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ABSTRACT

We present a new Cosmological solution for a Bianchi type-1 Cosmological model filled with viscous fluid in a
modified Brans-Dicke theory in which the variable cosmological term is an explicit function of a scalar field. The physical
and geometrical properties of this model have been discussed. Finally, this model has been transform to the original form

(1961) of Bras-Dicke theory.
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1. INTRODUCTION

Einstein succeeded in geometrizing gravitation by
expressing gravitational potential in terms of metric
tensor. Various observations indicate that spatially
homogeneous space-time is Bianchi type’s model and
interpreted as cosmological models. Cosmological models
with a cosmological constant are currently serious
candidates to describe the dynamics of the universe. The
significance of cosmological constant was studied by
various cosmologists but no satisfactory results of its
meaning have been supported as yet. Zel’dovich [1] has
tried to visualize the meaning of this term from theory of
elementary particles. Linde [2] argued that the
cosmological term arises from spontaneous symmetry
breaking and suggested that the term is not a constant but a
function of temperature. In cosmology, the term may be
understood by incorporation with Mach’s principle that
suggests the acceptance of Brans-Dicke Lagrangian as
realistic one [3]. Endo and Fukui [4] have also studied the
variable cosmological term in
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where the constant £  shows how much this theory
including Q(¢) deviates from that of Brans and Dicke

and as usual @ is coupling constant and Tij is the energy-

momentum tensor for a viscous fluid
distribution[9].Covariant derivative with respect to the

metric g is denoted by semicolons and partial

differentiation with respect to the coordinate X' is

Brans-Dicke theory [3] and elementary particle
physics. Also Rai, Rai andSingh [5] have studied the
variable cosmological term for viscous fluid in modified
Brans-Dicke theory by imposing Petrov type -D condition.

Astronomical observation for large scale
distribution of galaxies indicates that the distribution of
matter can be satisfactorily described by a perfect fluid.
Also at the early stage of the universe when galaxies were
formed, the matter distribution behaved like a viscous
fluid [6]. So, in this paper we consider Bianchi type-I
cosmological model for viscous fluid in a modified Brans-
Dicke theory in which the variable cosmological term Q

in an explicit function of a scalar field ¢ proposed by
Bergmann[7] and Wagonar [8], detailed discussed by both
Endo and Fukui [4] and Rai, Rai and Singh [5].

The Brans-Dicke field equations  with
cosmological term Q [5, 9] are:

) )
denoted by comas. Then under the conformal
transformation:
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Equations (1) — (3) becomes (5)
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where all barred and unbarred quantities are defined in

terms of metric gi,- and gij respectively.

In this paper, in sect. 2 we considered Bianchi
type-1 metric and energy- momentum tensor for viscous
fluid [5, 9]. In sect.3 we obtained the solution of the field
equations for the Bianchi type | metric. In sect.4 we
obtained expressions for pressure, density and
cosmological term for spatially homogeneous and
anisotropic cosmological model. Finally in sect.5 we have
transformed this model to the 1961 form of Brans-Dicke
theory.

2. FIELD EQUATIONS
The Bianchi type-1 metric is considered as

ds® = —dt? + A%dx? + B2dy? + C%dz®>  (g)

. 4
where A, B,C,are functions of X =1 only. The
energy-momentum tensor T”.

for a viscous fluid distribution is given by [5,9]

T =&+ PNV + PO’ — (7" + V5 +V Y, + 97V )
©
(e-20palar )
along with
g,vv =-1 (10)

where P is the isotropic pressure, £ the density, 7and &
the two coefficient of viscosity and semicolons defined

covariant differentiation. V' is the components of the fluid

four-velocity satisfying equation (10). We assume that the
. . 5l 52 =3

coordinate to be co-moving ie. V- =V~ =V~ = 0

and \74 =1. The scalar field A is also taken to be a
function of t only. The field equations (5) and (6) for the
line element (8) turn into
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where dot represent differentiation with respect to t. The Equation (12)-(13) yields

coefficients of viscosity 77and £ are taken as constants. . _

For complete determinacy of the system one extra k(BC —CB)A: e", k=constant ()]
condition is needed, which we will impose later.

Equation (11)-(13) yields
3. SOLUTION OF FIELD EQUATIONS
The equation (11)-(15) are five equations in six a(AC —CA)B —el g =constant (18)

unknowns A,B,C,&,p andA.

Letwe set 16777 = L.
Equation (11)-(12) yields

m(AB - AB)C =e , m = constant (16)

To avoid the complicacy, we assume

A= f(t)e”, B=g(t)e", C = h(t)e”"
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By using above, equation (16) gives two conditions

V-u= i—g+i—5(say)(l) Hu+v+p=_L (iD)
mfgh g f

where M, S are constants.

Similarly equation (17) and (18) give extra
conditions except (ii) are respectively

g h 1
—y=2-—4+—/—=D
PV g h+rfgh ' i
and
o rooh o f |
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where b, € are constants.

Considerj'ﬁdt =logK (t) - Then equation (i), (iii) and
g

(iv) yield respectively
1

1 1 1
Kmf =ge®(v), Kig =he™ (vi)and K« f =he® (vii)

Using the above (v), (vi) and (vii), we obtained
the relation

Again from (v) and (vi), we obtained

k-m k-m
g? =K ™ fhe® ' or g°=K m fghelc2"
(by using (ix)) (19)

Now, we impose the condition

K (t) :(yt+|)%,which gives fgh =2t +1 )
Equation (19) and (x) gives
k(my+1)-m (C—ZS)t
g= (7/'[ + |) skmy € 3 (20)
Using (20), equation (v) and (vii) give, respectively
K(my-2)-m e+,
(]/t + |) 3kmy € 3 (21)
and
klmy+)e2m (26),
h=(t+1) sm e ° 22)

Again, using equations (i), (ii), (iii), (iv) and (ix),
we obtained

L-c-s  2s+L-c = 2c+L-s
1,11 S oD
h Kkrg KkrmozhecS
where L =167z7
Comparing with (vi) we will get Hence, the required solution is
1,11 4= mk (vijandb=c-s (ix)
Kk m «a T m+k—mk
) ) 2k(my—2)-2m 32771, ) 2k(my+1)-2m 32771,
ds? =—dt? + (st +1) am e 3 dX>+(pt+1) am e 3 dy
2k(my+1)+4m @t (23)
+(t+1) am e dz
By the following transformation of coordinate (7/’[ + I) — 1 we get
32zt [ 2k(m-2)-2m 2k(m+1)-2m 2k(m+1)+4m

dSZ =—dt2+e 3 Jt  3km

dx® +t

3km dy2 +t 3km de

(24)
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4. SOME PHYSICAL AND GEOMETRICAL
PROPERTIES

The pressure and density in the model (24) are
given by

10247°% 1287y  (m?k® —mk—m? —k?) 1
+ + +87&| 167 +=
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Also the scalar field A is given by

B o) (M —mk —m? —k?) 08
A = logsec {\/ 3K 2+ 3) log(t); (28)

The model will be real if the conditions

g >0,p>0,& > 3p hold when
(mzkz—mk—mz—k2)<0,a)<—§,6<0,y21 (29)

The average scale factor R(t) is given by
R = (ABC)". (30)

The Hubble parameter H is given
byH = R/R .Volume expansion &, deceleration
parameter (and shear o for the metric (1.1) can be
written as

16y t+ 1, (31)

H =
3t

showing that Hubble parameter is decreasing during time

evolution and become constant when
t >xcand-4<q<-1.

R = 1 32
0=3H =3 167z77+¥: (32)

o9__1 32(a)
a  t?

showing that the rate of volume expansion decreases
during time evolution.

[
The non-zero components of shear tensor &7 are

o1 L[2A B _C)_ _m~+2k
! 3L A B C 3 mkt
L. _1(28 A _C)_k-m 33
27 30 B A C 3 mkt
o2 L 2C A B ) _ k+2m
s 3( cC A B 3 mkt
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and the shear o is
2= Mot f +loi f +(o3) +(o?)
0'—5 o, +lo;) +\o; ) +lo,
(34)
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showing that the shear o decreases during the time
evolution.
The deceleration parameter is

R 3
1= RR? { (167t +1)2}

showing that deceleration parameter increases during time
evolution and become -1 when t —oc and—4< g < -1

5. TRANSFORMATIONS OF SOLUTIONS AND
DISCUSSIONS
Under the transformation given by [5]:

g7|j_) gu ;gilj’iu_)-rij:(b ij
_ — ) (36)
ToT=¢T, P> p=¢"D
E—>£:¢25, ¢—>¢=eA
Q> Q=¢Q, V >V =gV

The field equations (5)-(7) are changed into (1)-
(3).

mk? —mk —m? —k?)
=sec’ ( lo 37

? \/ 3mk*(20+3) o) a1
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The reality conditions (29) may be imposed on
the solutions in 37(a)-37(f). The solution obtained in this
paper is new. Both pressure p and density & are positive
and decreases during the time evolution. The cosmological
term Q is negative which differ from Rai,Rai and Singh
[5] solution. The viscosity prevents the free gravitational
field. Equation (32) indicates that the effect of viscosity is
to retard the expansion of the model.

log(/3t)
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