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ABSTRACT 

N-tuple algebra is a mathematical system to formalize n-ary relations. This algebra provides for modelling both 
data (graphs, n-ary relations) and knowledge (semantic networks, reasoning models, formulas of propositional and 
predicate calculi, production systems, ontologies, etc.) by the same structures. These structures look like matrices and can 
be easily processed by parallel algorithms. 
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1. INTRODUCTION 

To provide parallel computations in many 
problems and algorithms, it is necessary to preliminarily 
compose a software connection graph and then choose its 
independent branches suitable for parallel processing. In 
particular, modern intelligence systems mostly obtain 
parallelism by composing a connection graph (for 
instance, a Kowalsky connection graph for pairs of 
resolving disjuncts [1]) and choosing its connections 
allowing for parallel processing [2]. This technique is very 
complicated to use and low efficient due to the necessity 
of considering many conditions and restrictions. 

Efficient paralleling of algorithms is achievable 
in cases when initial data are represented in a matrix form. 
Conversely, most knowledge processing and analyzing 
systems use structures not similar to matrices. This is why 
it looks reasonable to propose such a generalized structure 
form for data and knowledge representation that would 
allow for a comparatively easy transformation of a 
computational process into a large number of independent 
operations. In our opinion, N-tuple algebra (NTA) [3 - 5] 
can solve this kind of problems by expressing many 
formats of data and knowledge as NTA structures. 
 
2. NTA BRIEF 

NTA is mathematically designed as an algebraic 
system that needs a support, totalities of operations and 
relations as well as their properties to be defined. 
Sometimes, these properties can be uniquely fixed by 
proving an isomorphism between a given algebraic system 
and a known one. Particularly, we have proved that NTA 
is isomorphic to algebra of sets and belongs to the class of 
Boolean algebras [4].  

“NTA support” is an arbitrary set of n-ary 
relations expressed by specific structures called NTA 
objects. We will introduce them some later. Every NTA 
object is immersed into a certain space of attributes. 
Domain is a set of values of an attribute. Names of NTA 
objects contain an identifier followed by a sequence of 
attributes names in square brackets; these attributes 
determine the relation diagram in which the NTA object is 

defined. For example, R[XYZ] denotes an NTA object 
given within the space of attributes X, Y and Z. 

NTA basic operations include the algebra of sets 
operations, namely intersection, union, and complement as 
well as attributes operations (renaming and transposition 
of attributes, elimination and addition of a dummy 
attribute). Combinations of the listed operations allows 
defining auxiliary operations upon relations, they are join, 
composition, transitive closure, etc. To compare NTA 
objects, we use two basic relations, namely inclusion and 
equality. By its analytical capabilities, we can compare 
NTA with predicate calculus, and NTA objects model 
truth areas of predicates and logic formulas. 

NTA objects provide a condensed representation 
of n-ary relations. When necessary, by means of specific 
algorithms these objects can be transformed into ordinary 
n-ary relations containing sets of n-tuples called 
elementary n-tuples in NTA. Structures defined on the 
same relation diagram are called homotypic ones. In NTA, 
it is possible to implement operations of algebra of sets on 
NTA objects with different relation diagrams as well. 

NTA objects, namely C-n-tuples, C-systems,       
D-n-tuples, and D-systems are formed as matrices of 
subsets of attributes domains called components. The 
components include two types of dummy components. One 
of them is called the complete component; it is used in        
C-n-tuples and denoted by "*". A dummy component "∗" 
added in the i-th place in a C-n-tuple or in a C-system 
equals to the set corresponding to the whole domain of the 
i-th attribute in the relation diagram. Another dummy 
component (∅) called an empty set is used in D-n-tuples. 

Let us now proceed with description of NTA 
major structures; they are C-systems and D-systems. 

We record a C-system as a matrix of component 
sets framed with square brackets.  

For example, R[XYZ] = ⎥
⎦

⎤
⎢
⎣

⎡

321

321

BBB
AAA

 is a         

C-system that can be transformed into an ordinary relation 
(i.e. a set of elementary n-tuples) calculated by formula 
R[XYZ] = (A1 × A2 × A3) ∪ (B1 × B2 × B3) where 
A1, B1 ⊆ X; A2, B2 ⊆ Y; A3, B3 ⊆ Z. 
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C-systems are convenient for representing 
disjunctive normal forms of unary predicates. A one-line 
C-system is called a C-n-tuple; it is similar to a row vector 
in matrix algebra. In logic, a C-n-tuple corresponds to a 
separate conjunct. 

D-systems model conjunctive normal forms of 
unary predicates. We denote a D-system as a matrix of 
component sets framed with reversed square brackets.          
D-systems provide easy calculating of C-systems’ 
complements. For instance, the D-system 

T [XYZ] =
⎢
⎢
⎣

⎡

⎥
⎥
⎦

⎤

∅
∅
ED

CA is the complement of the C-system 

T [XYZ] = ⎥
⎦

⎤
⎢
⎣

⎡
∗

∗
ED

CA
. Alike a C-system, a one-line           

D-system is called a D-n-tuple. In logic, a D-n-tuple 
models a separate disjunct. 

Calculations of unions and intersections for           
C- and D-structures are specific; you can find their 
detailed description in [3, 4]. 

Please note that NTA provides implementing all 
operations of algebra of sets and all checks of relations 
among NTA objects (e.g., equality and inclusion) in 
matrix form, without having to represent these objects as 
sets of elementary n-tuples. 

To process NTA objects defined on different 
diagrams, we have developed some attributes operations, 
addition of a dummy attribute (+Attr) and elimination of 
an attribute (-Attr) in particular. The operation +Attr 
correspond to the rule of generalization in predicate 
calculus, so it does not change the semantics of any 
relations. This operation upon any NTA object 
simultaneously adds the name of a new attribute into the 
relation diagram and adds a new column with dummy 
components into the respective place of a matrix 

representation. Given the relation Rk[XZ] = ⎥
⎦

⎤
⎢
⎣

⎡

31

31

BB
AA

 

models the predicate Rk(x, z), adding a dummy attribute Y 
into Rk [XZ] results in the formula ∀y (Rk(x, z)). This 

operation is done as +Y (Rk [XZ]) = ⎥
⎦

⎤
⎢
⎣

⎡
∗
∗

31

31

BB
AA

. 

The operation +Attr is often used to reduce some 
different-type NTA objects to the same relation diagram. 
Then we can perform all necessary operations and checks 
by means of standard NTA algorithms. Considering this, 
we have introduced generalized operations (∩G, ∪G). 
They are possible after reducing NTA objects to the same 
relation diagram and semantically correspond to logical 
connectives: conjunction and disjunction. Our algebra of 
relations with these generalized operations is proved to be 
isomorphic to the ordinary algebra of sets. This way we 
have eliminated the restriction in the theory of relations 
stating that algebra-of-sets laws are only applicable to the 
relations defined upon the same Cartesian product. 

For corresponding logic formulas, elimination of 
an attribute (let it be X for example) from C-structures 
results in quantification ∃x, and from C-structures - in 

quantification ∀x. In NTA, this operation leads to deleting 
an attribute from the relation diagram and the respective 
column from the matrix representation of an NTA object. 
For instance, calculating -Y(R [XYZ]) for the D-system 

R[XYZ] = ⎢
⎣

⎡
⎥
⎦

⎤
∅

∅
DC

BA
gives us Q [XZ] = ⎢

⎣

⎡
⎥
⎦

⎤
∅C
BA

. 

An extended NTA version stipulates using some 
totalities of attributes as separate compound ones. In this 
case, NTA objects’ components include n-ary relations 
rather than ordinary sets. Another NTA extension deals 
with NTA objects whose attribute domains are different 
from ordinary sets (e.g. fuzzy sets). If attributes are 
defined as a system of intervals over a number axis, NTA 
proposes the interval quantization method [5]. After 
applying this method, such attributes can be processed 
with all NTA techniques. 

A considerable part of NTA algorithms (union, 
intersection, complement, check of inclusion, etc.) have 
polynomial complexity. Transformation of C-systems into 
D-systems and the opposite operation are exponentially 
complex. Many information processing procedures do not 
use such transformations. If they are necessary still, their 
complexity can be reduced to the polynomial one for some 
special structures of NTA objects [6]. 
 Meanwhile, we have investigated and grounded 
NTA applicability for the following data and knowledge 
structures [4, 5]: 
 
a) graphs and networks; 
b) models of propositional calculus and predicate 

calculus; 
c) artificial intelligence systems, namely semantic 

networks, expert systems, frames, ontologies; 
d) models for deductive and abductive reasoning; 
e) logic-probabilistic methods including probabilistic 

logic; 
f) discrete automata. 
 
 We continue researches in using NTA for other 
structures, e.g. systems with uncertainties and dynamic 
systems.  
 
3. PARALLELIZATION IN NTA STRUCTURES 

NTA operations are based on theory-of-sets 
operations with components that is subsets of the attributes 
domains. For instance, if we want to find intersection of 
two homotypic C-n-tuples, we need to intersect pairs of 
components in corresponding attributes. This calculation 
results in an empty set, if any of the pairs intersections are 
empty. Intersection of a C-n-tuple R with a homotypic      
C-system Q is the result of R intersection with every        
C-n-tuple from Q. For two homotypic C-n-tuples R and R1, 
inclusion R ⊆ R1 is right, if every component of R is 
included into the respective component of R1. Some NTA 
operations do not require for operations with components. 
As an example, union of two homotypic C-systems can be 
easy obtained by ascription all C-n-tuples of the first        
C-system to the second C-system. 
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The above-listed cases describe features of NTA 
operations completely enough. Now we can proceed with 
grounding of architecture of a computing system most 
suitable for parallelization of these operations. We 
exemplify our ideas with the intersection operation for two 
homotypic C-systems that is done very often. Let such 
systems be given as 

 
 

Alike in C-n-tuples, we calculate their 
intersection as intersection of every C-n-tuple from the 
first C-system with every C-n-tuple from the second        
C-system: 
 

 
 
Then we form a C-system of non-empty C-n-tuples: 
 

R1 ∩ R2 = ⎥
⎦

⎤
⎢
⎣

⎡
},{},{}{

}{},{},{
cahfb

bhfda
. 

 
This typical example can assist in formulating 

main laws to parallelize NTA operations. First, it is 

possible to overlap operations with components during 
intersecting pairs of them. Second, we can parallel 
intersections of a C-n-tuple from the first C-system with 
all C-n-tuples from the second C-system. And third, there 
exists a certain computing structure providing parallel 
calculations with all components necessary to obtain the 
final result. 

The saving of time gained due to parallel 
computations in NTA can be fair. Suppose, we want to 
calculate intersection of two C-systems with K attributes 
according to the third of the proposed parallelization 
variants. If the first C-system has M lines and the second 
one has N lines, acceleration in time will be K⋅M⋅N. 

To process components of NTA objects, it is 
enough to have processing cells capable to deal with 
Boolean vectors. Working with every attribute takes a set 
of uniform processing cells with common memory that 
stores source and calculated components of the given 
attribute. Such a structure corresponds to the symmetric 
multiprocessing (SMP) architecture [7]. 

To accomplish calculations with sets of attributes, 
it is reasonable to use SMP modules as cells of computing 
systems with distributed memory. i.e. for massive parallel 
processing (MPP) [8]. Since attributes can differ in size 
significantly, the total computing structure shall include 
different SMP-clusters diverging in capacity of processing 
cells and the respective memory modules. Thus, the 
general task of parallelization for NTA operations can be 
solved by a hybrid architecture combining features of 
systems with MPP and SMP architecture (see Figure-1).  

 

 
 

Figure-1. Chart of a hybrid MPP-SMP architecture. 
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4. CONCLUSIONS 
NTA supports representation and processing of 

various types of data and knowledge formats. In this 
paper, we propose a computing system with hybrid 
architecture providing for effective parallelization of 
operations with NTA structures. 
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