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ABSTRACT

We present a new Cosmological solution for an anisotropic homogeneous Bianchi type-1 Cosmological model in
modified Brans- Dicke theory with variable cosmological constant. We discussed the physical and geometrical properties

of this model for radiation era in detail.
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1. INTRODUCTION

There are many alternative theories and
extensions of the Einstein’s general relativity. Among
them Brans and Dicke [1] theory of gravitation is well
known modified version of Einstein’s theory. It is a scalar
tensor theory in which the gravitational interaction is

mediated by a scalar field ¢ as well as the tensor field Jij
of Einstein’s theory. Many authors have studied the
problems with cosmological solutions involving time
dependent cosmological term and Brans-Dicke field. The
work of Singh and Rai [2] gives a detailed discussion of
Brans-Dicke cosmological models. In particular, spatially
homogeneous Bianchi models in Brans-Dicke theory in
the presence of perfect fluid with or without radiation are
quite important to discuss the early stages of evolution of
the universe. Nariai [3], Belinskii and Khalatnikov [4],
Reddy and Rao [5], Banerjee and Santos [6], Shri Ram [7],
Shri Ram and Singh [8], Berman et al. [9], Reddy [10],
Reddy and Naidu [11], Adhav et al. [12], Rao et al. [13,
14], Endo and Fukui [15] and Rai, Rai and Singh [16] are
some of the authors who have investigated several aspects
of this Brans-Dicke theory and discussed in detail. Some
authors like Bergmann [17] and Wagoner [18] proposed
the variable cosmological term Q in an explicit function of
a scalar field® .

The  Brans-Dicke field
cosmological term Q are:

equations  with
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where the constant £ shows how much this theory

including Q(¢) deviates from that of Brans and Dicke
and as usual @ is coupling constant and Tij is the energy-

momentum tensor for a viscous fluid distribution [19].

Covariant derivative with respect to the metric @ is

denoted by semicolons and partial differentiation with

. i
respect to the coordinate X is denoted by comas. Then
under the conformal transformation:

Gij — Gij = PGy 4

the equations (1)-(3) go to the form
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where all barred and unbarred quantities are defined in

terms of metric gij and gij respectively.

In this paper we discuss Bianchi type-I perfect
fluid cosmological models in a scalar-tensor theory
proposed by Brans and Dicke. We obtain solution of the
field equations for radiation era assuming that the
deceleration parameter q is a constant.

2. FIELD EQUATIONS
The Bianchi type-I metric is considered as

ds? = —dt*+ 4 () dx® + BY (Ody® + CP()dz? (5

where A,B,C,are functions of xt=t only. The
energy-momentum tensor (TUJ

for perfect fluid distribution is given by
Tiy=(p+pYiv; + Pgi; 9)

together with
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gyv'v’ = -1 (10)

where P and 2 are the proper pressure and energy

density respectively and 7' are the components of the
fluid four-velocity. We assume the coordinates to be
commoving so that Pr=0 =7"=0 pgv*=1
Scalar field A is also taken to be a function of t only. The
field equations (5) and (6) turn into

e B0 =e 0N
Af CE.+%%+§=anﬁ+uwT+?'}“: (12)
e D BB G =anp s 220 (13)
e B Bl g2 I
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The suffix ‘4’ stands for ordinary time-derivative
of the concerned quantity.
From (11) and (12), we get

Bsa Asa , BaCy AC

B atsc ac ! (16)
From (12) and (13), we get

Caa Baa  AlCe AB_

C B AC AB 17)
First integral of (16) and (17) are

A Ba _ Ky

A B ABC (18)
and

By, Cq _ ks

B €  ABC (19)

where K1 and Kz are the constants of integration.
Let R be the average scale factor of the Bianchi
type-1 universe, i.e.

R?® = ABC (20)

The Hubble parameter H, volume expansion6,
deceleration parameter q and shear ¢ for the metric (1) can
be written as:

H= R
"R Q1)
. A B c
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Here the projection tensor P} has the form

Py = gij — uuy

o kK Kk
IR*
RRM
q=-—
Ri (22)

3. SOLUTIONS OF THE FIELD EQUATIONS

The system of equations (2.4) - (2 8) supply only
five equations in six unknowns (A, B, C,7 P andA). One
extra equation is needed to solve the system completely.
We take deceleration parameter q is a constant.
Now integrating equation (22), we get

1
R = (at)m (23)

where a and m are constant and m = 1+q
Using equations (18) and (19), we obtain

kym m=2
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Dividing (24) by (25) gives
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And
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Metric (8) can be written as
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For radiation era @ = 3P and k2 = —2k, ,
Metric (29) can be written as

a5t = -

d‘*+[ar]"[dr - eﬁ-"ﬁm iy + ﬂ_f“‘_ht a% ] (30)
The Hubble parameter H, volume expansion 6
and shear o for the metric (30) can be written as

5= _siﬂemf . Ik,{at}ﬂ + k@ 4 keylat)

4. TRANSFORMATIONS OF SOLUTIONS
Under the transformation given by [15]:

=@t
m

s

zl’

Using (26), (27), (28), we have

m-3
mt™m
A=
m-—3
where 7 < 3 (31)

From (14), we have
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Using (6) and (4) finally from (14), we get
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5. DISCUSSIONS
The Hobble parameter, pressure, density, scalar
field, cosmological constant and the cosmological term

(Q) are singular at E=0 fo,m<3 porl =1 tpe

cosmological term (Q) vanish and the model (30) reduces

into a Brans- Dick one of the model in general relativity.
After transformation we get the same scenario.
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