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ABSTRACT  

This paper presents study about the parameter estimation in hidden markov model. The approach is taken from a 
Bayesian method, there will be two sources of information,there are information from the likelihood function and the prior 
function. This approach will be applied to daily rainfall data in Darajat, Garut. The numbers of hidden states are used in 
this paper based on Schmidth and Fergusson’s climate classification which are suitable to the local conditions. This 
classification was obtained three types of division in the period of one year where the condition called wet months when 
monthly rainfall > 100 mm per month, moist months when monthly rainfall between 100 - 60 mm and the dry months 
when monthly rainfall <60 mm per month. The process estimation of hidden markov parameters is using Gibbs Sampler 
algorithm. 
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INTRODUCTION 

Modeling of the precipitation has been developed 
by many researchers; one of them is Coe and Stern (1982) 
who tried to modeling the daily rainfall data in Zinder 
region, Nigeria and the Kharja, Jordan. The method used 
at their research was Generalized Linear Models (GLM) 
and markov chain. In the 1970's the mathematician Baum 
and Petrie introduced markov chain development, namely 
Hidden Markov Model (HMM). HMM was increasingly 
popular applied in various fields? Rabiner (1989) applied 
the methods of HMM in speech recognition. Zucchini and 
Guttorp (1991) applied HMM in the precipitation 
phenomena. In their research, Zucchini and Guttorp 
introduced unobserved climate states that influence the 
occurrence of rain. Thyer and Kuezera (2000) developed a 
method of HMM to simulate the long-term hydroclimatic 
data for water resource planning in Australia. 

In previous studies, the number of hidden states 
was observed only two kinds, while in Indonesia itself 
more widely used climate classification based on 
Schmidth and Fergusson. In Sudrajat’s research (2009) 
mentioned that according Schmidth and Fergusson (1951), 
classification of climate is based on a comparison between 
the dry and wet months, from this relationship was 
obtained three types of division in the period of one year 
where the condition called wet months when monthly 
rainfall > 100 mm per month, moist months when monthly 
rainfall between 100 - 60 mm and the dry months when 
monthly rainfall <60 mm per month.  

Garut’s topographic itself is the mountains area 
where there are protected forests and plantations.  The 
climate clasification which are suitable for this area is 
climate classification based on Schmidth and Fergusson 
(Sudrajat, 2009). 

The process of parameter estimation in hidden 
markov models in several previous studies were based on 
a frequentist approach using Baum-Welch algorithm or 
EM Algorithm. At this approach, the parameters only 

considered as a fixed value. However, there are other 
approaches that assume these parameters will form a 
random variable. It can be happened, because the 
parameters of hidden markov models, particular in the 
case of hydrology (rainfall), the influence of time would 
make the values of these parameters to form a random 
variable having a probability distribution. So the Bayesian 
approach can be used in the process of parameter 
estimation in hidden markov model. So in this paper want 
to study about parameter estimation in hidden markov 
models with three different types of hidden climate states 
in Garut through a Bayesian approach. 
 
HIDDEN MARKOV MODEL (HMM) WITH THREE 
HIDDEN CLIMATE STATES  
 
Basic Model of HMM  

HMM are models in which the distribution that 
generates an observations depends on the state of an 
underlying and unobserved markov process (Zucchini and 
MacDonald, 2009).  

The basic model of HMM was illustrated by 
Ingmar Visser (2011) as shown below: 
 

 
 

Figure-1. Hidden Markov Model Illustrated. 
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Zucchini and MacDonald (2009) are formulating 
the basic model above becomes:  
 

( )( ) ( )1
1Pr Pr ,             2,3,...t

t t tS S S S t−
−= =                  (1) 

( ) ( )( ) ( )1Pr , Pr ,           2,3,...t t
t t tY Y S Y S t− = =

                
(2) 

with ( ) ( )1 1Y , ,...,t
TY Y Y=  and ( ) ( )1 2, ,...,t

TS S S S= .
  

 
The Equilibrium Probability from HMM with 
Three Hidden Climate States 

Climate states will be following a markov chain 
with an illustration of this process can be seen in Figure-2. 
 

 
 

Figure-2. Hidden Markov Model Framework. 
 

Because of climate states are following the 
markov chain, so the climate states at the time t only 
depend on the climate state at the time t-1 or 
mathematically can be written as: 
 

( )( ) ( )1
1Pr Pr ,                2,3,...t

t t tS S S S t−
−= =                     (3) 

 
with ( ) ( )1 2, ,...,t

TS S S S=
 

 
In Zucchini and Guttorp (1991), transition 

probabilities from the climate states are: 
 

{ }1              ,  =Dry,Moist,Wetij t tP P S j S i i j−= = =     (4) 
 
so that, the transition probability matrix of the climate 
process, we have : 
 

DD DM DW

MD MM MW

WD WM WW

P P P
P P P
P P P

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

P                    (5) 

 

And the equilibrium probability from each of 
climate states are: 
 

[ ]D M Wδ δ δ=δ                                                (6) 
 
with  1D M Wδ δ δ+ + =  
 

The relationship between the transition 
probability matrix with the equilibrium probability from 
each of climate states are: 
 

=δ P δ                                     (7) 
 
Parameters in HMM with Three Hidden Climate 
States 

According to Tyer dan Kuezera (2000) explained 
that there is a unknown parameters (θ) in the HMM. 
Parameters (θ) will be consist of: the parameters of each 
climate states distribution (µ dan σ), the transition 
probability of the climate states, and climate states 
sequence { }1 2, ,...,N nS s s s= .  
So that, its parameters will be consist of: 
 

( )1 2 3, , , ,= 2θ µ σ q q q                                                 (8) 

where: ( ), ,D M Wµ µ µ=µ , ( )2 2 2, ,D M Wσ σ σ=2σ , iq  is the i-
th row of P. 
 
Parameter Estimation in HMM with Three Hidden 
Climate States 

Lambert at al (2003) were estimating parameters 
through a bayesian equation, by calculating µ and σ from 
posterior distribution of θ. Based on bayes theorem can be 
written as: 
 

( ) ( ) ( )
( )

n
n

n

P Y p
p Y

P Y
θ θ

θ
×

=                    (9) 

 
where:  
( )| np Yθ  = conditional on the entire set of observation nY   

( )|nP Y θ
 
= likelihood function of nY  

( )p θ
 
= prior distribution of  θ  

( )nP Y
 
= marginal probability of nY  

In Chib (1995) likelihood function of nY  can be written as: 
 
( ) ( ) ( ) ( )

( ) ( ) ( )( )
( )

2
1 1 1

2
1 1

2

, , , ,

                  , + 1 , ,

                  ,

t t t t t K K t t

t L L t t t t

t B B

P y Y P z K Y y P z L Y

y P z K Y P z L Y

y

φ µ σ

φ µ σ

φ µ σ

− − −

− −

= = + =

− = − =

θ θ θ

θ θ
  (10) 

 
where 1tY −  represents all the observation up to time (t-1). 
The joint density of all the data is then: 
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( ) ( )1
1

,
n

t t
t

P P y Yθ θ−
=

=∏y  

( ) ( ) ( )1 1
2

,
n

t t
t

P P y P y Yθ θ θ−
=

= ∏y                  (11) 

 
Prior Distribution of θ  or ( )p θ  

Chib (1995) define the prior information through 
the distribution:  
 

( )1
0 ~ ,j N Aµ µ −   

2 0 0 ~ ,
2 2j IG
υ δ

σ ⎛ ⎞
⎜ ⎟
⎝ ⎠

 

( )1 2 3 ~ , ,Dirichlet α α αq
 

 
Posterior Distribution of θ  or ( )| tp Yθ  
 Chib (1995) define the posterior distribution of θ   
through the distribution:   

( ) ( )
1

, , ,
d

j j j
j

y Bπ φ µ µ
=

=∏2µ z σ )
 

with ( ) ( )12 2
0

T
j j j j j jA n Aµ σ µ σ

−− −= + + i y)  and ( ) 12
j j jB A nσ

−−= + .  
 

( ) { } { }0 02

1

, , ,
2 2

d
j j

j
j

n
y

υ δ δ
π φ σ

=

⎛ ⎞+ +
⎜ ⎟=
⎜ ⎟
⎝ ⎠

∏2σ z µ  

 

with  ( ) ( )T

j j j j j j jδ µ µ= − −y i y i .  

( ) ( )
3

1 1 2 2 3 3
1

, , , , ,i i i i i i i
i

y n n nπ φ α α α
=

= + + +∏1 2 3q q q z q  

So that, the posterior density can be computed 
from the decomposition:  
 

( ) ( ) ( ) ( )  ,  , ,π π π π= × ×* * 2* * * 2* *θ y µ y σ µ y q σ µ y        (12) 

 
It is difficult when solving bayes equation above, 

so that required simulation method to obtain the value of 
parameterθ . Tyer and Kuezera (2000) using Markov 
Chain Monte Carlo (MCMC) in solving this problem. 
 
MCMC Gibbs Sampler  
 MCMC Gibbs Sampler aims to find the estimated 
value of iθ  using a conditional posterior distribution 
which is assumed that 1iθ −  has known. The Gibbs sampler 
algoritm can be summarized by the following steps: 
 

 set up data 
 set number of iterations (T) 
 set prior parameters :  0 0 0 1 2 3, , , , , ,Aµ ν δ α α α  
 initialize vectors of sampled values , ,µ σ α  

 set initial current ( ) ( ) ( )0 0 0, ,µ σ α  
 for 1, 2,3,...,t T=  and 1, 2,3j =  (climate states) 

repeat: 

 calculate ( ) ( )12 2
0

T
j j j j j jA n Aµ σ µ σ

−− −= + + i y)  

 calculate
 

( ) 12
j j jB A nσ

−−= +  

 generate ( )~ ,j jN Bµ µ)  

 calculate
 

{ }0

2
jn

a
υ +

=  

 calculate
 

( ) ( )T

j j j j j j jδ µ µ= − −y i y i  

 calculate
 

{ }0

2
jb

δ δ+
=  

 generate
 ( )~ ,G a bτ  

 calculate 1σ τ=  

 calculate
 j je nα= +  

 generate
 ( )~q Dirichlet e  

 Set ( ) ( ) ( ), ,t t t qµ µ σ σ α= = =  
 end of for loop 
 make autocorrelation plot, trace plots, and ergodic 

mean plots to see the convergence of algoritm and 
determine its burn-in period. 

 calculate average parameters of θ  after burn-in period 
up to the last iteration: 

( )

1

m
t

t

m

θ
θ ==

∑)
 

 

 calculate standard deviation parameters of θ  after  
burn-in period up to the last iteration: 

( )
( )( )2

1

1

m
t

ts
m

θ θ
θ =

−
=

−

∑
)

 
 

 finish 
 
APPLICATION OF HMM WITH THREE HIDDEN 
CLIMATE STATES  

The data used in this study were daily rainfall 
data in Darajat Garut from March 1, 2011 until March 27, 
2012 and this daily rainfall data expressed in millimeters 
(mm). 
 
Simulations Results for Parameter µ  and 2σ  in Dry 
Climate State 
 Initialization value of each prior parameter 
distribution for dry climate state is:  
 

( )~ 0.4,0.25dry Nµ  

( )2 ~ 10,10dry IGσ  
 
and iterations were performed as 5000 times. The results 
of the convergence simulations can be seen in Figure-3 
and Figure-4. 
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Figure-3. Convergence Simulations for Parameter dryµ  
 

 
 

Figure-4. Convergence Simulations for Parameter 2
dryσ

.
 

 
 Based on Figure-3 and Figure-4 above, MCMC 
sampling scheme can be said convergence in terms of 
stationarity. It was seen from the trace plots of each 
parameter that indicates the sample parameter values have 
the same periodesitas and also the ergodic means plot has 
shown a steady value after the first 1000 times iterations 
or at this case burn in periode is 1000  times iterations. So 
that, the results of estimation parameter µ  and 2σ  for dry 
climate state is: 
 

Table-1. Summary of Results for Parameter µ  and 2σ  in 
dry climate state. 

 

 prior Posterior 
parameter Mean stdev mean Stdev 

dryµ  0.4 0.5 0.399 0.493 
2
dryσ  1.111 0.154 2.511 0.774 

 
 Same steps performed for each parameter in 
HMM, so that the result value of the parameter as: 
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Table-2. Summary of Results for All Parameters in HMM with Three Hidden 
Climate State. 

 

 prior posterior 
parameter Mean stdev mean stdev 

 dryµ  0.4 0.5 0.399 0.493 
2
dryσ  1.111 0.154 2.511 0.774 

 moistµ  2.5 0.3 2.505 0.285 
2
moistσ  1.111 0.154 1.078 0.178 

 wetµ  20 17.7 20.445 16.73477 
2
wetσ  1.111 0.154 64.977 21.669 

 dryδ  0.565 0.0248 
 moistδ  0.050 0.0112 
 wetδ  

  

0.3840 0.0244 
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