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ABSTRACT 

Pressure tests in infinite-conductivity hydraulically-fractured vertical wells allow for the estimation of the actual 
half-fracture length. If only elliptical flow is observed then the knowledge of the drainage area is required for the analysis 
which could lead to have a longer test for observing late psudosteady-state regime. Sometimes, it is unpractical to do so, 
then a new elliptical model excluding the reservoir area for  the half-fracture length estimation is presented in this work for 
both homogeneous and naturally-fractured occurding hydrocarbon formations. TDS technique and conventional analysis 
were implemented for characterizing this flow regime. The resulting equations were successfully tested with synthetic 
pressure tests. 
 
Keywords: pressure transient analysis, fracture conductivity, fracture half-length, TDS technique, homogeneous systems, naturally 
fractured reservoirs. 
 
1. INTRODUCTION 

The pressure behavior of horizontal and 
hydraulically-fractured vertical wells is very similar. The 
difference is that the later has two wings and covers the 
complete formation thickness. Then, elliptical flow regime 
is expected to be observed during early time of transient 
pressure tests in both cases. 

The elliptical flow regime was originally 
neglected in horizontal wells and it was treated as a 
transition period. The first research found on this issue 
was provided by Isaaka et al. (2000) who characterized 
such flow regime and identified it on the pressure 
derivative curve by a slope of 0.35. Chacon, Djebrouni 
and Tiab (2004) presented a new pressure derivative 
equation for this flow regime which depends upon the 
reservoir length along the x-direction, reservoir thickness, 
horizontal wellbore length, well radius and horizontal 
reservoir permeability. 

Later Escobar, Muñoz and Sepulveda (2004) 
obtained the governing pressure equation by integrating 
the model presented by Chacon et al. (2004). They 
developed analytical equations to obtain horizontal 
permeability anisotropy. The intersection points of the 
elliptical-flow regime with early-linear, early-radial, late-
linear and/or late-linear flow regimes have also been used 
to find new analytical expressions to verify the horizontal 
permeability or to find the permeability in the y-direction. 
They applied the TDS, Tiab (1993), methodology for 
characterizing the elliptical flow regime so new equations 
using characteristic lines and points found on the pressure 
and pressure derivative plot were developed to obtain areal 
permeability, (kxky) 0.5, the reservoir length along the x-
direction, hx, permeability in the y-direction, ky, and the 
geometrical skin factor, sEll, caused by the convergence 
from early-linear flow to elliptical flow regime. Escobar 
and Montealegre (2008) using also the model developed 
by Chacon et al. (2008), implemented the conventional-

straight line method for characterizing the elliptical flow 
regime, so the reservoir areal permeability and elliptical 
skin factor can be estimated. 

However, Chacon et al. (2004)’s model fail 
sometimes to provide accurate values of horizontal 
permeability, then, Martinez, Escobar and Bonilla (2012) 
reformulated the model and provided both conventional 
straight-line and TDS methods as interpretation techniques 
for crude and gas flow. For the latter case, they used both 
real time and pseudotime functions.    

Tiab (1994) was the first who found this flow 
regime in pressure test data of infinite-conductivity 
hydraulically fractured vertical wells. He called it as 
“birradial flow”, provided the governing pressure and 
pressure derivative equations and implemented the TDS 
technique for its characterization. 

Although Tiab’s model, Tiab (1994), works 
perfectly, it requires the knowledge of well-drainage area 
for estimating the half-fracture length. However, 
sometimes this condition cannot be met because the 
pressure test needs to be run long enough for the 
development of the late time pseudosteady state for the 
determination of the drainage area. Then, a new model 
excluding the reservoir drainage area is presented here and 
successfully tested with synthetic examples. Also, Tiab’s 
model, Tiab (1994), is slightly modified here to account 
for naturally-fractured double-porosity systems.  
 
2. MATHEMATICAL FORMULATION 
 
2.1. Basic equations 

The dimensionless time quantities based upon 
half-fracture length, drainage area and reservoir width, 
respectively, are given below: 
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The dimensionless pressure and pressure 

derivative parameters for oil reservoirs are given by: 
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Finally, the dimensionless fracture conductivity 

introduced by Cinco-Ley, Samaniego and Dominguez 
(1976) is defined as: 
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2.2. Governing equations 

Gringarten, Ramey, and Raghavan (1974) 
presented the solutions of the difussivity equation for a 
vertical well drainage by infinite-conductivity or uniform-
flux vertical fracture. Later, Tiab (1994) introduced the 
governing equation of the birradial flow regime 
dominating the early time behavior during the acting of an 
infinite-conductivity fracture. 
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Figure-1. Dimensionless pressure and pressure derivative 
vs. dimensionless time based on area for a vertical well 

with an infinite-conductivity fracture well, after 
Tiab (1994). 

 

As presented by Tiab (1994) for the case of an 
infinite-conductivity fractured well, the linear flow regime 
becomes shorter as the xe/xf ratio increases. When this ratio 
is higher than 16, linear flow regime is no longer observed 
and birradial flow regime dominates the early time data. 
Based on these criteria, Tiab (1994) presented the 
governing equation for birradial flow regime, 
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Notice that ξ was original excluded in Tiab’s 
model since it was only presented for homogeneous 
formations. When ξ = 1, Equation (7) accounts for 
homogeneous reservoirs. For the case of naturally-
fractured formations, ξ = ω which is the dimensionless 
storativity coefficient. The above expression, although it is 
correct, presents a major drawback in cases where the 
pressure test is not long enough to reach the reservoir 
boundaries. In such cases, the drainage area is unknown 
and Equation (7) has no applicability.  

Figure-2 shows the dimensionless pressure and 
pressure derivative versus dimensionless time based on 
fracture length. Linear flow regime is observed at early 
time in the test. After a short transition, the birradial flow 
regime is observed. A new expression excluding reservoir 
drainage area is presented here, 
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Figure-2. Dimensionless pressure and pressure derivative 
behavior for an infinite-conductivity fractured vertical 

well in a heterogeneous reservoir, λ = 1x10-8 
and ω = 0.1. 

 
As for the case of Equation (12), Equation (13) 

applies to either homogeneous or heterogeneous (double 
porosity) systems. Again, for homogeneous systems the ξ 
value is either dropped or set equal to the unity. The 
pressure derivative of Equation (8) is given as, 
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After plugging the dimensionless parameters 
given by Equations (1) and (4) into Equation (8) and 
Equations (1) and (5) into Equation (9) and solving for the 
half-fracture length, the following expressions are 
obtained, respectively, 
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Due to noisy data, it is better to draw a straight-line 

going through the bilinear flow regime and read the pressure 
derivative value, (t*∆P’)BR1 at a time of 1 hr, extrapolated if 
necessary. Then, Equation (16) becomes; 
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When bilinear flow is not observed, fracture 

conductivity can be found using an expression presented 
by Tiab (2003); 
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2.3. Other flow regime governing equations 

Tiab (1993) demonstrated that the dimensionless 
pressure derivative during radial flow regime takes the 
value of 0.5, then, 
 
[ * '] 0.5D D rt P =                    (14) 
 

From which the permeability is solved Equation 5 
is replaced into Equation (14): 
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Where (t*∆P’)r is the value of the pressure 

derivative during radial flow regime. Tiab (1993) also 
found an expression for the mechanical skin factor; 
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Being ∆Pr the pressure drop read at any arbitrary 

time, tr, during radial flow. 
The governing pressure derivative equation 

during pseudosteady-state regime is given by: 
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As indicated by Tiab (1994), an equation for the 

determination of drainage area, A, is found from the 
intersection point of the radial flow regime governing 
equation, Equation (14), and the pressure derivative 
equation during pseudosteady-state, Equation (17), as 
follows: 
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Where trpi is the point of intersection between the radial 
flow pressure derivative and the pseudosteady-state 
pressure derivative (extrapolated) lines.                                                    

Tiab and Bettam (2007) presented the governing 
expressions for early bilinear and linear flow regimes for 
vertical fractures in natural- fractured systems; 
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The corresponding pressure derivatives of the 

above equations are: 
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2.3. Points of intersection 

In the eventual case that bilinear flow occurs at 
early time, the intersection point formed by Equation (9) 
and Equation (22) allows obtaining an expression for 
estimating the half-fracture lengths as a function of the 
intersect time of bilinear and birradial flow regimes, tBLBRi, 
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The intersect tLBRi formed by the pressure 

derivative straight-line portions of the linear and birradial 
flow regimes, Equations (9) and (21) also leads to obtain 
an equation to find the half-fracture length. 
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Another way to determine the half-fracture length 
results from the intersection of the birradial and radial, 
tRBRi, straight-line portions of the pressure derivative given 
by Equations (14) and (9), 
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The intersection formed by the birradial flow 

regime and the late pseudosteady-state period, tBRPi, given 
by Equations (14) and (28) results in; 
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2.4. Conventional analysis 

After replacing in Equation (8) the dimensionless 
quantities given by Equations (1) and (4), it yields; 
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Or, 
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Which implies that a Cartesian plot of ∆P vs. t0.36 

(for drawdown) or ∆P vs. [(tp+∆t) 0.36 - ∆t0.36] (for buildup) 
provides a straight line which slope, mell, provides the half-
fracture length, 
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3. SYNTHETIC EXAMPLES 
 
3.1. Example-1 

Determine the half-fracture length using a 
simulated test was run for a heterogeneous reservoir with 
the information given below: 
 
Bo = 1.25 bbl/STB q = 350 STB/D 
h = 100 ft  µ = 3 cp    
rw = 0.4 ft  ct = 1x10-5 psi-1   
Pi = 5000 psi   φ = 20 %  
k = 300 md      ω = 0.1 
λ = 1x10-7  xf = 100 ft 
 

Solution. The pressure and pressure derivative 
plot against time is given in Figure-3, from which a value 
of (t*∆P’)BR1 of 7 psi was read. This value is used in 
Equation 12, so, 
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3.2. Example-2 

Figure-4 presents pressure and pressure 
derivative vs. time data for a bounded homogeneous 
reservoir using the information given below:  
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Figure-3. Pressure and pressure derivative vs. time for 
example-1. 

 
Bo = 1.25 bbl/STB q = 300 STB/D 
h = 30 ft   µ = 5 cp    
rw = 0.3 ft  ct = 3x10-6 psi-1   
Pi = 4000 psi   φ = 10 %  
k = 33.334 md      xf = 200 ft 
 

It is requested for this exercise to estimate and 
confirm the half fracture length. 
 

Solution. The following information was read 
from Figure-3, 
 
tBR = 1.01 hr (t*∆P’)BR = 64.63     tBRPi = 3300 hr 
 

Equation (12) allows estimating a half-fracture 
length of 199 ft and Equation (26) provides a value of 
201.6 ft for the same parameter. 
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Figure-4. Pressure and pressure derivative vs. time 
for example-2. 
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Figure-5. Pressure and pressure derivative vs. time 
for example-3. 

 
3.3. Example-3 

Find fracture-half length and fracture 
conductivity for the synthetic test which pressure and 
pressure derivative vs. time data is given in Figure-5. 
Other relevant data for this test is: 
 
Bo = 1.1 bbl/STB  q = 650 STB/D 
h = 200 ft  µ = 2 cp    
rw = 0.5 ft  ct = 1x10-5 psi-1   
Pi = 4000 psi   φ = 20 %  
k = 180 md      xf = 350 ft 
 

Solution. The following information was read 
from Figure-3, 
 
tBR = 1.01 hr  (t*∆P’)BR = 64.63 psi 
tr = 57.51 hr  (t*∆P’)r = 2.715  psi 
∆Pr = 11.12 psi 
 

Again, Equation (12) is used to estimate a half-
fracture length of 351.1 ft. A skin factor of -5.8 is found 
using Equation (16). Then, Equation (13) provides a 
fracture conductivity value of 1’026, 606 md-ft 
 
4. CONCLUSIONES AND RECOMMENDATIONS 

A new model for the birradial/elliptical flow in 
fractured vertical wells is presented. The model excludes 
the reservoir drainage area which becomes practical in 
pressure tests in which the late time behavior is not 
observed. Both TDS technique and conventional analysis 
are used as interpretation tools. They were successfully 
tested with synthetic examples. 
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Nomenclature 
A Draining area, ft2 
B Oil volume factor, rb/STB 

bx 
Shortest distance from a lateral bounday 
to a well, ft 

CfD Dimensionless fracture conductivity 
ct Compressibility, 1/psi 
h Formation thickness, ft 
k Formation compressibility, md 

kfwf Fracture conductivity, md-ft 
m Slope 
P Pressure, psi 

Pwf Well-flowing pressure, psi 
q Oil flow rate, STB/D 
qg Gas flow rate, MSCF/D 
rw Wellbore radius, ft 
YE Reservoir width, ft 
XD Dimensionless reservoir length, 2bx/XE 
XE Reservoir length, ft 
xf Half-fracture lenght, ft 
s Skin factor 
t Test time, hr 
T Reservoir temperature, °R 

(t*∆P’) Pressure derivative, psi 
(tD*PD’) Dimensionless pressure derivative 

WD Dimensionless reservoir width, YE/rw 
 

Greek 
∆ Change 

φ Porosity, fracction 

λ Interporosity flow paramater 
µ Viscosity, cp 

ξ Variable to identify homogeneous (ξ=1) or 
heterogeneous (ξ=ω) reservoirs 

ω Dimensionless storativity coefficient 
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Suffixes 
BR Birradial 

BR1 Birradial at 1 hr 
BRBLi Birradial-bilinear intersection 
BRPi Birradial-pseudosteady intersection 

BRPBi Birradial-parabolic intersection 

BRSSi Birradial-steady state intersection for square 
or circular systems 

BRSS1i 
Birradial-steady state intersection. Parabolic 
flow is seen. Far lateral boundary is at 
constant pressure 

BRSS2i Birradial-steady state intersection. Parabolic 
flow is seen. Far lateral boundary is closed 

BRSS3i 

Birradial-steady state intersection. Well 
centered in an elongated system, one lateral 
boundary is closed and the other one is at 
constant pressure 

BRSS4i 
Birradial-steady state intersection. Well 
centered in an elongated system, both 
lateral boundaries are at constant pressure 

D Dimensionless 
DA Dimensionless based on area 

Dxf Dimensionless based on half-fractured 
length 

DLBRi Dual linear-birradial intersection 
ell Elliptical 

LBRi Linear-birradial intersection 
r Radial 

RBRi Radial-birradial intersection 
rpi Intersect of radial-pseudosteady state lines 
w Well 
t Time  
p Pseudosteady-state 
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Appendix-A. Gas flow 
Equations (1), (2) and (3) are applied to gas wells 

if the viscosity and total system compressibilities are given 
at initial conditions, it means (φct)i. However, if those 
expressions are expressed using the pseudotime concept, 
Agarwal (1979), it yields: 
 

2

0.000263 ( )Daxf a
f

ktt t P
xφ

=                                            (A.1) 

 
0.000263 ( )DaA a

ktt t P
Aφ

=                                            (A.2) 

 

2

0.000263 ( )DaL a
E

ktt t P
Yφ

=                                            (A.3) 

 
For gas wells, Agarwal (1979) also included the 

pseudopressure definition, 
 

( ) ( )( ) ( )
1422.52

i
D

sc

hk m P m P
m P

q T
−

=                              (A.4) 

 
which dimensionless pseudopressure derivative is given 
by: 
 

( ) ( )* ( ) '
* '

1422.52D D
sc

hk t m P
t m P

q T
∆

=                              (A.5) 

 
After replacing Equations (1), A.4 and A.5 into 

Equations (7) and (8) leads to obtain: 
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f
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1
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( * ( ) ' ( )
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f

BR t i
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For the case of using the pseudotime function and 

replacing Equation A.1 instead of Equation 1 into 
Equations 7 and 8 allows obtaining: 
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In conventional analysis for gas flow case, 

Equation (7) becomes, 
 

0.36
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t f

q T kP t
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             (A.11) 

 
Then, the slope of the Cartesian plot will give, 
 

0.36
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q T kx
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Appendix-B. Elongated systems 

Escobar, Hernandez and Hernández (2007) 
presented the pressure solution for dual-linear, single-
linear and parabolic flow regimes which take place in 
elongated reservoirs. Their pressure derivatives are, 
respectively, 
 
( * ')

LD D DL Dt P tπ=                                             (B.1) 
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LD D L Dt P tπ=                                             (B.2) 
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D E
D D D D
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⎝ ⎠
                               (B.3) 

 
where the dimensionless reservoir length and width are 
given as follows: 
 

2 x
D

E

bX
X

=                                                           (B.4) 

 
E

D
w

YW
r

=                                                           (B.5) 

 
When parabolic flow takes place and if the test is 

long enough state-state develops. The governing pressure 
derivative expressions when the far boundary is either at 
constant pressure or close boundary are given below: 
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Escobar, Hernandez and Tiab and (2010) 

presented the governing Equations for rectangular systems 
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with one or both lateral boundaries being under constant-
pressure conditions. The governing equation of the 
negative unit slope tangential to the pressure derivative 
curve for a well centered inside a rectangular reservoir 
with one constant-pressure boundary is given here as: 
 

32
132* '

19
D E

D D D
E

W Xt P t
Yπ

−⎛ ⎞
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⎝ ⎠
                             (B.8) 

 
When both lateral boundaries are subjected to 

constant pressure, the governing equation of the negative 
unit slope tangential to the pressure derivative curve is 
given as: 
 

32
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D D D
E

W Xt P t
Yπ

−⎛ ⎞
= ⎜ ⎟

⎝ ⎠
                                            (B.9) 

 
As far as elongated systems is concerned, the 

intersect point formed by Equation (9) with Equations B.1, 
B.2 and B.3 and B.6-B.9 provided the below expressions. 
 
Intersect of birradial and Dual Lineal, tDLBRi, 
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Corte birradial y single-Lineal, tSLBRi,    
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Intersect of birradial and parabolic, tBRPBi, 
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Intersect of birradial and steady state, tBRSS1, 
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Intersect of birradial and steady state, tBRSS2, 
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Escobar et al. (2007) introduced tan 

approximation for the dimensionless pressure derivative of 
square and circular shaped systems under steady-state 
period, 
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Intersect of birradial, Equation (14), and steady 

state, Equation (52), for circular or square systems, tBRSSi, 
leads to, 
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Intersect of birradial and steady state for a centered 

well in a rectangular system with a constant-pressure lateral 
boundary, tBRSS3, 
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Intersect of birradial and steady state for a centered 

well in a rectangular system with both constant-pressure 
lateral boundaries, tBRSS4, 
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