correlations for the calculation of the 
dimensionless fracture storativity coefficient are 
presented. 

10) Using the second minimum point, PDmin2/ 
(tD*PD’) min2 and tDmin2:  
 

( )( ) ( )

( )( ) ( )

min 2
min 2

min 2

min
min 2

min 2

ln
* '

1 ln
* '

D
D

D D
f

D
D

D D

PA B t C
t P

PD t E
t P

ω

⎛ ⎞⎛ ⎞
+ × + ×⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠=

⎛ ⎞⎛ ⎞
+ × + ×⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

  (18) 

 
For the range of 1×10-3 <ωf < 1×10-2 the constants 

are provided in Table-13 and for 1×10-2 <ωf < 1×10-1 the 
constants are given in Table-14. 
 

11)  Using the dimensionless vugs storativity 
coefficient and the second minimum point, tDmin2*(tD*PD’) 

min2: 
 

( )2 3

2 31 ( ) ( ) ( )
v

f
v v v

A B Z C Z D Z E
F Z G H I

ω
ω

ω ω ω
+ × + × + × + ×

=
+ × + × + × + ×

                (19) 

 
being Z the product tDmin2*(tD*PD’)min2 
 

Table-13. Constants for Equation (18). 
 

λvf  1×10-10 1×10-9 1×10-8 

λmv 1×10-13 1×10-12 1×10-11 

λmf 1×10-7 1×10-6 1×10-5 

ωv 1×10-7 1×10-6 1×10-5 
A -0.001704 -0.00972031 0.006821921 
B -0.00037989 0.000383259 -0.00026108 
C 2.83459×10-06 6.25012×10-06 -0.000027956 
D -0.06035366 -0.07376984 -0.09143191 
E -0.00275305 -0.00230932 4.51481×10-05 
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Table-14. Constants for Equation (18). 
 

λvf  1×10-6 1×10-7 1×10-8 1×10-9 1×10-10 

λmv 1×10-9 1×10-10 1×10-11 1×10-12 1×10-13 

λmf 1×10-3 1×10-4 1×10-5 1×10-6 1×10-7 

ωv 1×10-4 1×10-4 1×10-5 1×10-6 1×10-7 
A -0.1954122 1.08574413 0.563443198 0.025335109 0.031881466 
B -0.10102445 -0.0694529 -0.05643964 -0.00389316 -0.00352166 
C 0.2754074 -0.0173495 -0.0002592 1.21575×10-05 2.55978×10-06 
D 0.0363188 -0.1278309 -0.07562235 -0.0641791 -0.0559242 
E -0.7619847 0.05136569 -0.01871387 -0.00854222 -0.00647706 

 
For the range of 1×10-2 <ωf < 1×10-1 the constants for Equation (19) are shown in Table-15. 

 
Table-15. Constants for Equation (19). 

 
 

λvf  1×10-6 1×10-7 1×10-8 

λmv 1×10-9 1×10-10 1×10-11 

λmf 1×10-3 1×10-4 1×10-5 

ωv 1×10-4 a 1×10-5 1×10-4 a 1×10-5 1×10-4 a 1×10-5 
A 0.008088891 0.009042676 0.009173307 
B 0.001645593 0.000166906 1.67034×10-05 
C -5.2357×10-06 -5.7774×10-08 -5.8567×10-10 
D 2.62323×10-08 2.91282×10-11 2.97594×10-14 
E -1678.67637 -1639.2486 -1637.05428 
F 0.003283867 0.000319506 3.29846×10-05 
G -10161.9333 -12050.8585 -13037.4575 
H 34220600 92257700 106184000 
I 2.27831×1011 -1.4116×1011 -2.3217×1011 

 
Table-16. Constants for Equation (20). 

 

λvf  1×10-6 1×10-7 1×10-8 1×10-9 

λmv 1×10-9 1×10-10 1×10-11 1×10-12 

λmf 1×10-3 1×10-4 1×10-5 1×10-6 

ωf 1×10-3 1×10-4 1×10-5 1×10-6 
A -1.2604×10-06 -6.4072×10-07 -5.507×10-07 -6.0548×10-07 
B -2.8684×10-08 -3.092×10-09 -4.7228×10-10 -3.327×10-11 
C 2.53119×10-10 2.81413×10-12 2.62234×10-14 2.60903×10-16 
D 0.000281329 0.000283662 0.000342072 0.000295697 
E 0.004368705 0.000474133 4.24526×10-05 4.43181×10-06 
F -1.1735×10-06 -1.3626×10-08 -1.2531×10-10 -1.222×10-12 
G -10.5345235 -10.8263553 -9.74235409 -10.449659 
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13) Using the beginning the second radial flow, tDb2: 
 

2 2 2 2

1.5 2 2
2 ln( )

D b D b D b D bv DbA Bt Ct Dt Et tω = + + + +  (21) 

 
The above expression applies for 1×10-2 <ωf < 

1×10-1 and its constants are given in Table-17. 
 

2.5. Dimensionless Vugs Storativity Coefficient, ωv 
Unlike the observations for ωf, the starting time 

of the second radial flow regime does not converge at the 
same point for different ωv values, and unit-slope line of 
the transition period varies in length and in location. These 
considerations are used for the development of the 
correlations.

Table-17. Constant for Equation (22). 
 

λvf  1×10-5 1×10-6 1×10-7 1×10-8 1×10-9 

λmv 1×10-8 1×10-9 1×10-10 1×10-11 1×10-12 

λmf 1×10-2 1×10-3 1×10-4 1×10-5 1×10-6 

ωf 1×10-2 1×10-3 1×10-4 1×10-5 1×10-6 
A 0.007676832 6.14386×10-05 -0.00028323 -0.00047454 -0.00041341 
B -1.9204×10-06 1.79456×10-07 1.91542×10-08 2.1017×10-09 1.97731×10-10 
C 2.5944×10-08 -8.8781×10-12 -2.2493×10-13 -7.9535×10-14 -8.155×10-16 
D -1.8222×10-10 6.99042×10-14 3.34262×10-17 3.17546×10-17 9.03711×10-20 
E 1.15661×10-11 -4.2625×10-15 -6.4638×10-19 -1.4331×10-18 -3.6323×10-21 

 
12) Using the second minimum point, (tD*PD’) 

min2 and tDmin2: 
 

min 2

min 2

2
min2 min2

2
min2 min 2

( ) ( ) ( * ')
1 ( ) ( ) ( * ')

D

D

D t D D
v

D t D D

A B t C t D t P
B t F t G t P

ω
+ × + × + ×

=
+ × + × + ×

  (20) 

 
Which applied for 1×10-6 <ωf < 1×10-4 with the 

constants given in Table-16. 
 
3. EXAMPLES 

To observe the results obtained by the proposed 
correlations, only two examples are presented for space-
saving purposes. The first one is a synthetic case and 
second one corresponds to a pressure test of a naturally 
fractured reservoir offshore vuggy located in the southeast 
of Mexico presented by Camacho et al. (2005). 
 
3.1. Synthetic example 

Pressure and pressure derivative for this test is 
provided in Figure-8. Other relevant data are given in the 
second column of Table-18 and below: 
 
q = 210 STB s = 0  C = 0 bbl/psi 
h = 160 ft ct = 1.4x10-6 psi-1 
rw = 0.21 ft φ = 37%  µ = 1.2 cp 
k = 231 md  B = 1.3 bbl/STB 
 
Solution. The following information was read from 
Figure-8. 
 

tmin2 6.2×10-4 hr (t*∆P’)us 0.41 psi 
∆Pmin2 6.4 psi tusi 9.8×10-3 hr 

(t*∆P’)min2 0.05 psi tb2 0.048 hr 
tus 6.2×10-3 hr ∆tD 0.00918 hr 

 

Although, in the original work of Rojas and Rojas 
(2014)  the naturally-fractured parameters were estimated 
several times from different for space-saving purposes 
only one estimation will be provided. Using the second 
minimum point, PDmin2/ (tD*PD’) min2 and tDmin2, λmf is 
calculated with Equation (4) and λvf is calculated with 
Equation (13). For λmv was estimated with Equation (9) by 
using the point between of intersection between the unit-
slope line with the the second radial flow regime 
extrapolated line, tDusi. In order to calculate ωv a point 
during the unit-slope line is read and replaced into 
Equation (15). Finally, ωf is calculated with Equation (14) 
which uses the second lowest or minimum point on the 
pressure derivative curves. Needless to say that the 
readings from the plot are in oil-field units and they need 
to be translated to their dimensionless form. The results 
and its comparison with the actual parameters are given in 
Table-18. 
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Figure-8. Pressure and pressure derivative versus time 
for example-1. 
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Table-18. Results for the synthetic example 
 

Parameters Actual This study Equation 

λmf 1×10-4 9.8537×10-5 4 

λmv 1×10-10 1.18034×10-12 11 

λvf 1×10-7 1.03007×10-7 15 

ωf 1×10-4 1.839317×10-3 19 

ωv 1×10-5 9.85352×10-6 20 
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Figure-9. Points read from the pressure test for a field 
southeast of Mexico presented in the work of 

Camacho et al. (2005). 
 
3.2. Field example 

Camacho et al. (2005) presented a well test from 
an offshore naturally fractured vuggy reservoir located in 
southwestern Mexico. The test was digitized from 
Camacho et al. (2005) and reported in Figure-9.  This field 
is an anticline affected by a normal fault, parallel to the 
major axis of the structure. This fact facilitated the saline 
intrusion at the middle of the field, dividing it into two 
blocks. The well was completed in a Cretaceous formation 
with a thickness between 170 to 278 meters. Other 
information is given below: 
 
q = 75 STB s = 2  CD = 4500 
h = 912.07 ft ct = 1.4x10-6 psi-1 (assumed) 
rw = 0.21 ft φ = 40 % µ = 0.6 cp 
k = 524 md   
 
Solution. The following information was read from 
Figure-9. 
 

tmin2 2.8 hr (t*∆P’)us 6 psi 
∆Pmin2 55.4 psi tusi 12 hr 

(t*∆P’)min2 0.6 psi tb2 17 hr 
tus 28 hr ∆tD 9 hr 

 
Similar to the previous example, the data read 

from Figure-9 was converted into dimensionless form: 
PDmin2/ (tD*PD’) min2, tDmin2 and tDusi with which the results 
reported in Table-19 are obtained. 
 
 

Table-19. Results for field case. 
 

Parameters Equation This work Camacho 
et al. (2005) 

λmf 4 8.425×10-5 1×10-7 

λmv 12 1.1454×10-13 1×10-8 

λvf 14 4.27×10-6 1×10-5 

ωf 18 7.3738×10-3 1×10-3 

ωv 21 8.781×10-3 0.2 
 

Although, in some cases the results differ in an 
order of magnitude with the actual values, the authors 
believe that the results are acceptable. Even though, for the 
field case, it was necessary to assume the system 
compressibility since it was not provided.  
 
4. CONCLUSIONS AND RECOMMENDATIONS 

New mathematical expressions based on the 
derived dimensionless pressure and dimensionless 
pressures for naturally fractured reservoir characterization 
vugulares during pseudosteady flow transition are 
formulated. 

The effect of interporosity flow parameters and 
dimensionless storativity of vugs, matrix and fractures 
affect the transient-pressure; however, sometimes this is so 
small that cannot be correlated with the variation of the 
characteristic parameters.  

The application of the developed expressions is 
sensitive to the accuracy of reading the characteristic 
points so they should be performed with an accuracy of at 
least two or three significant figures to reduce the error. 
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Nomenclature 
 

B Volumetric factor,  rb/STB 
C Storage coefficient,  bbl/psi 
CA Total compressibility, 1/psi 
h Formation thickness, ft 
k Permeability, md 
q Flow rate , STB/D 
t Time, hr 
r Radius, ft 
S Skin 

t*∆P’ Pressure derivative, psi 

tD*PD’ Derivative of the dimensionless pressure 
psi/BPD 

P Pressure, psi 
PD Dimensionless pressure 
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Greeks 
∆ Change, drop 
φ Porosity, fraction 
µ Viscosity, cp 
λ Storage coefficient 
ω Interporosity flow parameter 

 
Suffices 

D Dimensionless 
min First minimum 
min2 Second minimum 

us Unitary slope 

usi Intercept between unitary slope and the second 
radial flow 

r2 Second radial 
b2 beginning second radial 
f Fractures 
v Vugs 

mf Matrix-fractures 
mv Matrix-vugs 
vf Vugs-fractures 

 
Appendix-A. Mathematical model proposed by Camacho-
Velazquez et al. (2005). 
 

The dimensionless partial differential equation 
for cylindrical geometry is given by, 
 

( ) ( )1 Df Df
D mf Dm Df vf Dv Df f

D D D D

P P
r P P P P

r r r t
λ λ ω

∂ ∂⎛ ⎞∂
+ − + − =⎜ ⎟∂ ∂ ∂⎝ ⎠     

(A.1) 

 
Fort the matrix blocks and vugs the governing 

equations, respectively, are: 
 

( ) ( ) ( )1 Dm
mv Dm Dv mf Dm Df f v

D

PP P P P
t

λ λ ω ω ∂
− − − − = − −

∂
 (2.2) 

 

( ) ( ) Dv
mv Dm Dv vf Dv Df v

D

PP P P P
t

λ λ ω ∂
− − − =

∂
               (A.3) 

 
Where the dimensionless quantities are given by: 

( )2 f i j
Dj

k h P P
P

q B
π

µ

−
=                                            (A.4) 

 
Being j = fractures o vugs, and, 
 

( ) 2

f
D

f f m m v v w

k t
t

c c c rφ φ φ µ
=

⎡ ⎤+ +⎣ ⎦

                             (A.5) 

 
The interporosity flow parameters are defined 

below: 
 

2
mf m w

mf
f

k r
k

σ
λ =                                                            (A.6) 

2
mv m w

mv
f

k r
k

σλ =                                                            (A.7) 

 
2

vf vf w
vf

f v

k r
k k

σ
λ =

+
                                                          (A.8) 

 
Where kvf = kv if Pv >Pf and kvf = kf if the contrary 

case. σ is the shape factor between the media “i” and “j”. 
The dimensionless storativity coefficients are given as: 
 

f f
f

f f m m v v

c
c c c

φ
ω

φ φ φ
=

+ +  
                                          (A.9) 

 
v v

v
f f m m v v

c
c c c

φω
φ φ φ

=
+ +

                                          (A.10) 

 
For the constant wellbore pressure condition, the 

dimensionless flow rate is defined by: 
 

( )( )2wD
f v i wf

q Bq
h k k P P

µ
π

=
+ −

                            (A.11) 

 
Camacho-Velazquez et al. (2005) found the 

Laplace pressure solutions as; 
 

( ) ( )2
1 2 3 4 5/DV DVP P b b u b b u b u⎡ ⎤= + + +⎣ ⎦               (A.12) 

where, 
 

1 ( )vf mv mf mf mvb λ λ λ λ λ= + +                            (A.13) 
 

2 (1 )vf f vb λ ω ω= − −                                          (A.14) 
 

3 ( )mv vf mf mf vfb λ λ λ λ λ= + +                                          (A.15) 
 

4 ( ) (1 )( )v mv mf f v mv vfb ω λ λ ω ω λ λ= + + − − +               (A.16) 
 

5 (1 )f v vb ω ω ω= − −  
                                        (A.17) 

 
2

1 2 3
2 3

1 2 3 4
Dm Df

c uc u cP P
d ud u d u d

⎛ ⎞+ +
= ⎜ ⎟+ + +⎝ ⎠

                            (A.18) 

 
where, 
 

1 1 3mv mfc b bλ λ= +                                           (A.19) 
 

2 2 4mv mfc b bλ λ= +                                                          (A.20) 

3 5mfc bλ=                                                          (A.21) 
 

1 3( )mv mfd bλ λ= +                                           (A.22) 
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2 4 3( ) (1 )mv mf f vd b bλ λ ω ω= + + − −               (A.23) 
 

3 5 4( ) (1 )mv mf f vd b bλ λ ω ω= + + − −               (A.24) 
 
and,  
 

4 5(1 )f vd bω ω= − −                                          
(A.25) 

 
Since the internal condition is set as constant 

flow rate and considering skin and wellbore storage 
effects, the final solution for an infinite reservoir as 
presented by Camacho-Velazquez et al. (2005) is:  
 

{ }( )
0 1

1 0 1

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
wD

D

K g u s g u K g u
P

u g u K g u C u K g u s g u K g u

⎡ ⎤ ⎡ ⎤+⎣ ⎦ ⎣ ⎦=
⎡ ⎤ ⎡ ⎤ ⎡ ⎤+ +⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 (A.26) 

where, 
 

1 3 2 4

2
5 3 4

2
3 5 4

3 1 2
5 2

3 4 5

( ) (1 [ ( )

/{ ( ) [( )

(1 ) ] [( ) (1 ) ]

(1 ) }]) 1

mf mv mf mv mf

mf mv mf mv mf

f v mv mf f v

f v mf f

g u b b u b b

u b b u b

b u b b

b b uu b u
b b u b u

λ λ λ λ λ

λ λ λ λ λ

ω ω λ λ ω ω

ω ω λ ω

= − + + +

+ + + +

− − + + + − − +

⎛ ⎞+
− − + − +⎜ ⎟+ +⎝ ⎠  

(A.27) 
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