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ABSTRACT 

An appropriate characterization of such unconventional resources as shale formations requires the availability of 
practical and accurate tools. Wells drilled in shale formations have to be hydraulically fractured for commercial production 
since the permeability is very low to ultralow reaching values in the order of nanodarcies. If these formations are tested by 
keeping constant the flow rate, then, there is a need of providing a pressure-transient interpretation technique which in this 
research follows the TDS philosophy. Contrary to transient-rate analysis where a third flow regime is observed during the 
transition period between linear and pseudosteady state which allows for the model identification, in transient-pressure 
analysis that period does not exist so identification of the permeability model cannot be obtained. Therefore, the developed 
equations for permeability, half-fracture length, skin factor and reservoir length are used without considering the model. 
The equations were successfully tested with synthetic examples.  
 
Keywords: shale formations, superposition, flow regimes, transient-rate analysis, average reservoir pressure. 
 
1. INTRODUCTION 

The exploiting of hydrocarbons from shale 
formations is becoming more important every day. Then, 
there is a need of providing practical and accurate 
techniques for the characterization of pressure tests in such 
formations. In order to make them feasible to exploit, 
hydraulic fracturing must be performed. This causes the 
presence not only of microfractures with an increase 
reservoir permeability but also linear flow regime and late 
pseudosteady-state period which are required to be 
carefully analyze. 

Among the researches aimed to study the 
behavior of fractured shales, we can name the works of 
Palmer, Moschovidis, and Cameron (2007), and Ge and 
Ghassemi (2011). The models presented by Wattenbarger 
et al. (1998) and El-Banbi and Wattenbarger (1998) 
assume uniform permeability in the surroundings of the 
fracture system which may not be the proper case. 
Recently, Fuentes-Cruz, Gildin and Valko (2014) 
presented a mathematical model considering that the 
average effect of the failure of weak planes leads to a non-
uniform permeability distribution depending on the 
distance to the hydraulic fracture which becomes the basis 
of this work. They considered three permeability variation 
models: uniform, linear and exponential. Their reservoir 
characterization was conducted by using rate-decline 
analysis which was later extended to transient-rate and 
reciprocal rate derivative analysis by Escobar, Montenegro 
and Bernal (2014) by following the TDS philosophy, Tiab 
(1993).  

No permeability variation effect was found on the 
pressure and pressure derivative curves since the authors 
believe than the transient pressure travel faster than the 
transient rate disturbance. Then, by using pressure-
transient analysis no model can be differentiated and, then, 

same equations were developed for the three models 
which were successfully tested with synthetic examples. 
 
2. MATHEMATICAL FORMULATION 
 
2.1. Mathematical model 

This study  is based upon the mathematical model 
introduced by Cruz-Fuentes et al. (2014) as given below 
which dimensionless Laplacian pressure solution, DP , for 
the exponential, linear and uniform permeability fields are 
respectively given as: 
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Where Iv and Kv are the modified Bessel functions 

of first and second kind, respectively (v=0, 1). The 
dimensionless time for oil and gas wells in field units is, 
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The dimensional length stimulated reservoir 
volume. 
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The dimensionless permeability quantities for 

exponential and linear cases, respectively, are, 
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The dimensionless minimum permeability is 

given also as, 
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The definitions of dimensionless gas 

pseudopressure and the pseudopressure derivative, 
respectively in the solution for constant production rate, 
are: 
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The dimensionless oil pressure and the pressure 
derivative, respectively, are: 
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Using the concept of stimulated reservoir volume, 

the half-length of the hydraulic fracture (2xf) is equal to 
the lateral extent of the volume that is stimulated, Fuentes-
Cruz et al. (2014):  
 
2 f ex x=                                                             (13) 
  
2.2. TDS formulation for linear flow regime 

The early-time linear flow regime is seen in the 
three above mentioned models: uniform, linear and 
exponential. It is characterized by a typical 0.5-slope line 

on the pressure derivative curve. Notice also that this flow 
regime shows up at about the same time period for yD 
values as shown in Figures 1 through 3. Therefore, its 
behavior does not depend upon neither the variation of the 
dimensionless reservoir length nor the minimum 
permeability value. 

The early time portion of the log-log plot of 
dimensionless pseudopressure versus dimensionless time 
with constant kD and variable yD is used for the 
determination of the linear flow regime governing 
equation. The equation works independently of the 
permeability model since represents the maximum induced 
permeability in the stimulated reservoir volume, SRV: 
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Once the dimensionless quantities given by 

Equations (4) and (10) are replaced into Equation (14), it 
yields;   
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Since linear flow is independent of the minimum 

permeability -at the end of the main plane of fracture- 
Equation (15) allows obtaining an expression for the 
determination of the maximum induced permeability, k0, 
by reading the values of pseudopressure derivative at any 
arbitrary time during linear flow regime, so that: 
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Notice that the reservoir length, xe, can be solved 

from Equation (16), 
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The dimensionless pressure expression is found 

by integration of Equation (14), then, 
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An expression for the geometrical skin factor, sL, 

is obtained from the division of Equation (18) by Equation 
(14) and solving for sL, 
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Figure-1. Effect of the dimensionless reservoir length 
(yD

*) on the flow behavior for the uniform case, 
(kD

*=0.15). 
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Figure-2. Effect of the dimensionless reservoir length 
(yD

*) on the flow behavior for the linear case, (kD*=0.1). 
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Figure-3.  Effect of the dimensionless reservoir length 
(yD

*) on the flow behavior for the exponential case, 
(kD

*=0.1). 
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After plugging equations (9) and (10) into 

Equation (19), it yields in dimensional form, 
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2.3. TDS Formulation for pseudosteady-state regime 

The determination of the governing equation for 
the late pseudosteady period requires a log-log plot of 

tD*PD’ or tD*m(P)D’ versus tDA using a dimensionless 
constant permeability (kD = constant) and different 
dimensionless length values (yD= 0.1, 0.6 and 0.9), for 
each one of the induced permeability models as shown in 
Figures-3 through 5. In each model, a uniform behavior 
was found by dividing the dimensionless time by the 
dimensionless length of the stimulated reservoir volume 
for each case, respectively.  
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Figure-4. Effect of the variation of the dimensionless 
length on the pseudosteady state regime for the 

uniform model with kD constant. 
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Figure-5. Effect of the variation of the dimensionless 
length on the pseudosteady state regime for the linear 

model with kD constant. 
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Figure-6. Effect of the variation of the dimensionless 
length on the pseudosteady state regime for the 

exponential model with kD constant. 



                                        VOL. 9, NO. 10, OCTOBER 2014                                                                                                                ISSN 1819-6608            

ARPN Journal of Engineering and Applied Sciences 
 

©2006-2014 Asian Research Publishing Network (ARPN). All rights reserved. 

 
www.arpnjournals.com 

 

 
1955

The late pseudosteady-state regime is used for the 
calculation of the well drainage area whether or not the 
permeability value is known. 

As seen in Figures 1 through 3, the late time 
pseudosteady-state regime is shown as a unit-slope straight 
line. It is important to remark that in transient-pressure 
analysis this behavior is independent of the permeability 
model, see Figure-6, while in transient-rate analysis the 
behavior of the late pseudosteady-state regime is particular 
for each model as indicated by Escobar et al. (2014), see 
Figure-7. This leads to point out the existence of a 
transition period between the linear flow regime and the 
pseudosteady-state period for the exponential and linear 
cases which indicates a permeability variation from the 
main fracture plane to the remaining SRV. 

Besides, contrary to the case of transient-rate 
analysis as determined by Escobar et al. (2014), in 
pressure-transient analysis is observed that the transition 
period between linear and pseudosteady state is so small 
that a relationship cannot be established. In the work 
presented by Escobar et al. (2014) this transition was so 
remarked that it was represented by a possible flow regime 
which they called “multilinear”.  
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Figure-7. Dimensionless pressure derivative behavior 
versus time for the three dealt models. 
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Figure-8. Dimensionless reciprocal rate derivative 
behavior versus time for the three dealt models as 

described by Escobar et al. (2014). 
 

Then, it is possible to write a general 
dimensionless pressure or pseudopressure derivative 
expression for the pseudosteady state period, for the three 
models is given as follows, 
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After the dimensionless terms given by Equations 
(4), (5) and (10) are replaced in Equation (22), an 
expression for the determination of the lateral reservoir 
length, xe, is obtained, 
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Opposite  to the methodology proposed by 

Escobar et al. (2014) at late time where is necessary to 
find a parameter called α -which depends upon the 
permeability model- in transient-pressure analysis there is 
no distinction of the permeability variation from the main 
fracture plane, then, a unique expression for the three 
models is obtained.   
 
2.5. Interception point 

Permeability can be verified from an expression 
obtained by using the intersection point formed by the 
radial flow regime and the late-time pseudosteady-state 
period. By manipulation of Equations (14) and (22), it 
yields; 
 

( )

0.5
º0.0002637 0.5816LPSSi

t i

k t y
cφ µ

⎛ ⎞
=⎜ ⎟⎜ ⎟

⎝ ⎠
                               (24) 

 
Equation (24) allows solving for the maximum induced 
permeability, 
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The work presented by Escobar et al. (2014) also 
permitted to use the point of intercept between the late 
pseudosteady state and the so-called “multilinear flow” 
which represents the permeability variations at the SRV’s 
extreme boundaries. This flow regime leads to the 
estimation of the minimum induced permeability. This 
flow regime is unobserved when using pressure-transient 
analysis, and then, it is not possible the estimation of the 
minimum induced permeability.  
Equations for oil flow are presented in appendix-A. 
 

Table-1. Relevant information for the uniform model. 
 

Parameter Value Parameter Value 
h  (ft) 700 µg (cp) 0.011 

φ  (%) 6.32 xe (ft) 1350 
T (°R) 590.8 ct (psi-1) 2.53x10-5 

Bgi (rb/Mscf) 0.825 y (ft) 502.2 
k (md) 0.0106 # stages 2 

q (Mscf/day) 239223.2 s 0 
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4. EXAMPLES 
Three synthetic examples are worked for the 

applicability of the above developed equations for each 
model. Table-1 provides relevant information of the 
reservoir, well and fluid properties used in each one of the 
permeability models. 
 
4.1. Example-1. Uniform model 

For the case under consideration, the 
pseudopressure drop and its derivative against time are 
reported in Figure-8 with the purpose of determining the 
permeability, half-fracture length and reservoir length. 
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Figure-9. Log-log plot of the pseudopressure and 
pseudopressure derivative vs. time for the uniform 

synthetic example. 
 

Solution. As expected for this example, only 
linear flow regime and pseudosteady state period are 
developed and observed. The below parameters were read 
from Figure-8. 
 
tL = 8.37153 hr     
∆m(P)L = 4.49x109 psi2/cp 
[t*∆m(P)’]L = 6.4948x108 psi2/cp 
tPSS = 2.30878x107 hr     
∆m(P)PSS = 2.30627x1014 psi2/cp 
[t*∆m(P)’]PSS = 2.30619x1014 psi2/cp 
tLPSSi = 498 hr     
 

Equation (16) applied on the linear flow regime is 
ideal for calculating the maximum induced permeability 
which resulted to be 0.011263 md. Then, Equation (17) 
allows calculating a value of xe equal to 1366.05 ft which 
used in Equation (13) gives a value of half-fracture length 
of 683.025 ft. An initial skin factor of 0.3700 is found with 
Equation (20). 

The pseudosteady-state regime is used along with 
Equation (23) to provide a value of xe of 1349.9175 ft and 
the point of intersection used in Equation (39) gives a 
maximum permeability value of 0.01145 md. 

Needless to say that there is no permeability 
variation in the uniform model; therefore, it does not exist 

any analyzable transition period between the linear flow 
regime and the pseudosteady state. 
 
4.2. Example-2. Linear model 

It is required to find permeability, reservoir 
length and half-fracture length from the data reported in 
Figure-9 and the information given in Table-2. 
 

Table-2. Relevant information for the linear model. 
 

Parameter Value Parameter Value 
h  (ft) 853 ct (psi-1) 2.53x10-5 

φ  (%) 7.56 y (ft) 777 
T (°R) 852 # stages 3 

Bgi (rb/Mscf) 0.825 xe (ft) 1110 
µg (cp) 0.01 k (md) 0.005 

q (Mscf/day) 239223.2 s 0 
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15 2( * ) ' 1.0591 10 psi /cpPSSt mP∆ = ×
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 P
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 m
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 ')
, p
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  /
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2

t, hr

15.5499 hrLt =

81.8592 10 hrPSSt = ×

 
 

Figure-10. Log-log plot of the pseudopressure and 
pseudopressure derivative vs. time for the linear 

synthetic example. 
 

Solution. For the application of the governing 
equations of each flow in this example, the following data 
are read from Figure-9, 
 
tL = 15.5499 hr     
∆m(P)L = 6.9264x109 psi2/cp 
[t*∆m(P)’]L = 1.2039x109 psi2/cp 
tPSS = 1.8592x108 hr     
∆m(P)PSS = 1.05914x1015 psi2/cp 
[t*∆m(P)’]PSS = 1.05911x1015 psi2/cp 
tLPSSi = 2800 hr     

Application of Equation (16) on the linear flow 
regime leads to estimate a maximum induced permeability 
value of 0.005155 md. Then, Equation (17) is used to 
calculate a value of xe of 1127.12 ft which used in 
Equation (13) gives a value of half-fracture length of 
563.56 ft. An initial skin factor of 0.472 is found with 
Equation (20). 

The pseudosteady state regime is used along with 
Equation (23) to find a value of xe equal to 1109.829 ft and 
the intersection point, tLPSSi, is used in Equation (39) to 
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estimate the maximum permeability value which resulted 
to be 0.00529 md. 
 
4.3. Example-3. Exponential model 

Figure-10 presents synthetic pseudopressure and 
pseudopressure derivative versus time data for an 
exponential model simulated using information from 
Table-3. It is required to properly characterize the 
reservoir by transient-pseudopressure analysis. 
 

Table-3. Relevant information for exponential model. 
 

Parameter Value Parameter Value 
h  (ft) 1003 ct (psi-1) 2.53x10-5 

φ  (%) 8.20 y (ft) 711.5 
T (°R) 912 # stages 4 

Bgi (rb/Mscf) 0.825 xe (ft) 1423 
µg (cp) 0.01 k (md) 0.3 

q (Mscf/dia) 3256310 s 0 
 

Solution. The following information was read 
from Figure-12. 
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 ')
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  /
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2

t, hr

3.5844 hrLt =

64.7218 10 hrPSSt = ×

  
 

Figure-11. Log-log plot of the reciprocal rate and the 
reciprocal rate derivative vs. time for the exponential 

synthetic example. 
 
tL = 3.5844 hr     
∆m(P)L = 2.1215x109 psi2/cp 
[t*∆m(P)’]L = 5.5536x108 psi2/cp 
tPSS = 4.7218x106 hr     
∆m(P)PSS = 1.96336x1014 psi2/cp 
[t*∆m(P)’]PSS = 1.96332x1014 psi2/cp 
tLPSSi = 41 hr     
 

Again, the maximum induced permeability is 
found with Equation (16). This resulted to be 0.2706 md. 
Afterwards, Equation (17) allows estimating a xe value of 
1351.419 ft which used in Equation (13) to provide a value 
of half-fracture length of 675.71 ft. An initial skin factor 
of 1.3145 is found with Equation (20). 

The pseudosteady state regime is used along with 
Equation (23) provides a value xe of 1422.781 ft and the 
point of intersection used in Equation (39) provides a 
maximum permeability value of 0.328 md. 

5. CONCLUSIONS 
 
a) New expressions for the interpretation of pressure-

transient tests in such very low permeability 
formations as shales is presented using characteristic 
points on the pressure (pseudopressure) and pressure 
(pseudopressure) derivative versus time log-log plot. 
The equations were successfully tested with simulated 
examples so half-fracture length, permeability and 
skin factor values were found with a very good 
agreement compared to the input data. 

b) Contrary to rate-transient analysis for systems under 
the same induce permeability model, there is no 
transition period observed in the pressure derivative 
between the linear flow regime and pseudosteady-state 
period. This makes impossible to distinguish among 
the three permeability model. This may be due to the 
fact that the transient pressure wave travels faster than 
the rate transient disturbance. 

c) The pressure and pressure derivative behavior do not 
discriminate the permeability variation in the main 
fracture plane, according to the concept of the SRV as 
pointe out by Fuentes-Cruz et al. (2014), in each one 
of the three permeability models. This situation leads 
to the development of general expressions for finding 
permeability, skin factor, half-fracture length and the 
lateral reservoir boundary without considering the 
reservoir model. This situation is not the same for the 
case of transient-rate analysis as presented by Escobar 
et al. (2014). 

 
Nomenclature 

Bg Volumetric factor,  rb/Mscf 
ct System total compressibility, 1/psi
k0 Maximum Permeability induced, md
k* Minimum Permeability induced, md

m(P) Pseudopressure, psi2/cp 
nf Number of main fracture planes 
P Pressure, psi
P Laplace-space pressure 

Pwf Bottomhole flowing pressure, psi 
q Flow rate (STB/D for oil, Mscf/D) for gas)

1/q Reciprocal flow rate, D/Mscf 
t*(1/q)’ Reciprocal flow rate derivative, D/Mscf

s Skin factor
t Time, hr

t*m(P)’ Pseudopressure derivative, psi2/cp
t*∆P’ Pressure derivative, psi2/cp 

T Absolute Temperature, °R 
u Laplace space variable 
xe effective reservoir width,  ft 
xf Hydraulic half-fracture length, ft 

y* half-length of Stimulated Reservoir volume 
element, ft 

 
Greeks 

φ Porosity, fraction
µ Viscosity, cp
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Suffices 
g Gas 
i Initial 
D Dimensionless

DA Dimensionless based on drainage area
PSS Pseudosteady state 
sc Standard conditions 
L Linear flow 

LPSSi Intersection point between linear flow and 
pseudosteady state. 
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APPENDIX-A. GOVERNING EQUATIONS FOR 
OIL FLOW 
 
A.1. Linear flow regime 

The dimensionless equation representing the 
linear flow is independent of the model and the variation 
of permeability, the behavior is given by: 
 

[ ] 5.74* 'D D Dt P t
π

=                                            (A.1)                      

 
In a similar fashion as Equation (20) was found 

for gas case, the linear skin factor for oil flow is given by: 
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                      (A.2) 

 
Once the dimensionless terms given by Equations 

(4) and (12) are plugged into Equation (A.1), the lateral 
extent of the stimulated reservoir volume can be solved 
for: 
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                             (A.3)                     

 
From the above equation it is possible to find the 

value of permeability:  
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               (A.4)      

 
A.2. Pseudosteady-State Period 
 

After replacing Equations (4) and (12) in 
Equation (22) and solving the reservoir length, 
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               (A.5)    

 
A.3. Intersection Point 
 
A slight modification of Equation (25) is given here: 
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