
 VOL. 9, NO. 8, AUGUST 2014 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2014 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

1354

DATA AND KNOWLEDGE PARALLEL PROCESSING BY MEANS
OF N-TUPLE ALGEBRA

B. A. Kulik1 and A. Ya. Fridman2

1Institute of Problems in Mechanical Engineering, Russian Academy of Sciences (RAS), 61 Bol’shoi pr., Petersburg, Russia
2Institute for Informatics and Mathematical Modelling, Kola Science Centre of RAS, Apatity, Russia

E-Mail: ba-kulik@yandex.ru

ABSTRACT

N-tuple algebra is a mathematical system to formalize n-ary relations. This algebra provides for modelling both
data (graphs, n-ary relations) and knowledge (semantic networks, reasoning models, formulas of propositional and
predicate calculi, production systems, ontologies, etc.) by the same structures. These structures look like matrices and can
be easily processed by parallel algorithms.

Keywords: parallel computation, N-tuple algebra, data structure, knowledge base.

1. INTRODUCTION

To provide parallel computations in many
problems and algorithms, it is necessary to preliminarily
compose a software connection graph and then choose its
independent branches suitable for parallel processing. In
particular, modern intelligence systems mostly obtain
parallelism by composing a connection graph (for
instance, a Kowalsky connection graph for pairs of
resolving disjuncts [1]) and choosing its connections
allowing for parallel processing [2]. This technique is very
complicated to use and low efficient due to the necessity
of considering many conditions and restrictions.

Efficient paralleling of algorithms is achievable
in cases when initial data are represented in a matrix form.
Conversely, most knowledge processing and analyzing
systems use structures not similar to matrices. This is why
it looks reasonable to propose such a generalized structure
form for data and knowledge representation that would
allow for a comparatively easy transformation of a
computational process into a large number of independent
operations. In our opinion, N-tuple algebra (NTA) [3 - 5]
can solve this kind of problems by expressing many
formats of data and knowledge as NTA structures.

2. NTA BRIEF

NTA is mathematically designed as an algebraic
system that needs a support, totalities of operations and
relations as well as their properties to be defined.
Sometimes, these properties can be uniquely fixed by
proving an isomorphism between a given algebraic system
and a known one. Particularly, we have proved that NTA
is isomorphic to algebra of sets and belongs to the class of
Boolean algebras [4].

“NTA support” is an arbitrary set of n-ary
relations expressed by specific structures called NTA
objects. We will introduce them some later. Every NTA
object is immersed into a certain space of attributes.
Domain is a set of values of an attribute. Names of NTA
objects contain an identifier followed by a sequence of
attributes names in square brackets; these attributes
determine the relation diagram in which the NTA object is

defined. For example, R[XYZ] denotes an NTA object
given within the space of attributes X, Y and Z.

NTA basic operations include the algebra of sets
operations, namely intersection, union, and complement as
well as attributes operations (renaming and transposition
of attributes, elimination and addition of a dummy
attribute). Combinations of the listed operations allows
defining auxiliary operations upon relations, they are join,
composition, transitive closure, etc. To compare NTA
objects, we use two basic relations, namely inclusion and
equality. By its analytical capabilities, we can compare
NTA with predicate calculus, and NTA objects model
truth areas of predicates and logic formulas.

NTA objects provide a condensed representation
of n-ary relations. When necessary, by means of specific
algorithms these objects can be transformed into ordinary
n-ary relations containing sets of n-tuples called
elementary n-tuples in NTA. Structures defined on the
same relation diagram are called homotypic ones. In NTA,
it is possible to implement operations of algebra of sets on
NTA objects with different relation diagrams as well.

NTA objects, namely C-n-tuples, C-systems,
D-n-tuples, and D-systems are formed as matrices of
subsets of attributes domains called components. The
components include two types of dummy components. One
of them is called the complete component; it is used in
C-n-tuples and denoted by "*". A dummy component "∗"
added in the i-th place in a C-n-tuple or in a C-system
equals to the set corresponding to the whole domain of the
i-th attribute in the relation diagram. Another dummy
component (∅) called an empty set is used in D-n-tuples.

Let us now proceed with description of NTA
major structures; they are C-systems and D-systems.

We record a C-system as a matrix of component
sets framed with square brackets.

For example, R[XYZ] = ⎥
⎦

⎤
⎢
⎣

⎡

321

321

BBB
AAA

 is a

C-system that can be transformed into an ordinary relation
(i.e. a set of elementary n-tuples) calculated by formula
R[XYZ] = (A1 × A2 × A3) ∪ (B1 × B2 × B3) where
A1, B1 ⊆ X; A2, B2 ⊆ Y; A3, B3 ⊆ Z.

 VOL. 9, NO. 8, AUGUST 2014 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2014 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

1355

C-systems are convenient for representing
disjunctive normal forms of unary predicates. A one-line
C-system is called a C-n-tuple; it is similar to a row vector
in matrix algebra. In logic, a C-n-tuple corresponds to a
separate conjunct.

D-systems model conjunctive normal forms of
unary predicates. We denote a D-system as a matrix of
component sets framed with reversed square brackets.
D-systems provide easy calculating of C-systems’
complements. For instance, the D-system

T [XYZ] =
⎢
⎢
⎣

⎡

⎥
⎥
⎦

⎤

∅
∅
ED

CA is the complement of the C-system

T [XYZ] = ⎥
⎦

⎤
⎢
⎣

⎡
∗

∗
ED

CA
. Alike a C-system, a one-line

D-system is called a D-n-tuple. In logic, a D-n-tuple
models a separate disjunct.

Calculations of unions and intersections for
C- and D-structures are specific; you can find their
detailed description in [3, 4].

Please note that NTA provides implementing all
operations of algebra of sets and all checks of relations
among NTA objects (e.g., equality and inclusion) in
matrix form, without having to represent these objects as
sets of elementary n-tuples.

To process NTA objects defined on different
diagrams, we have developed some attributes operations,
addition of a dummy attribute (+Attr) and elimination of
an attribute (-Attr) in particular. The operation +Attr
correspond to the rule of generalization in predicate
calculus, so it does not change the semantics of any
relations. This operation upon any NTA object
simultaneously adds the name of a new attribute into the
relation diagram and adds a new column with dummy
components into the respective place of a matrix

representation. Given the relation Rk[XZ] = ⎥
⎦

⎤
⎢
⎣

⎡

31

31

BB
AA

models the predicate Rk(x, z), adding a dummy attribute Y
into Rk [XZ] results in the formula ∀y (Rk(x, z)). This

operation is done as +Y (Rk [XZ]) = ⎥
⎦

⎤
⎢
⎣

⎡
∗
∗

31

31

BB
AA

.

The operation +Attr is often used to reduce some
different-type NTA objects to the same relation diagram.
Then we can perform all necessary operations and checks
by means of standard NTA algorithms. Considering this,
we have introduced generalized operations (∩G, ∪G).
They are possible after reducing NTA objects to the same
relation diagram and semantically correspond to logical
connectives: conjunction and disjunction. Our algebra of
relations with these generalized operations is proved to be
isomorphic to the ordinary algebra of sets. This way we
have eliminated the restriction in the theory of relations
stating that algebra-of-sets laws are only applicable to the
relations defined upon the same Cartesian product.

For corresponding logic formulas, elimination of
an attribute (let it be X for example) from C-structures
results in quantification ∃x, and from C-structures - in

quantification ∀x. In NTA, this operation leads to deleting
an attribute from the relation diagram and the respective
column from the matrix representation of an NTA object.
For instance, calculating -Y(R [XYZ]) for the D-system

R[XYZ] = ⎢
⎣

⎡
⎥
⎦

⎤
∅

∅
DC

BA
gives us Q [XZ] = ⎢

⎣

⎡
⎥
⎦

⎤
∅C
BA

.

An extended NTA version stipulates using some
totalities of attributes as separate compound ones. In this
case, NTA objects’ components include n-ary relations
rather than ordinary sets. Another NTA extension deals
with NTA objects whose attribute domains are different
from ordinary sets (e.g. fuzzy sets). If attributes are
defined as a system of intervals over a number axis, NTA
proposes the interval quantization method [5]. After
applying this method, such attributes can be processed
with all NTA techniques.

A considerable part of NTA algorithms (union,
intersection, complement, check of inclusion, etc.) have
polynomial complexity. Transformation of C-systems into
D-systems and the opposite operation are exponentially
complex. Many information processing procedures do not
use such transformations. If they are necessary still, their
complexity can be reduced to the polynomial one for some
special structures of NTA objects [6].
 Meanwhile, we have investigated and grounded
NTA applicability for the following data and knowledge
structures [4, 5]:

a) graphs and networks;
b) models of propositional calculus and predicate

calculus;
c) artificial intelligence systems, namely semantic

networks, expert systems, frames, ontologies;
d) models for deductive and abductive reasoning;
e) logic-probabilistic methods including probabilistic

logic;
f) discrete automata.

 We continue researches in using NTA for other
structures, e.g. systems with uncertainties and dynamic
systems.

3. PARALLELIZATION IN NTA STRUCTURES

NTA operations are based on theory-of-sets
operations with components that is subsets of the attributes
domains. For instance, if we want to find intersection of
two homotypic C-n-tuples, we need to intersect pairs of
components in corresponding attributes. This calculation
results in an empty set, if any of the pairs intersections are
empty. Intersection of a C-n-tuple R with a homotypic
C-system Q is the result of R intersection with every
C-n-tuple from Q. For two homotypic C-n-tuples R and R1,
inclusion R ⊆ R1 is right, if every component of R is
included into the respective component of R1. Some NTA
operations do not require for operations with components.
As an example, union of two homotypic C-systems can be
easy obtained by ascription all C-n-tuples of the first
C-system to the second C-system.

 VOL. 9, NO. 8, AUGUST 2014 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2014 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

1356

The above-listed cases describe features of NTA
operations completely enough. Now we can proceed with
grounding of architecture of a computing system most
suitable for parallelization of these operations. We
exemplify our ideas with the intersection operation for two
homotypic C-systems that is done very often. Let such
systems be given as

Alike in C-n-tuples, we calculate their
intersection as intersection of every C-n-tuple from the
first C-system with every C-n-tuple from the second
C-system:

Then we form a C-system of non-empty C-n-tuples:

R1 ∩ R2 = ⎥
⎦

⎤
⎢
⎣

⎡
},{},{}{

}{},{},{
cahfb

bhfda
.

This typical example can assist in formulating

main laws to parallelize NTA operations. First, it is

possible to overlap operations with components during
intersecting pairs of them. Second, we can parallel
intersections of a C-n-tuple from the first C-system with
all C-n-tuples from the second C-system. And third, there
exists a certain computing structure providing parallel
calculations with all components necessary to obtain the
final result.

The saving of time gained due to parallel
computations in NTA can be fair. Suppose, we want to
calculate intersection of two C-systems with K attributes
according to the third of the proposed parallelization
variants. If the first C-system has M lines and the second
one has N lines, acceleration in time will be K⋅M⋅N.

To process components of NTA objects, it is
enough to have processing cells capable to deal with
Boolean vectors. Working with every attribute takes a set
of uniform processing cells with common memory that
stores source and calculated components of the given
attribute. Such a structure corresponds to the symmetric
multiprocessing (SMP) architecture [7].

To accomplish calculations with sets of attributes,
it is reasonable to use SMP modules as cells of computing
systems with distributed memory. i.e. for massive parallel
processing (MPP) [8]. Since attributes can differ in size
significantly, the total computing structure shall include
different SMP-clusters diverging in capacity of processing
cells and the respective memory modules. Thus, the
general task of parallelization for NTA operations can be
solved by a hybrid architecture combining features of
systems with MPP and SMP architecture (see Figure-1).

Figure-1. Chart of a hybrid MPP-SMP architecture.

 VOL. 9, NO. 8, AUGUST 2014 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2014 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

1357

4. CONCLUSIONS
NTA supports representation and processing of

various types of data and knowledge formats. In this
paper, we propose a computing system with hybrid
architecture providing for effective parallelization of
operations with NTA structures.

ACKNOWLEDGEMENT

The authors would like to thank the Russian
Foundation for Basic Researches (grants 12-07-00302,
12-07-00550, 12-07-00689, 13-07-00318, 14-07-00256,
14-07-00257, 14-07-00205) and the Chair of the Russian
Academy of Sciences (project 4.3 of the Programme # 16)
for their aid in partial funding of this research.

REFERENCES

[1] R. Kowalski. 1975. A Proof Procedure Using

Connection Graphs. J. of the ACM. 22D: 572-599.

[2] R. Loganantharaj and R.A. Mueller. 1986. Parallel
Theorem Proving with Connection Graph. 8th Int.
Conf. on Autom. Deduc. LNCS 230: 337-352.

[3] B.A. Kulik. N-Tuple Algebra-Based Probabilistic
Logic. 2007. J. Computer and Systems Sciences
International. 46(1): 111-120.

[4] B. Kulik, A. Fridman and A. Zuenko. 2013. Logical
Inference and Defeasible Reasoning in N-tuple
Algebra. In: Diagnostic Test Approaches to Machine
Learning and Commonsense Reasoning Systems, IGI
Global.

[5] B. Kulik, A. Fridman and A. Zuenko. 2012. Algebraic
Approach to Logical Inference Implementation. J.
Computing and Informatics (CAI), Slovakia. 31(6):
1295-1328.

[6] B.A. Kulik. 1995. New Classes of Conjunctive
Normal Forms with a Polynomially Recognizable
Property of Satisfiability. J. Automation and Remote
Control. 56(2): 245-255.

[7] Ch. Severance and K. Dowd. 1998. High Performance
Computing (RISK Architectures, Optimization and
Benchmarks), 2nd Edition, O’Reily Media.

[8] K.E. Batcher. 1980. Design of a Massively Parallel
Processor. IEEE Trans. on Computers. 29(9): 836-
840.

