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ABSTRACT 

A pressure gradient level that must be reached to enable the fluid to overcome the viscous forced is defined as the 
threshold pressure gradient, TPG. It has been observed that the TPG has effect on the pseudorradial (or late radial) flow 
regime of horizontal wells, but such earlier flow regimes as early radial, early linear and elliptical do not suffer the effect of 
the TPG. In this work, a methodology previously introduced in the literature for well test interpretation in horizontal wells 
drilled in both homogeneous and naturally fractured formations has been adapted by using some corrections factors. The 
re-formulated methodology was successfully tested on synthetic pressure tests.    
 
Keywords: horizontal wells, TDS technique, pressure transient analysis, flow regimes. 
 
1. INTRODUCTION 

Several studies have been devoted to study the 
impact of the onset pressure gradient required to initiate 
fluid flow. Prada and Civan (1999) conducted a laboratory 
investigation to see the effect of the onset pressure 
gradient on several low permeability rock samples so 
empirical corrections of the minimum pressure gradient as 
a function of fluid mobility were developed. 

Raymond and Philip (1963) reported the 
existence of TPG in the water flow through soils with high 
clay content. Pascal (1981) studied the effect of TPG on 
the fluid flow through a porous medium and evaluated its 
role on the pressure and flow rate distributions. Yun, Yu, 
and Cai (2008) presented a fractal model to describe the 
Bingham fluids flow in porous medium with the 
consideration of TPG based on the fractal characteristics 
of pores.  

Regarding the influence of TPG on well pressure 
tests, we found the work of Lu and Ghedan (2011) 
presented an analytical solution to study the pressure 
behavior of vertical wells in low permeability reservoirs 
under the influence of TPG. They conducted the 
interpretation via the straight-line conventional analysis. 
Later, Lu (2012) extended the work of Lu and Ghedan 
(2011) to include the effect of TPG on pressure tests in 
uniform-flux hydraulically fractured vertical wells.  

Owayed and Tiab (2008) discussed the flow of a 
slightly compressible Bingham fluid and developed new 
analytical equations based on pressure and pressure 
derivative behavior of horizontal wells.  Zhao et al. (2013) 
presented an analytical solution for the horizontal well 
transient pressure behavior of a dual-porosity formation 
with the influence of TPG. They commented on the 
pressure and pressure derivative behavior and observed 
that the effect of TPG is seen during the pseudorradial 
flow regime. This work is an extension of the research 
presented by Zhao et al. (2013) to introduce correction 

factors of the TPG so the methodology presented by 
Engler and Tiab (1996a) - homogeneous case- and Engler 
and Tiab (1996b) - naturally-fractured dual-porosity 
formations- can be applied.  
 
2. MATHEMATICAL FORMULATION 
 
2.1. Dimensionless quantities 

The dimensionless quantities considered in this 
study for both homogeneous and anisotropic reservoirs 
and naturally fracture systems are given below. The 
dimensionless time is given by: 
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For heterogeneous systems, the total 
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The dimensionless lengths: 
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2.2. Homogeneous and anisotropic reservoirs 

Zhao et al. (2013) presented the well pressure 
behavior solution for a horizontal well in naturally-
fractured formation which is easily extended to 
homogeneous formations. Both solutions become the basis 
of this study. Figure-1 presents the dimensionless pressure 
and pressure derivative behavior for a homogeneous 
system in which the following flow periods are 
chronologically recognized: wellbore storage, early radial 
flow regime, linear flow regime, elliptical flow regime and 
late-radial or pseudorradial flow regime and pseudosteady-
state period. Due to the fact the system geometry is 
circular then no late linear flow regime is presented in 
such plot. 
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Figure-1. Dimensionless pressure and pressure derivative 
vs. time of a horizontal well in a closed-circular 

homogeneous reservoir. 
 

Engler and Tiab (1996a) presented a 
methodology based upon the TDS technique, Tiab (1993) 
to characterize these flow regimes which are used for 
obtaining reservoir permeability, as follows: 
 
The early radial flow regime provides (kykz)

 0.5, 
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Both early linear and late linear are used to obtain, 

respectively, ky, using the value of the pressure derivative on 
each flow regime at a time of 1 hr, extrapolated if necessary, 
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The elliptical flow equation initially presented by 

Escobar et al. (2004) and later modified by Martinez, 
Escobar and Bonilla (2012) allows obtaining the horizontal 
permeability, kh = (kxky)
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Martinez, Escobar and Bonilla (2012) also 

presented the conventional straight-line methodology to 
characterize such flow regime. Escobar and Montealegre-M. 
(2008) presented also the elliptical flow characterization via 
conventional technique for vertical wells. 

Engler and Tiab (1996a) presented the 
dimensionless pressure derivative solution for pseudorradial 
flow regime, such as, 
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Once the above expression is combined with 

Equation (2) allows obtaining kh = (kxky)
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Since the dimensionless pressure derivative 

behavior is given by: 
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Combination of Equations (13) and (14) leads to 

an equation for well drainage area estimation, 
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Engler and Tiab (1996a) also provided more 

expressions using the intersection points formed between 
the different flow regimes from which only two cases 
considered of importance by the authors are reported here: 
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Engler and Tiab (1996a) also found that the 
derivative ratios provide unique feature for the analysis. 
Then, the ratio between the radial flows allows for obtaining 
either kx or kz, 
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Figure-2. Dimensionless pressure derivative vs. time for 
different dimensionless pressure gradient values of a 

horizontal well in a closed-circular homogeneous 
reservoir. 

 
The effect of the threshold pressure on the 

pressure derivative curve is observed in Figure-2 for 
different values of dimensionless threshold pressure 
covering a practical range. Notice that the early radial and 
early linear flows are unaffected; then, application of the 
TDS technique for such flow regimes is given by Engler 
and Tiab (1996a). The elliptical flow is slightly affected 
but the pseudorradial flow regime is strongly affected. So 
are late linear regime and the pseudosteady-state period. 
However, since the early linear flow regime is useful to 
provide ky, then, there is no need of considering it in this 
study. It is important to see that is the pressure test in run 
long enough then the late time pseudosteady state will be 
observed. 
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Figure-3. Dimensionless second pressure derivative vs. 
time for different dimensionless pressure gradient values 

of a horizontal well in a closed-circular homogeneous 
reservoir. 

 

The starting point is trying to find out the value 
of the dimensionless threshold pressure which is not easily 
obtained from the characteristic points and lines of Figure-
2. Then, the second pressure derivative, Figure-3, is 
considered. There, three main features are observed: (1) A 
maximum point after linear/elliptical flow vanishes; (2) a 
minimum point follows the maximum point, and (3) a 0.5-
slope straight line as shown inside the square of Figure-3. 
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Figure-4. Correlation of the minimum dimensionless 
second pressure derivative with the dimensionless 

threshold pressure. 
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Figure-5. Correlation of the intercept of the half-slope 
straight line on the second pressure derivative and the 

dimensionless threshold pressure. 
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Figure-6. Correction factor of the dimensionless second 
pressure derivative dimensionless at which the maximum 

occurs - Homogeneous reservoirs. 
 

The second pressure derivative at which the 
minimum point takes place; see Figure-3, correlates 
perfectly with the dimensionless threshold pressure, 
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Figure-4, from where the following correlation is 
obtained: 
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The above expression requires the estimation of 

the dimensionless second pressure derivative which is a 
function of ky. The latter can be found from the early-
linear flow regime, Equation (9). 

For cases where the minimum point is not easy to 
be read, due to noisy data, it is recommended to obtain the 
dimensionless threshold pressure from the intercept, b, of 
the half-slope straight line (which region is enclosed in the 
square, Figure-4). This intercept correlates quite well with 
the threshold pressure as indicated in Figure-5, 
  

1107.5 0.0005D DPG b                                               (20) 

 
Where 
 

141.2
y w

D

k L b
b

q B
                                                                 (21) 

 
As indicated before, the dimensionless second 

pressure derivative displays a maximum point after the 
linear or elliptical flow regimes are felt as indicated in 
Figure-2. This maximum point is practically the same for 
all the given threshold pressures if a correction factor, FC, 
is applied as perfectly correlated in Figure-6. Then, at that 
maximum point the second derivative is given by: 
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The correction factor obtained from Figure-6 leads 

to obtained: 
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After replacing Equation (4) into the above expression, it 
yields: 
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Once the horizontal permeability is estimated then 

the actual value of the radial pressure derivative, (t*P’)pr is 
obtained from Equation (13). This value corresponds to a 
horizontal straight line which may be drawn on the pressure 
derivative plot so its intersection with the late pseudosteady 
state line will provide the horizontal ell drainage area using 
Equation (15). 

The effective wellbore length must be at least 5 
times higher than the formation thickness for the early 
linear flow regime to develop; spherical flow will be 
observed, otherwise. Figure-7 shows such behavior. Since 
linear flow is unknown, then the procedure outlined before 
does not apply. For such cases it is recommended to 
assume isotropic system and assume the value of the 
pseudorradial derivative (horizontal line), then, the 
following expression applies; 
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Expression 26 was original introduced by Engler 

and Tiab (1996a) as a graphical correlation. 
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Figure-7. Dimensionless pressure and pressure derivative 
vs. time behavior for a horizontal well with LD = 0.5 and 

different threshold pressure values. 
 
2.3. Naturally fractured reservoirs 

The expressions for the estimation of 
permeabilities in homogeneous systems are applied here, 
so in this section we will focused on obtaining the Warren-
and-Root parameters,  and , Warren  and Root (1963). 
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 Figure-8. Dimensionless pressure derivative vs. time for 
different dimensionless pressure gradient values of a 

horizontal well in a closed-circular heterogeneous 
reservoir.  
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Figure-8 shows the dimensionless pressure 
derivative vs. time log-log plot for a naturally fractured 
reservoir subjected to variations of threshold pressure 
gradient which effect takes place during the pseudorradial 
flow regime. For large values of the interporosity flow 
parameter the trough appears before the pseudorradial 
flow regime, then, the methodology outlined by Engler 
and Tiab (1996b) applies.  Three main characteristics are 
seen in Figure-8; (1) An unchanging time at which the 
trough takes place, although, the minimum pressure 
derivative is affected by the threshold pressure, (2) the 
unit-slope line occurring after the minimum point keeps 
unaffected. Then, the point of intersection of the second 
radial flow regime (after the unit-slope line) with such line 
is also unaltered, and (3) the slope of the second radial 
flow regime is a function of the threshold pressure as 
described by Figure-9. The governing expression is then: 
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Figure-9. Correlation between the PGD and the slope of 
the second radial flow regime. 
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Figure-10. Dimensionless second pressure derivative vs. 
time for different dimensionless pressure gradient values 
of a horizontal well in a closed-circular heterogeneous 

reservoir. 
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Figure-11. Correction factor of the dimensionless time at 
which the maximum second pressure derivative occurs – 

Naturally fractured reservoirs. 
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Figure-12. Correction factor of the minimum 
dimensionless pressure derivative. 

 
As observed in Figure-10, once linear/elliptical 

flow vanishes, the second pressure derivative displays a 
maximum point which after corrected is then used to 
obtained the horizontal permeability; such correlation is 
obtain from Figure-11, 
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After replacing Equation 4 into Equation 29, it yields: 
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Engler and Tiab (1996b)  presented several 

expressions to determine the dimensionless storativity 
coefficient, , and the interporosity flow parameter, , 
using such characteristics points as the minimum time and  
pressure derivative taking place at the trough, the 
pseudorradial flow regime pressure derivative and the 
intercept between the unit-slope line (if seen) and the 
radial flow regime. 
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When the transition period occurs after the onset of 

the early linear flow regime, the interporosity flow parameter 
can be obtained from the ratio of the maximum and 
minimum pressure derivatives, 
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Equations 31 to 34 can also be applied if the value 

of the minimum pressure derivative is corrected. Coming 
back to Figure-8, we observe that the minimum point 
occurs at the same time but the pressure derivative 
changes as a function of the threshold pressure gradient. 
Such correlation is given in Figure-12 which allows 
finding, 
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Also, the point of intersection between the 

pseudorradial flow regime in the homogeneous region 
(second radial flow regime) and the unit-slope line taking 
place in the transition period leads to obtain the 
interporosity flow parameter, 
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 Finally, we did not elaborate on the determination 
of the skin factors; however, it can be determined by 
modifying the original expression of Engler and Tiab 
(1996b) with an analogy taken from Equation (78) of Lu 
and Ghedan (2011). 
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Table-1. Relevant data for example-1. 
 

 Value 

Parameter Example-1 Example-2 

kx, md 400 5 

ky, md 100 5 

kz, md 100 20 

rw, ft 0.5 0.5 

Lw, ft 1500 750 

hz, ft 50 50 

q, BPD 300 300 

, cp 5 2.2 

, % 10 10(*) 

B, rb/STB 1.1 1. 

ct, 1/psi 1x10-5 1x10-4(*) 

reD 30  

PGD 0.01 0.006 

 1 1x10-8 

 0 0.05 
 

(*) includes matrix plus fractures 
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Figure-13. Pressure, pressure derivative and second 
pressure derivative versus time for example 1. 

 
3. EXAMPLES 
 
3.1. Homogeneous reservoir synthetic example 
 The pressure drop, pressure derivative and second 
pressure derivative versus time test reported in Figure-13 
was generated using the input data given in the second 
column of Table-1. It is required to characterize this test. 
 

Solution. The following information was read 
from Figure-13, 
 
(t*P’)er = 0.39 psi 
(t*P’)L1 = 4 psi 
tprpi = 3x106 hr 
(t2*P”)max = 4.712 psi 
(t2*P”)min = 1.85 psi 
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The procedure is outlined as follows: 
 
a) Find (kykz)

 0.5 with Equation (8). Result 396.82 md0.5 
b) Find ky from Equation (9). Result 99.92 md 
c) By combining results from steps 1 and 2, kz = 19.12 

md 
d) Equation (4) is used to find (tD

2*PD’)min = 0.0397 psi 
e) Find the dimensionless threshold pressure with 

Equation (19). Result 0.0115  0.01. 
f) The correction factor given in Equation (22) is 

estimated by the correlation given in Figure-6. Result 
1.0466 

g) Find (kxky)
 0.5 with Equation (24). Result 98.89 md 

h) Knowing ky find kx. Result 97.864 md. 
i) With the value of step 7, find (t*P’)pr using Equation 

13. Result 22.503 psi 
j) Draw a horizontal line along the value of step 9, 

corresponding to the pseudorradial flow regime for the 
zero threshold pressure. This line has been enclosed 
inside a rectangle (for pedagogical purposes) 

k) Draw the unit-slope line corresponding to the late-
time pseudosteady-state period and read the intercept 
of this line with the pseudorradial flow regime 

l) Find the well drainage area with Equation (15). Result 
157473 acres with corresponds to a radius of 46727.3 
ft or reD = 31.15 

 
 Note: alternatively, kz and kx can be estimated 
with Equation 15 and 16, respectively. Also, elliptical flow 
is observed approximately at 1 hr which can be sued to 
estimate (kxky)

 0.5. 
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Figure-14. Pressure, pressure derivative and second 
pressure derivative versus time for example 2. 

 
3.2. Heterogeneous reservoir synthetic example 
 Figure-14 presents synthetic data of pressure, 
pressure derivative and second pressure derivative versus 
time generated with the information given in the third 
column of Table-1. Find permeability, dimensionless 
threshold pressure and the naturally-fractured reservoir 
parameters. 
 

Solution. The following information was read 
from Figure-14, 
 
(t*P’)er = 7.92 psi  (t*P’)L1 = 8.5 psi 
 (t2*P”)max = 49.17 psi  (t2*P’)minO = 53.6 psi 
tmin = 692453.5 psi 
 
The procedure is outlined as follows: 
a) Find (kykz)

 0.5 with Equation (8). Result 9.806 md0.5 
b) Find ky from Equation (9). Result 5.03 md 
c) By combining results from steps 1 and 2, kz = 19.11 

md 
d) Find the dimensionless threshold pressure with 

Equation (27). Result 0.0061  0.006. 
e) Find (kxky)

 0.5 with Equation (30). Result 4.73 md 
f) Knowing ky find kx. Result 4.44 md. 
g) With the value of step 5, find (t*P’)pr using Equation 

13. Result 246.52 psi. If wanted draw a horizontal line 
along this value, corresponding to the pseudorradial 
flow regime for the zero threshold pressure. In this 
case is not needed since there is no late pseudosteady 
state period. 

h) Find  with Equation (31). Result 0.045 
i) Find  with Equation (32). Result 1.34x10-8. 
 
 Note: alternatively, kz and kx can be estimated 
with Equation 15 and 16, respectively. Also, elliptical flow 
is observed approximately at 20 hr which can be sued to 
estimate (kxky)

 0.5. Equations (33) and (34) can also be used 
to re-estimate  and. 
 
4. COMMENTS ON THE RESULTS 

The agreement between the simulated and 
estimated results in the worked examples show that the 
correction factors introduced in this study allow for the 
application of the interpretation methodology introduced 
by Engler and Tiab (1996a, 1996b). 
 
5. CONCLUSIONS 

The interpretation methodology introduced by 
Engler and Tiab (1996a, 1996b) were extended for the 
case of pressure tests affected by the threshold gradient by 
including some correction factors which are found from 
characteristic points and lines found on the pressure, 
pressure derivative and second pressure derivative vs. time 
log-log plot. The corrections factors were successfully 
applied to synthetic examples. 
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Nomenclature 
 

b Slope 

B Volumetric factor,  rb/Mscf 

ct System total compressibility, 1/psi 

FC Correction factor 

k Permeability, md 

kh Horizontal permeability, (kxky)
0.5 

hz Reservoir thickness, ft 

hx Reservoir length, ft 

Lw Effective horizontal wellbore length, psi 

P Pressure, psi 

PG Threshold pressure gradient, psi/ft 

PGD Dimensionless threshold pressure gradient 

Pwf Bottomhole flowing pressure, psi 

r Radius, ft 

s Skin factor 

t Time, hr 

tD Dimensionless time 

t*P’ Pressure derivative, psi 

t2*P” Second pressure derivative, psi 

tD*PD’ Dimensionless pressure derivative 

tD
2*PD” Dimensionless second pressure derivative, psi 

 
Greeks 
 

 Porosity, fraction 

 Interporosity flow parameter 

 Viscosity, cp 

 Dimensionless storativity coefficient 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Suffices 
 

e External 

D Dimensionless 

DA Dimensionless based on drainage area 

el Early linear 

i,el-pr Early linear and pseudorradial intercept 

i,er-el Early radial and early linear intercept 

er Early radial 

ELL Elliptical 

f Fracture 

h Horizontal 

i Initial 

L1 Early linear at 1 hr 

LL1 Late linear at 1 hr 

m Matrix, slope, mechanical 

max Maximum 

min Minimum 

minO Observed minimum 

NFR Naturally fractured reservoir 

p Pseudosteady state 

pr Pseudorradial 

prpi Pseudorradial-Pseudosteady intersection 

us,i 
Transition unit-slope and pseudorradial 
intercept 
 

x Direction in the x-axis 

y Direction in the y-axis 

w Well 

z Direction in the z-axis 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



                                        VOL. 9, NO. 11, NOVEMBER 2014                                                                                                              ISSN 1819-6608            

ARPN Journal of Engineering and Applied Sciences 
 

©2006-2014 Asian Research Publishing Network (ARPN). All rights reserved. 

 
www.arpnjournals.com 

 

 
2228

REFERENCES 
 
Engler T. W. and Tiab D. 1996a. Analysis of Pressure and 
Pressure Derivatives without Type-Curve Matching. 6- 
Horizontal Well Tests in Anisotropic Reservoirs. Jour. 
Petr. Sci. and Eng. 15: 153-168. 
 
Engler T. W. and Tiab D. 1996b. Analysis of Pressure and 
Pressure Derivatives without Type-Curve Matching. 5- 
Horizontal Well Tests in Naturally Fractured Reservoirs. 
Jour. Petr. Sci. and Eng. 15: 139-151. 
 
Escobar F.H., Muñoz O.F. and Sepúlveda J.A. 2004. 
Horizontal Permeability Determination from the Elliptical 
Flow Regime for Horizontal Wells. CT and F - Ciencia, 
Tecnología y Futuro. 2(5): 83-95.  
 
Escobar F.H. and Montealegre-M M. 2008. Determination 
of Horizontal Permeability from the Elliptical Flow of 
Horizontal Wells  Using Conventional Analysis. Journal 
of Petroleum Science and Engineering. 61: 15-20. 
 
Lu J. and Ghedan S. 2011. Pressure behavior of vertical 
wells in low-permeability reservoirs with threshold 
pressure gradient. Special Topics and Reviews in Porous 
Media. 2(3): 157-169. 
 
Lu J. 2012. Pressure behavior of uniform-flux 
hydraulically fractured wells in low-permeability 
reservoirs with threshold pressure gradient. Special Topics 
and Reviews in Porous Media - An International Journal. 
3(4): 307-320. 
 
Martinez J.A., Escobar F.H. and Bonilla L.F. 2012. 
Reformulation of the Elliptical Flow Governing Equation 
for Horizontal Wells. Journal of Engineering and Applied 
Sciences. 7(3): 304-313. 
 
Owayed J.F. and Tiab. D. 2008. Transient pressure 
behavior of Bingham non-Newtonian fluids for horizontal 
wells Journal of Petroleum Science and Engineering. 61: 
21-32. 
 
Pascal H. 1981 Nonsteady flow through porous media in 
the presence of a threshold gradient. Acta Mechanica. 39: 
207-224. 
 
Raymond J. M. and Philip F. L. 1963. Threshold Gradient 
for water flow in clay systems Soil Science Society of 
America Journal. 27: 605-609. 
 
Tiab D. 1993. Analysis of Pressure and Pressure 
Derivative without Type-Curve Matching: 1- Skin and 
Wellbore Storage. Journal of Petroleum Science and 
Engineering. 12: 171-181. 
 
Warren J.E. and Root P.J. 1963. The Behavior of 
Naturally Fractured Reservoirs. SPEJ. pp. 245-255. 
 

Yun M. J., Yu B.M. and Cai J.C. 2008. A fractal model for 
the starting pressure gradient for Bingham fluids in porous 
media International Journal of Heat and Mass Transfer. 
51: 1402-1408. 
 
Zhao Y.L., Zhang  L.H., Feng W. Zhang B.N and Lis Q.G. 
2013. Analysis of horizontal well pressure behavior in 
fractured low permeability reservoirs with consideration of 
the threshold pressure gradient. Journal of Geophysics and 
Engineering. 10: 1-10.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


