
 VOL. 9, NO. 9, SEPTEMBER 2014 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2014 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

1598

AN ESSENCE OF SOFTWARE MAINTENANCE PREDICTION USING
THE FUZZY MODEL FOR ASPECT ORIENTED SOFTWARE

Pradeep Kumar Singh1, Om Prakash Sangwan2 and Abhishek Srivastava3

1Department of CSE, ASET, AMITY University, Noida, India
2School of ICT, Gautam Buddha University, Gr. Noida, India
3Department of IT, ASET, AMITY University, Noida, India

E-Mail: pradeep_84cs@yahoo.com

ABSTRACT

Software maintenance is generally used to refer the changes that are made to software after its initial release,
installation and operation. In several research it has proven that maintenance involve more than 40 percent of the total cost
of the software. External quality factors assessments were always in light from the beginning of the software engineering
research and related to internal quality attributes. Several research papers used the internal attributes to derive the external
attributes and their relationship have been discussed and validated in several quality models related research papers. This
paper considered the major factors that affect software maintenance for Aspect Oriented Software’s and divide them into
four categories: Separation of Concern, Cohesion, Coupling and Size. Based on the identified factors, a fuzzy model to
predict the software maintenance have been proposed and validated for aspect oriented software. Automated software
maintainability examination to guide software related decision’s was always in great demand and has been applied from
procedural, object oriented to component based software engineering. In this paper a model to predict the maintainability
has been proposed and validated using the fuzzy logic for automation of maintainability prediction for AO software.

Keywords: software maintenance, aspect oriented software (AOS), cohesion, coupling, line of code (LOC), separation of concerns
(SOC), fuzzy logic, maintainability, aspect oriented programming (AOP).

1. INTRODUCTION

Software maintenance and maintainability is
defined in several research studies, but they are impartially
consistent in purview and objective. As per the IEEE
standard definitions maintenance is “the process of
changing a software system or component after delivery to
correct bugs, enhance efficiency or other factors, or
suitable to a new environment” [1]. It can redefined as
‘‘the intention with which a software system or component
can be changed to correct faults, improve efficiency or
other attributes, or adapt to a changed environment’’.

Based on the fundamental principles of software
engineering, software maintenance process can be divided
into three areas: (i) Corrective Maintenance:
maintenance carried out to fix faults in hardware or
software (ii) Adaptive Maintenance: maintenance carried
to make a computer program usable in a new environment
(iii) Perfective Maintenance: maintenance carried to
improve the efficiency, maintainability, or other attributes
of a computer program.

Software maintainability has become one of the
most important issues of the software industry from more
than two decades. In various books and research papers on
software engineering several well known software
professionals such as Fred Brooks, R.S. Pressman, Ibrahim
et al., K.K. Aggarwal and Yogesh Singh mentioned that,
maintainability involved the maximum cost i.e. 40 to 60
percent of the software cost [2, 3, 4, 5, 6].

The software development advancement has
upgraded the ability of software professionals to achieve
clear SOC, or “the potential to locate, encapsulate, and
modify only the parts of software that are appropriate to a
particular objective, goal, or purpose” [7]. Problem of
synchronization as described in [8, 9] and logging among

object oriented software’s have been over come through
the implementation of separation of concerns in Aspect
Oriented Programming (AOP).

Kiczales et al. discussed the concept of aspect
oriented programming in early nineteenth century [10].
Prime objective of AOP is the development of the code
that is easier to understand and evolve the principle of
SOC. AOP is a new methodology for separation of
crosscutting concerns into single units called aspects. An
aspect is a modular unit of crosscutting implementation. It
encapsulates concerns that affect multiple classes into
reusable modules. There are various examples of aspects
in AOP i.e. synchronization, logging, security etc. In AOP,
each aspect can be conveyed in a separate and natural
form, and automatically merged together into a final
executable form by an aspect weaver. As an outcome, each
aspect can lead to the implementation of a number of
modules, or objects, increasing reusability of the source
code.

AOP languages have three essential elements for
separating crosscutting concerns: a join point model,
identifying join points, and implementation at join points
[11, 12]. Aspect J is AO extension to Java and become one
of the most dominant languages taken for research purpose
among researcher of aspect oriented software development
community, introduced by Xerox Palo Alto Research
Center, which permits plug-and-play implementations of
crosscutting in Java.

In several research papers, number of soft
computing based techniques have been proposed to
estimate the external quality factors (such as reusability,
maintainability, reliability), test cases optimization and
fault prediction for software being developed using the
modular and object oriented programming languages [13,

 VOL. 9, NO. 9, SEPTEMBER 2014 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2014 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

1599

14, 15, 16, 17]. There are number of studies in which
automatic computation of maintainability has been
proposed and validated for procedural to object oriented
and component based software’s [18]. In this paper efforts
have put to estimate the maintainability for aspect oriented
software using fuzzy logic approach.

In this paper introduction is followed by Section
2 describes the maintainability for aspect oriented software
and the factors affecting the maintainability. Section 3 is
about the proposed fuzzy model for aspect oriented
software’s with the experimental design and results are
shown in Section 4, Section 5 respectively followed by
conclusion.

2. MAINTAINABILITY IN AOS

In this section, firstly the research work related to
aspect oriented software maintenance prediction is
considered and later, the factors affecting the software
maintenance have been identified for aspect oriented
software’s.

2.1. Related work on the software maintenance for
 aspect oriented software’s

Initially some of the studies in context to AOSD
have been carried out to investigate the qualitative and
quantitative assessment [19, 20, 21, 22]. Hannemann et al.
estimate Java and AspectJ implementations of the GoF
design patterns in context of weakly defined evaluating
criteria, such as pluggability and composability [21].

Sant’Anna et al. presents an assessment
framework in terms of reusability and maintainability for
AO software’s, which comprises of two units: a metrics
suite and a quality model for AOP [23]. The suggested
framework has been measured in the context of two
empirical studies. Metrics were combined according to the
attributes they calculate: (i) SoC, (ii) Coupling, (iii)
Cohesion and (iv) Size. They have pointed that calculating
the structural design properties of software artifacts, such
as coupling, cohesion, and SOC, is an effective approach
towards early assessment of AO software quality.

Li et al. considered a case study to examine
whether AOP can assist to build an easy-to-modify COTS-
based system [24]. This study measures the modifications
when adding and eliminating components deployed using
Object-Oriented Programming (OOP) and AOP for a
COTS system. It has been identified that the integrating
COTS components using AOP may assist to improve the
changeability of the COTS-based system if the cross-
cutting concerns in the source code are homogeneous.
Extracting heterogeneous or relatively homogeneous
cross-cutting concerns in glue-code as aspects does not
contribute remarkable advantages.

Burrows et al. compute the efficacy of coupling
metrics as benchmark of fault-proneness in AO systems
[25]. Their results show that Base-Aspect Coupling (BAC)
and Crosscutting Degree of an Aspect (CDA) are two
metrics that signify the strongest correlation with faults.

Shen et al. derived a fine-grained coupling
metrics suite for AO systems, to estimate software changes

during system evolution [26]. They also proposed a
correlation model in context of intermediate processes, for
better computing the relation between coupling metrics
and maintainability.

Eaddy et al. established a correlation among
concern metrics and an external quality indicator i.e.
defects with few internal and external threats to analysis
[27]. Main objective of this study was to investigate the
effect of crosscutting concerns on quality in terms of
defects. They also mentioned that more empirical
validation is required to draw the general conclusion
between the defects and crosscutting concerns.

Walker et al. consider the patch data of the
Mozilla project for a decade to consider whether
crosscutting concerns exist therein and whether the facts
of problems arising from them can be find [28]. But this
analysis reveal the general assumption of “crosscutting
concern lead to defects”.

Garcia et al. proposed a quantitative analysis of
AO and OO solutions for the 23 Gang-of-Four patterns
[29]. They have considered rigorous software engineering
attributes as the evaluation parameter. They concluded that
most AO solutions improve separation of pattern related
concerns, although only 4 AO implementations have
revealed consequential reuse.

Greenwood et al. proposal included an
examination of the application in context of modularity,
change propagation, concern interaction, identification of
ripple-effects and stick to well-defined design principles
for AO software’s [30].

Kulesza et al. advocate a quantitative analysis to
reveal the positive and negative impact of AOP on
maintenance tasks of a Web information system [31]. This
analysis considered a systematic comparison among the
OO and the AO versions of the same application in order
to estimate to what extent each solution deliver
maintainable software decompositions. Authors analyzed
that the AO design has shown better stability and
reusability through the modifications, as it has evolved in
fewer lines of code, enhanced SOC, weaker coupling, and
lower intra-component complexity.

Kumar et al. estimate the correlation among
changeability and WOM metric [32]. They analyzed the
WOM can be considered as an indicator of maintainability
but it is a weak indicator. Change impact is smaller in AO
compared to OO systems. Maintenance effort was
computed in context of the number of modules modified.

Based on the literature review, several metric
suites for AOP programs for measuring the SOC,
Cohesion, Coupling and Size is mentioned. These four
factors have been identified that affect the maintainability
for aspect oriented software’s and also used by Shen et al.
and Sant’Anna et al. [33, 34] respectively in their studies.
Previously, we have proposed maintainability model for
AOS based on the AO software metrics [33]. We have
taken into account these factors for the proposed fuzzy
system as input to predict the maintainability.

 VOL. 9, NO. 9, SEPTEMBER 2014 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2014 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

1600

2.2. Factors affecting software maintainability for
 aspect oriented software

There are several factors which directly and
indirectly affects the software maintainability. In case of
aspect oriented systems maintainability factors are slightly
different as compare to object oriented and modular
approaches. Aspect oriented software’s are basically
extension to object oriented systems with some additional
features such as aspects, join points, point cut, advices and
identification of concerns. It has been identified in several
studies that SOC improves design modularity and proven
to be better solutions in case of logging, exceptions
handling, and tracing [23]. Based on the related work
mainly four factors have been identified which affect the
maintainability for aspect oriented software i.e. (i) SOC
(ii) Coupling (iii) Cohesion (iv) Size.

There are number of research papers and studies
which have considered the design metrics as quality
indicator for software [28, 34]. Our study is taken on
account the design metrics to calculate the external quality
factor, i.e. there is always a relationship between the
software metrics and quality attributes such as
maintainability, reusability etc.

Two sets of metrics were discussed in most of the
research papers for aspect oriented software, Some of
them are based on object oriented metrics and others by
considering unique features of aspect oriented systems as
following: (i) Metrics taken from the OO software’s
published by Chidamber and Kerner [35], Zakaria and
Hosny [36], Santanna et al. [23], Ceccato et al. [37] i.e.
line of Code (LOC), weighted operation in module
(WOM), depth of inheritance (DIT) and number of
children (NOC) etc. (ii) Metrics precise for AO software
i.e. crosscutting degree of aspect (CDA) and coupling on
advice execution (CAE) published by Ceccato and Tonella
[37].

In our proposed work, studies discussed in
literature review are considered as the benchmark to
automate the maintainability prediction for aspect oriented
softwares. We have identified mainly four factors that
affect the maintainability for aspect oriented software: (a)
Separation of Concern (b) Coupling (c) Cohesion (d) Size.

(a) Separation of concerns (SOC): SOC
introduce identification, encapsulation and manipulation
of those parts of software that are appropriate to a
particular objective or cause [38]. Concerns may be
defined in many forms and at different stages of
abstraction: (i) Features from a feature list (ii)
Requirements from a SRS (iii) Design patterns and design
elements from a UML design document (iv) Low-level
programming concerns such as language used, coding
pattern, programming idioms, code reuse, information
hiding, and algorithms. There are numerous metrics
identified for SOC such as Concern Diffusion over
Components (CDC), Concern Diffusion over
Operations(CDO), Concern Diffusion over LOC
(CDLOC), Cross cutting degree of an aspect (CDA),
coupling on advice execution (CAE) [23, 37].

(b) Coupling: It is an indication of the degree of
interconnections among the components or modules in
considered system. According to fundamental principles of
software engineering low coupling is desirable for high
quality of design and best maintainable systems. Coupling
between Components (CBC), Depth of Inheritance (DIT)
and Coupling on Intercepted Module (CIM), CMC
(Coupling on Method Calls), CFA (Coupling on Field
Access) are the metrics for coupling measurement for
AOSD [23, 37].

(c) Cohesion: It is defined as the degree to which
elements of a module belong to each other. Lack of
cohesion in operations i.e. LCOO, Aspect Cohesion
(ACOH) [23, 29].

(d) Size: Size metrics measures the length of a
software system’s and static source code. There are
number of size metrics derived from CKs metric suites for
AOSD such as line of code (LOCC), weighted operation
in module (WOM) or weighted operation per components
(WOC), number of children (NOC), number of attributes
(NOA) and vocabulary size (VS) [23, 35, 37].

As shown in Figure-1, proposed model for AO
software maintainability, considers the maintainability as
the integrated measure of the four factors: (a) SOC (b)
Coupling (c) Cohesion (d) Size.

3. PROPOSED FUZZY MODEL FOR ASPECT
ORIENTED SOFTWARE’S

In 1965, Zadeh et al. proposed fuzzy logic based
fuzzy set theory [39, 40]. Fuzzy logic has been
implemented at many places like mechanical engineering,
production and many mores areas, as well as for software
engineering problems. It emerges as an interesting area of
research to calculate the precision values that human was
managing from long time and managing imprecise
information. Fuzzy logic is always beneficial in case of
mapping and input to output data or values. This paper
proposed a fuzzy model to predict the maintainability of
AO software’s based on four inputs, namely (i) SOC (ii)
Coupling (iii) Cohesion (iv) Size as shown in Figure-1 by
assuming the equal weight to each input.

Figure-1. Fuzzy model for aspect oriented software
maintainability.

 VOL. 9, NO. 9, SEPTEMBER 2014 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2014 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

1601

In this proposed model all four factors are
considered as inputs to provide a crisp value of
maintainability for aspect oriented software using rule
base. Fuzzy Inference System (FIS) is the technique to
compose the mapping from a given input values to an
output values using fuzzy logic. Mamdani’s fuzzy
inference technique is used in the proposed scheme as
shown in Figure-2.

Figure-2. Fuzzy inference system: Maintainability model.

The linguistic variables for the proposed models
have been identified in the following manner: (i)
Linguistic variables for all inputs: {low, medium, high}
and Linguistic variables for the output: {very low, low,
medium, high, very high}. Defuzzification is require for
fuzzy sets of each output variable after applying the
fuzzification. The input to the defuzzification is a fuzzy set
(the aggregate output fuzzy set) and the outcome is single
numeric value. Centroid method is used for
defuzzification, which calculates the center of area under
curve [41].

4. EXPERIMENTAL DESIGN

In order to fuzzify the inputs, we have taken the
cohesion, coupling, LOC and SOC. Input variables, SOC,
cohesion, coupling and size of the source code for AO
software’s is classified among three categories i.e. low,
medium and high as shown in Figure-3, for SOC only.
Based on the suitability of membership functions “trapmf”
is used as the membership function for the input and
output.

Figure-3. Fuzzification of input Variable SOC.

The output variable maintainability for AO
software is classified as very high, high, medium, low and
very low as shown in Figure-4.

Figure-4. Fuzzification of output variable -
maintainability for aspect oriented software.

4.1. Rule base and evaluation process

After fuzzyfying the input data, processing is
carried out in fuzzy domain. The fuzzy model integrates
the effect of Cohesion, Coupling, SOC and Size into a
single measurable parameter, termed as software
maintainability for aspect oriented software, based on the
following knowledge/fuzzy rule base. Depend upon the
usages, however the knowledge base can further be further
refined to more ranges (fuzzy sets) for the input variables.
All inputs and outputs have been fuzzified for proposed
systems as shown in Figures 3 and 4, respectively. All
possible combinations of inputs were considered which
leads to 34 i.e. 81 possible sets for input. The
maintainability in case of all 81 combinations is identified
as very low, low, medium, high and very high with the
help expert opinion from the software engineering domain.
Total 81 rules for the fuzzy model have been derived and
some of them are shown below:

1. If (SOC is Low) and (Cohesion is Low) and (Coupling
is Low) and (Size is Low) then (Maintainability is
Medium).
2. If (SOC is Low) and (Cohesion is Low) and (Coupling
is Low) and (Size is Medium) then (Maintainability is
High)
3. :
27. If (SOC is Low) and (Cohesion is High) and (Coupling
is High) and (Size is High) then (Maintainability is High)
:
81. If (SOC is High) and (Cohesion is High) and
(Coupling is High) and (Size is High) then
(Maintainability is Medium)

All 81 rules are inserted and rule base is created
in MATLAB Fuzzy Toolbox. All rules are fired based on
set of inputs. There are three commonly used inference
mechanism-mamdani style, larsen style, and sugeno style,
we used ‘‘mamdani’’ style inference for this type of
models. Using the rule viewer, output i.e. software
maintainability is observed for a particular set of inputs
using the Fuzzy Tool box as shown in Figure-5.

 VOL. 9, NO. 9, SEPTEMBER 2014 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2014 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

1602

Figure-5. Rule viewer for the maintainability model.

5. EXPERIMENTAL RESULTS

This proposed system considers all the input sets
into the range of [0-1], in case of different values same can
be normalized to the specific range. Suppose we have the
following crisp value inputs to the fuzzy model:
SOC=0.1742, Cohesion=0.1769, Coupling=0.8258 and
Size=0.7923. These inputs are fed to the fuzzification

module and after fuzzification of the given values we find
that Maintainability = Very High belongs to fuzzy set with
membership grade 0.879. Here low value is desirable for
better quality software and require less maintenance
efforts. With all set of possible inputs values we find 81
rules, some of them are also shown in Table-1.

Table-1. Software Maintainability for AOSD calculation for a given sets of input.

Rules SOC Cohesion Coupling Size Maintenance
Level

Membership grade of software
maintainability

9 Low Low High High Very High [0.1742;0.1769;0.8258;0.7923]=[0.879]
77 High High Medium Medium Low [0.9542;0.9542;0.3458;0.5]=[0.225]

5.1. Defuzzification

After obtaining the fuzzified output as mentioned
above, we defuzzify them to get crisp value of the output
variable maintainability for AO software [6, 41].
Transformation of the output from fuzzy domain to crisp
domain is called defuzzification. In our proposed model
we obtain this by considering the Centroid method of the
aggregated output of rule number 77 as shown in Table-1
and same can be derived for rest of the rules to validate the
result.

X*=∑Ax̅ / ∑A ……………….Equation no.1 [6]

X*=∑Ax̅ / ∑A=∑ A1 x̅+A2 x ̅+A3 x ̅ / ∑ A1+A2+A3

X*=0.000085+0.027676+0.004551/0.00925+0.1258+0.011

X*=0.0323125/0.14615

X*=0.2210913

Figure-6. Defuzzification of output variable -
maintainability.

The aggregated output has been divided into three

parts for better understanding. The aggregated fuzzy set of
A1, A2, A3 area is computed as shown in Figure-6 using the
centroid equation. X* is the centroid, computed using the
aggregated fuzzy set and x̅ shows the corresponding

 VOL. 9, NO. 9, SEPTEMBER 2014 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2014 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

1603

centroid. The effects of these rules were also observed by
simulating the model using the Fuzzy Logic Tool Box of
MATLAB. The maintainability for the above mentioned
inputs comes out to be 0.225 which is very close to the
calculated value using the centroid method i.e. 0.2210.
Overall response of the system is shown in Figures 7, 8
and 9. The proposed fuzzy model is shown the suitability
for identification of software maintenance level for the
aspect oriented software’s.

Figure-7. Surface view with SOC as input on x axis and
Coupling on y axis and Maintainability on z axis.

Figure-8. Surface view with SOC as input on x axis and
Size on y axis and Maintainability on z axis.

Figure-9. Surface view with SOC as input on x axis and
Cohesion on y axis and Maintainability on z axis.

6. CONCLUSIONS
In this paper rule based fuzzy model to predict

software maintenance level of the aspect oriented software
has been presented. Fist we have identified the factors
affecting the software maintainability for aspect oriented
software, a relationship between the identified factors and
maintainability has been derived. This relationship is used
to predict the external quality factor such as
maintainability based on input factors i.e. internal quality
attributes. The used input factors already discussed and
validated using several studies to derive quality models for
aspect oriented software [23, 35, 36, 37].

In this paper we automate the process of the
measurement of software maintainability using four
important factors derived from the design metrics i.e.
SOC, Cohesion, Coupling and Size as inputs. These
factors (internal attributes) can be measured using
software metrics through metrics tools available for the
aspect oriented software i.e. AOP metric, Metric 1.3.
Based on these input factors, the proposed maintainability
measure could be evaluated and normalized. The proposed
model will provide automatic prediction of software
maintainability for a module as well for the whole
software and would help in evaluation of software
maintenance level based on the available set of design
metrics for AO software. It would encourage software
organization to develop less maintainable software. In
future sub attributes of maintainability, like testability can
be examined using metrics and other attributes for AO
software. In [42], testability has been analyzed
theoretically for AO software. Further, we are planning to
apply the proposed model on the AO software dataset and
cross validate using the neural network, support vector
machine techniques for maintainability assessment.

REFERENCES

[1] IEEE Std. 610.12-1990. Glossary of Software

Engineering Terminology. In Software Engineering
Standards Collection, IEEE CS Press, Los Alamitos,
Calif., Order No. 1048-06T, 1993.

[2] Aggarwal K. K. and Singh Y. 2001. Software

Engineering: Programs, documentation, operating
procedures. New Age International Publishers.

[3] Brooks F. P. 1995. The mythical man-month. Essays

on Software Engineering. Pearson Education.

[4] Ibrahim S., Idris N.B., Munro M. and Deraman A.

2005. Integrating Software Traceability for Change
Impact Analysis. International Arab Journal of
Information Technology. 2(4): 301-308.

[5] Pressman R. S. 2005. Software engineering: a

practitioner's approach. Vol. 5, McGraw-Hill
International Edition. pp. 466-472.

 VOL. 9, NO. 9, SEPTEMBER 2014 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2014 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

1604

[6] Rajasekaran S. and Pai G.V. 2003. Neural Networks,
Fuzzy Logic and Genetic Algorithm: Synthesis and
Applications, PHI Learning Pvt. Ltd.

[7] Ossher H. and Tarr P. 2001. Using Multidimensional

Separation of Concerns to Reshape Evolving
Software. Communications of the ACM. 44(10): 43-
50.

[8] Dempsey J. and Cahill V. 1997. Aspects of System

Support for Distributed Computing. Proc. ECOOP
Workshop on Aspect-Oriented Programming, Finland.

[9] Kiczales G. 1996. Aspect-Oriented Programming.

ACM Computing Surveys. 28(4): 154.

[10] Kiczales G., Lamping J., Mendhekar A., Maeda C.,

Lopes C., Loingtier J. M. and Irwin J. 1997. Aspect-
Oriented Programming. Springer Berlin Heidelberg.
pp. 220-242.

[11] Elrad T., Aksits M., Kiczales G., Lieberherr K.J. and

Ossher H. 2001. Discussing Aspects of AOP.
Communications of the ACM. 44(10): 33-38.

[12] Kiczales G., Hilsdale E., Hugunin J., Kersten M.,

Palm J. and Griswold G. 2001. Getting Started with
Aspect J. Communications of the ACM. 44(10): 59-
65.

[13] Dhir R. 2012. Bayesian and Fuzzy Approach to

Assess and Predict the Maintainability of Software: A
Comparative Study. ISRN Software Engineering.

[14] Dubey S.K., Rana A. and Sharma A. 2012. Usability

Evaluation of Object Oriented Software System using
Fuzzy Logic Approach. International Journal of
Computer Applications. 43(19): 1-6.

[15] Kumar M., Sharma A. and Kumar R. 2011. Towards

Multi-Faceted Test Cases Optimization. Journal of
Software Engineering and Applications. 4(9): 550-
557.

[16] Singh Y., Bhatia P.K. and Sangwan O.P. 2009.

Predicting software maintenance using fuzzy
model. ACM SIGSOFT Software Engineering Notes.
34(4): 1-6.

[17] Tyagi K. and Sharma A. 2012. A rule-based approach

for estimating the reliability of component-based
systems. Advances in Engineering Software. 54: 24-
29.

[18] Coleman D., Ash D., Lowther B. and Oman P. 1994.

Using metrics to evaluate software system
Maintainability. Computing Practices. 8(27): 44-49.

[19] Driver C. 2022. Evaluation of Aspect-Oriented
Software Development for Distributed Systems.
Masters Thesis, University of Doublin.

[20] Garcia A., Silva V., Chavez C. and Lucena C. 2002.

Engineering Multi-Agent Systems with Aspects and
Patterns. Journal of the Brazilian Computer Society.
1(8): 57-72.

[21] Hannemann J. and Kiczales G. 2002. Design Pattern

Implementation in Java and Aspect J. ACM
SIGPLAN Notices. 37(11): 161-173.

[22] Kersten M. and Murphy G. 1999. Atlas: A Case Study

in Building a Web-based learning environment using
aspect-oriented programming. ACM SIGPLAN
Notices. 34(10): 340-352.

[23] Sant’Anna C., Garcia A., Chavez C., Lucena C. and

VonStaa A. 2003. On the reuse and maintenance of
Aspect Oriented software: an assessment framework.
Proc. Brazilian Symposium on Software Engineering.
pp. 19-34.

[24] Li J., Kvale A.A. and Conradi R. 2006. A Case Study

on Improving Changeability of COTS-Based System
Using Aspect-Oriented Programming. Journal of
Information Science and Engineering. 22(2): 375-390.

[25] Burrows R., Ferrari F.C., Garcia A. and Taiani F.

2010. An empirical evaluation of coupling metrics on
aspect-oriented programs. Proc. ICSE Workshop on
Emerging Trends in Software Metrics, ACM, Cape
Town, South Africa. pp. 53-58.

[26] Shen H., Zhang S. and Zhao J. 2008. An empirical

study of maintainability in aspect-oriented system
evolution using coupling metrics. Proc. 2nd IFIP/IEEE
International Symposium on Theoretical Aspects of
Software Engineering. pp. 233-236.

[27] Eaddy M., Zimmermann T., Sherwood K. D., Garg,

V., Murphy G. C., Nagappan N. and Aho A. V. 2008.
Do crosscutting concerns cause defects? IEEE
Transactions on Software Engineering. 34(4): 497-
515.

[28] Walker R. J., Rawal S. and Sillito J. 2012. Do

crosscutting concerns cause modularity problems?
Proc. 20th International Symposium on the
Foundations of Software Engineering, ACM
SIGSOFT. p. 49.

[29] Gélinas J.F., Badri M. and Badri L. 2006. A Cohesion

Measure for Aspects. Journal of Object Technology.
7(5): 75-95.

[30] Greenwood P., Bartolomei T., Figueiredo E., Dosea

M., Garcia A., Cacho N., Sant’Anna C. and Rashid A.

 VOL. 9, NO. 9, SEPTEMBER 2014 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2014 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

1605

2007. On the impact of aspectual decompositions on
design stability: An empirical study. Proc. ECOOP
2007-Object-Oriented Programming, Springer Berlin
Heidelberg. pp. 176-200.

[31] Kulesza U., Sant’Anna C., Garcia A., Coelho R.,

VonStaa A. and Lucena C. 2006. Quantifying the
effects of aspect-oriented programming: A
maintenance study. Proc. 22nd IEEE International
Conference on Software Maintenance. pp. 223-232.

[32] Kumar A., Kumar R. and Grover P.S. 2007. An
evaluation of maintainability of aspect-oriented
systems: a practical approach. International Journal of
Computer Science and Security. 1(2): 1-9.

[33] Singh P.K. and Sangwan O.P. 2013. Aspect Oriented
Software Metrics Based Maintainability Assessment:
Framework and Model. Published in proceedings of
Confluence-2013, The Next Generation Information
Technology Submit, 26th - 27th September, Amity
University, Noida, India, Available on IET Digital
Library and IEEE Xplore.

[34] Basili V.R., Briand L.C. and Melo W.L. 1996. A

validation of object-oriented design metrics as quality
indicators. IEEE Transactions on Software
Engineering. 22(10): 751-761.

[35] Chidamber S. R. and Kemerer C.F. 1994. A metrics

suite for object oriented design. IEEE Transactions on
Software Engineering. 20(6): 476-493.

[36] Zakaria A. A. and Hosny H. 2003. Metrics for aspect-

oriented software design. Proc. 3rd International
Workshop on Aspect-Oriented Modeling, Boston,
USA. Vol. 3.

[37] Ceccato M. and Tonella P. 2004. Measuring the

effects of software aspectization. Proc. 1st Workshop
on Aspect Reverse Engineering, Delft, Netherlands.
Vol. 12.

[38] Tarr P., Ossher H., Harrison W. and Sutton S. M.
1999. N Degrees of Separation: Multi-Dimensional
Separation of Concerns. Proc. of the 21st International
Conference on Software Engineering. pp. 107-119.

[39] 2014. Fuzzy Logic, Stanford Encyclopedia of

Philosophy, Stanford University.
http://plato.stanford.edu/entries/logic-fuzzy/Last
Accessed on 30-04. 2014.

[40] Zadeh L.A. 1965. Fuzzy sets. Information and

Control. 8(3): 338-353.

[41] 2002. Fuzzy Logic Toolbox, User’s Guide version 2.

The Math Works Inc.42

[42] Singh P.K., Sangwan O.P., Pratap A. and Singh A.P.
2014. An Analysis on Software Testability and
Security in Context of Object and Aspect Oriented
Software Development. International Journal of
Information Security and Cybercrime. 3(1): 17-28.

